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Abstract: It is argued that whereas supersymmetry requires the instanton contribution

to the expectation value of a straight Wilson line in the N = 4 supersymmetric SU(2)

Yang-Mills theory to vanish, it is not required to vanish in the case of a circular Wilson

loop. A non-vanishing value can arise from a subtle interplay between a divergent integral

over bosonic moduli and a vanishing integral over fermionic moduli. The one-instanton

contribution to such Wilson loops is explicitly evaluated in semi-classical approximation.

The method utilizes the symmetries of the problem to perform the integration over the

bosonic and fermionic collective coordinates of the instanton. The integral is singular for

small instantons touching the loop and is regularized by introducing a cutoff at the bound-

ary of the (euclidean) AdS5 moduli space. In the case of a circular loop a non-zero finite

result is obtained when the cutoff is removed and a perimeter divergence subtracted. This

is contrasted with the case of the straight line where the result is zero after subtraction

of an identical divergence per unit length. The linear divergence is an artifact of our

non-supersymmetric regulator that deserves further consideration. The generalization to

gauge group SU(N) with arbitrary N is straightforward in the limit of small ’t Hooft cou-

pling. The extension to strong ’t Hooft coupling is more challenging and only a qualitative

discussion is given of the AdS/CFT correspondence.
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1. Introduction

The correspondence between N = 4 supersymmetric SU(N) Yang-Mills theory and type-

IIB superstring theory on AdS5 × S5 has been the subject of extensive study and is by

now well tested in the large-N limit (see for instance [1]–[4]). Many of these tests involve

comparison of correlation functions of gauge-invariant Yang-Mills operators with corre-

sponding amplitudes in type-IIB supergravity (the small α′/`2 limit of superstring theory

in AdS5 × S5, where `2 is the scale of the curvature). By comparison, the correspondence

involving non-local Yang-Mills operators, such as Wilson loops, has been relatively little

studied. This is one of the main motivations for this paper.

The Wilson loop in pure Yang-Mills theory is the expectation value of the holonomy,

〈W (C)〉 = 〈Tr P exp i
∫
C Aµdx

µ〉, which is a functional of an arbitrary curve C. It is of

central importance since it is an order parameter that characterizes the different phases

of the theory. When the trace is taken in the fundamental representation of the gauge

group G, such as the N -dimensional representation of SU(N), the Wilson loop decreases

as the exponential of the area in a confining phase but as the exponential of the perimeter

in a non-confining phase. A long rectangular loop determines the static potential between

elementary test charges, such as quark charges in QCD. Similar considerations apply to

Wilson loops in more general gauge theories in which there are additional dynamical fields

in the adjoint representation. In supersymmetric theories the concept of the gauge con-

nection generalizes to a superfield that contains other components beyond the usual vector

potential. Correspondingly, the Wilson loop generalizes in a natural manner to include con-

tributions from the extra fields. The N = 4 supersymmetric Yang-Mills theory is worthy of

study in its own right since it is an example of a non-trivial superconformal field theory in

four dimensions and a prototype for more general and realistic gauge theories. The natural

generalization of the Wilson loop in this theory is defined by

〈W (C)〉 = 1

N

〈
Tr P exp

{
i

∫

C

(
Aµẋ

µ + iϕiẏ
i + [θ̄Aẋµσ

µλA + θAẏiΓ̂
i
ABλ

B + h.c.] + · · ·
)
×

× ds

}〉
, (1.1)

where λA (A = 1, 2, 3, 4 indicates a 4 of the R-symmetry group, SU(4)) and ϕi (i = 1, . . . , 6

labels the 6 of SU(4)) are the fermion and scalar fields in the N = 4 supermultiplet. The

matrices Γ̂i
AB and

¯̂
Γ
i AB

are SO(6) Clebsch-Gordan coefficients that couple a 6 to two 4’s

and to two 4̄’s, respectively. The curve C now represents the curve in “superspace” —

in other words this kind of Wilson loop depends not only on the curve xµ(s) but also on

six extra variables yi(s) and on the spinors θA(s) and θ̄A(s) that contain the sixteen odd

(Grassmann) variables of N = 4 on-shell superspace. The · · · in (1.1) stands for terms

involving higher powers of the fermionic coordinates, θA and θ̄A. The expression (1.1) is

appropriate to euclidean signature whereas the factor of i in the coefficient of ϕi is absent

with Minkowski signature. Its presence is important, among other reasons, because it

implies that the exponential is not purely a phase. This expression can be motivated in
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various ways. For example, the loop can be considered to be the holonomy of an infinitely

massiveW -boson that is generated by breaking the gauge group SU(N+1) to SU(N)×U(1)

(as shown in an appendix of [5]).

Wilson loops of this kind were first studied in [6, 7], where their interpretation within

the AdS/CFT correspondence was stressed. Within string theory the Wilson loop is in-

terpreted as the functional integral over all world-sheets embedded in AdS5 and bounded

by the loop. In the supergravity limit (the small α′ limit of string theory) this integration

over fluctuating surfaces is dominated by the surface of minimum area Amin in AdS5. The

behaviour of the loop is therefore 〈W (C)〉 ∼ exp(−Amin). Since the metric is singular near

the boundary of AdS5 an infinite perimeter term arises, representing the mass of the test

particle circulating in the loop (it was shown in [5] that this divergence may be eliminated

by an appropriate choice of world-sheet boundary conditions). The finite minimal area

obtained by subtracting the divergent piece is a unique and well defined quantity [8].

As shown in [9] the expression (1.1) is invariant under κ transformations of the one-

dimensional theory on the test particle world-line, provided the curve satisfies appropriate

conditions and the Yang-Mills fields satisfy their equations of motion. This is closely related

to the κ symmetry of the massless (p2 = 0) ten-dimensional superparticle. A standard

argument based on gauge-fixing of κ symmetry then implies that the loop is invariant

under half of the 32 superconformal supersymmetries. In that case the supersymmetries

are defined by spinor parameters κA
α , κ̄

α̇
A that are related by

ẋµ σ
µ κ̄A = ẏi Γ̂

i
ABκ

B . (1.2)

It is easy to see that this constrains ẏi so that

ẏi = ni|ẋ| , (1.3)

where ni is an arbitrary fixed unit vector on the five-sphere (n2 = 1). As we will see later

the solutions to (1.2) have the form1 κAα = ηA
⊕ α+(σ ·xξ̄A

⊕
)α, κ̄

α̇
A = η̄α̇

⊕ A+(σ̄ ·xξ⊕ A)
α̇, where

the sixteen Poincaré supersymmetry parameters, ηA
⊕ α and η̄α̇

⊕ A, and the sixteen conformal

supersymmetry parameters, ξ̄A
⊕ α̇ and ξα

⊕ A, are related. We will only consider the special

loops in which we set θA(s) = 0 (so the terms in (1.1) that depend on θ are absent). A

particularly symmetric example of a Wilson loop satisfying (1.2) is the circular loop of

radius R. Superconformal invariance implies that the expectation value of such a loop

cannot depend on R so that 〈W 〉circle is a constant, but it does depend in a non-trivial

way on the dimensionless parameters g
YM

and N . The special feature of a circular loop

is that (1.2) implies that an x-independent linear combination of Poincaré and conformal

supersymmetries remains unbroken. In other words, the sixteen unbroken supersymmetries

are global whereas they are x-dependent for a generic loop satisfying (1.2). However, in the

quantum theory it is necessary to introduce a cut off. As we will see later, this necessarily

breaks the remaining supersymmetries and such Wilson loops receive quantum corrections.

A class of perturbative contributions to the expectation values of Wilson loops of this

kind has been calculated to all orders in the coupling constant and it has been argued

that it contains all the relevant contributions, at least in the large-N limit [10]. This
1The subscript ⊕ is used to label the parameters to avoid later confusion with the instanton moduli.
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consists of the “rainbow diagrams” — the class of planar diagrams in which all propagators

begin and end on the loop (so there are no internal interaction vertices). The sum of

such diagrams was determined in terms of a zero-dimensional gaussian matrix model. A

suggestion has been made [11] for extending this to all orders in the 1/N expansion (as well

as all orders in the ’t Hooft coupling) by use of an anomaly argument. This was arrived at

by considering a “straight” Wilson line on R4. This case is even more special since (1.2)

now implies that a subset of the Poincaré supersymmetries are unbroken and do not mix

with the conformal supersymmetries. The unbroken Poincaré supersymmetries (but not

the conformal supersymmetries) are preserved in the quantum theory in the presence of a

suitable cutoff and protect the Wilson line expectation value so that 〈W 〉line = 1. A circular

loop passing through the origin is mapped to a straight line by a conformal inversion and it

is the associated conformal anomaly that gives rise to a non-trivial expression for 〈W 〉circle
as a function of the coupling. The argument in [11] suggested that the gaussian matrix

model results should be taken seriously for all values of N , not simply in the large-N

limit contemplated by [10]. However, as shown in [12], there is a wide class of matrix

models with non-trivial potentials which give rise to the same leading N behaviour but

give different expressions for the Wilson loop at finite N . Recent computations [13] have

further questioned the validity of the conjecture within perturbation theory. From our

perspective, it is notable that the expression for the circular Wilson loop suggested by [11]

has no instanton contributions and does not depend on the vacuum angle, ϑ.

In this paper we will explicitly compute the one-instanton contribution to a circular

Wilson loop in SU(2) N = 4 Yang-Mills in semi-classical approximation — to lowest order

in the Yang-Mills coupling constant, g
YM

. A preliminary outline of this work was presented

in [14].

1.1 Expectations based on supersymmetry

Before carrying out the calculations in detail it is of interest to use the symmetries of

the problem to anticipate the result.2 It is instructive to contrast the expression for the

one-instanton contribution to the circular Wilson loop with that for the “straight line” (of

the kind considered in [11]). Naively (ignoring the need for a cutoff), the loop preserves

half of the Poincaré and conformal supersymmetries. At least some of these are broken by

the presence of an instanton. For every supersymmetry of the background that is broken

by the instanton there is a “true” fermionic modulus (a fermionic integration variable that

does not enter into the integrand) so the integration over supermoduli space vanishes.

However, this argument is too naive since the integration over the bosonic moduli, which

parameterize AdS5, diverges on the boundary, i.e. for instantons of small scale size. It is

therefore essential to introduce a cutoff. In principle, such a cutoff can be introduced by

considering the SU(N) theory as the limit of a SU(N +1) theory spontaneously broken to

SU(N)×U(1), in which the scalar field vacuum expectation value, M , becomes infinite [5].

TheW -bosons have massM and are in theN , N̄ of SU(N). In the limitM →∞ theWilson

loop can be defined in terms of the holonomy of a W -boson with a specified trajectory.

The Wilson loop can be regulated by keeping the mass, M , finite but large (compared to
2We are grateful to Juan Maldacena for conversations on the following points.
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the inverse radius of the loop) in much the same way as considered in [6]. In this case the

fluctuations of the test particle are non zero and the loop is smeared out over a regionM −1.
In the absence of the loop the cut-off theory preserves the sixteen Poincaré supersym-

metries (with parameters η⊕ , η̄⊕) but breaks the sixteen conformal supersymmetries (with

parameters ξ⊕ , ξ̄⊕), since the cut-off theory is not conformally invariant. We now want

to consider the cut-off theory in the presence of the Wilson loop, which breaks further

supersymmetries, as determined by the condition (1.2). It is easy to see from this equation

that in the case of a straight line (ẋµ ∝ xµ) the Poincaré supersymmetries of opposite chi-

ralities are related to each other (η⊕ is related to η̄⊕). Therefore, there are eight residual

supersymmetries of the Wilson line background in the cut-off theory. In the case of the

circular loop the condition (1.2) relates the Poincaré supersymmetries to the conformal

supersymmetries. Since the conformal supersymmetries are already broken by the cutoff

we see that a circular loop in the cut-off theory does not preserve any supersymmetry.

Later, we will also consider a cutoff that preserves a SO(5) symmetry instead of Poincaré

symmetry. Such a cutoff is very natural when considering circular loops on S 4, which is

convenient for displaying conformal symmetry. We will argue that a SO(5)-invariant cutoff

cannot preserve any supersymmetry, even in the absence of the loop.

Now consider the introduction of the instanton. In the case of the straight line with the

Poincaré-invariant cutoff the eight unbroken supersymmetries are broken by the instanton.

This generates eight true fermionic moduli so the integrated expression for the instanton

contribution should vanish. More generally, the presence of unbroken supersymmetries with

this cutoff requires 〈W 〉line = 1, as seen in the perturbative sector [10, 11] and in line with

expectations based on the AdS/CFT correspondence [6]. In the case of the circular Wilson

loop there are no surviving supersymmetries to be broken in the presence of the cutoff

(whether it is Poincaré invariant or SO(5) invariant) so we conclude that the instanton

contribution to the loop expectation value can be non zero and must be independent of

the cutoff.

In the following we will make use of the standard BPST instanton solution of the

Yang-Mills equations. In principle, these equations should be modified to include the effect

of the Wilson loop source, which changes the standard BPST instanton solution of the

sourceless theory. However, at least when the instanton is not too singular, the corrections

to the equations induced by the current source are suppressed by powers of g
YM

so they

can be neglected in the semi-classical approximation. The singular configuration, in which

a small instanton touches the loop, should be regulated in the Poincaré-invariant manner

described above. In practice, we will regulate the singularity by introducing a cutoff in the

integral over the collective coordinates of the instanton near the boundary of AdS5. This

cutoff breaks supersymmetry and potentially introduces an ambiguity in the finite value of

the expectation value of the circular Wilson loop which will be discussed in the last section.

1.2 Strategy and layout

As usual, the instanton computation boils down to an integral over the supermoduli

space spanned by eight bosonic and sixteen fermionic collective coordinates. The bosonic

collective coordinates correspond to broken translation, scale and gauge symmetries and

– 5 –
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will be denoted by (xµ
0 , ρ0, α

a
0), respectively (although the gauge moduli will be irrelevant

in the following). The fermionic collective coordinates are associated with broken Poincaré

supersymmetries and conformal supersymmetries and will be denoted by (ηA, ξ̄A), respec-

tively. The prospect of directly evaluating even the bosonic part of the Wilson loop is

somewhat daunting. However, considerable simplification arises after taking advantage of

the conformal symmetries of this system. The presence of the loop breaks the SO(4, 2)

conformal invariance but, as we will show in section 2, for a circular loop there is a resid-

ual unbroken SO(2, 2) = SO(2, 1) × SO(2, 1) subgroup. When considering the instanton

calculation we will be interested in the euclidean version of the theory in which the AdS5

boundary is S4. The euclidean conformal group is SO(5, 1) and the subgroup that leaves

the loop invariant is SO(3) × SO(2, 1). We will further show that the presence of a cir-

cular loop in the N = 4 supersymmetric theory breaks the full SU(2, 2|4) superconformal

symmetry to a residual OSp(2, 2|4), which has sixteen fermionic generators.

These symmetries will be used to determine the structure of the instanton contribution

to the Wilson loop in a toy bosonic model in section 3. This calculation includes only the

bosonic moduli of the complete N = 4 Wilson loop calculation (and is not the same as

the expression for the instanton contribution to a Wilson loop in pure Yang-Mills theory,

which has a non conformally-invariant measure.3) In order to streamline the discussion of

the conformal properties it will prove convenient to make use of Dirac’s formalism [15] for

representing the conformal group by extending four-dimensional Minkowski space-time to

six dimensions with signature (4, 2) with coordinates XM (M = 0, . . . , 5), where X0 and X4

are time-like (and X0 will be Wick rotated when describing the euclidean theory). In this

way, the SO(4, 2) and SO(2, 2) symmetries can be represented linearly by rotations (and

boosts) on XM . Imposing the invariant constraint XMXM = `2, where ` is an arbitrary

dimensional constant, results in a representation of SO(4, 2) in AdS5 and thence to a four-

dimensional representation on the boundary of AdS5. This will be reviewed in section 3.1

and appendix A.

The coordinates of euclidean AdS5 (which is the ball, B5) enter as collective coordinates

in the instanton problem. The fact that the instanton is invariant in form under arbitrary

conformal transformations, up to an irrelevant gauge transformation, together with the

invariance of the loop under SO(3) × SO(2, 1), will be used to evaluate the Wilson loop

integrand. The expression for the integrand of the Wilson loop with an instanton at a

generic point in moduli space, (xµ
0 , ρ0), is identical to that in which the instanton is located

at any point on the same SO(3) × SO(2, 1) orbit. In particular, it is the same as if the

instanton were at the centre of the loop, x̃µ
0 = 0 with a scale ρ̃(x0, ρ0) that is a certain

SO(3) × SO(2, 1)-invariant function of XM . But the expression for the Wilson loop with

an instanton at the centre reduces to one with an abelian gauge field, in which case the

path ordering is trivial which makes the integration over the moduli very simple. The

integral is very divergent since there is no suppression of instantons located arbitrarily far

from the loop. This type of divergence does not appear in the N = 4 supersymmetric

case. However, there is also a divergence from small scale instantons touching the loop,

3The complete calculation in the Yang-Mills theory, even to lowest non-trivial order in the coupling, is

significantly more subtle.
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which also needs to be addressed in the supersymmetric case. All of these divergences are

regulated by imposing an SO(5)-invariant cutoff on the integration over the bosonic moduli

that excludes a small spherical shell close to the boundary of the moduli space, AdS5.

In section 3.3 we will consider the expression for the instanton contribution in the

bosonic toy model to the straight Wilson line, which is defined on R4. This was the starting

configuration considered in [11]. In the case of a straight line it is natural to use a Poincaré

invariant cutoff, ρ0 ≥ ε (where ε is an infinitesimal constant), which is invariant under the

translational isometry of the straight line. Both cutoffs (indeed, all possible cutoffs) break

conformal invariance. The distinction between the SO(5)-invariant and Poincaré invariant

cutoffs is crucial in determining the difference between the expectation values of the circular

Wilson loop and straight Wilson line in the superconformal theory considered later.

In sections 4 and 5 we will describe the extension of these ideas to the N = 4 supersym-

metric case in which there are sixteen fermionic moduli in addition to the bosonic moduli.

The bosonic fields ϕi and Aµ have zero modes that are induced by the couplings to the

fermionic sources in the usual manner. The multiplet of these zero modes can be generated

from the classical instanton profile of the vector potential by successive application of the

supersymmetries that are broken by the instanton. This leads to an expression for ϕ that

is polynomial in fermionic moduli, beginning with a quadratic term

ϕ̂ia =
1

2
F a−
µν Γ̂i

ABζ
AσµνζB + · · · , (1.4)

where the hat indicates the value of a field containing fermionic collective coordinates

induced by the instanton background. In this expression the fermionic moduli are packaged

into the chiral spinor

ζA(x) = ηA + (xµ − x0µ)σ
µξ̄A , (1.5)

which, up to rescalings, is also a (1−γ5) projection of a Killing spinor of AdS5 and indicates

the holographic connection between the Yang-Mills instanton and the D-instanton of the

IIB string theory in AdS5 × S5 [16, 17]. The anti self-dual field strength of the instanton

in (1.4) is given by

F a−
µν =

4ηaµνρ
2
0

((x− x0)2 + ρ20)
2
, (1.6)

where ηaµν is the conventional ’t Hooft symbol. The · · · in (1.4) indicates the presence

of terms with six or more powers of fermion parameters that arise from iterating the

supersymmetry transformations. The fermionic contribution to the vector potential begins

with a term that is quartic in fermions

Âµ =
1

4!
εABCDζ

Aσµνζ
BDν(F a

λκζ
CσλκζD) + · · · , (1.7)

where · · · indicates terms with eight or more fermion parameters. The terms of higher order

in the fermions, which are not displayed in (1.4) and (1.7), involve not only the combination

ζ, but further depend on the broken conformal supersymmetry moduli ξ̄.4 The expression

Âµ contributes both to the self-dual field strength and the anti self-dual field strength.5

4For example, there is an extra term of the form εABCDζ
Aσµξ̄

B(F a
λκζ

CσλκζD) in (1.7).
5We thank S. Vandoren for pointing out that our statement in [14] was incorrect.
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The calculation of the Wilson loop to leading order in g
YM

involves substituting expres-

sions (1.4) and (1.7) into (1.1). The sixteen fermionic supermoduli integrals are saturated,

in principle, by expanding the exponential to extract the terms with sixteen powers of

fermionic coordinates. This involves dealing with complicated combinatorics that arises

from various powers of ϕ̂’s and Â’s. Significant cancellations between the various terms

should arise, just as there are in the calculations of the instanton contribution to com-

posite gauge invariant operators [17, 18]. Nevertheless, explicit evaluation of the integral

appears to be prohibitively difficult and we will finesse it by making extensive use of the

(super)symmetries in a manner that generalizes the purely bosonic case.

In section 4 we will consider the extension of the six-dimensional representation of the

bosonic model to the superconformal setting by introducing four four-component Grass-

mann spinors, ΘA, that are chiral spinors of SO(4, 2). These fermions will be associated

with the Grassmann coordinates of a supercoset that parameterizes the supersymmetries

that are broken by an instanton. By means of a more or less standard construction we

will obtain a representation of the SU(2, 2|4) superalgebra and its OSp(2, 2|4) subgroup in

terms of bosonic and fermionic coordinates belonging to this supercoset. In this way we

will represent the supergroups relevant for the Wilson loop calculation in a chiral fashion

suitable for instanton computations. Some of the details of this supercoset construction

are contained in appendix B.

The integration over the supermoduli, (x0, ρ0, η, ξ̄) will be considered in section 5. Once

again we will move the instanton to the centre of the loop by making use of the residual

OSp(2, 2|4). This means moving it to the point x0 = 0 and η = ξ̄ = 0. This again allows

the integration over the supermoduli to be carried out as if the theory were abelian. In this

manner we end up with an expression for the Wilson loop density on the supermoduli space.

The form of this density apparently allows the fermionic variables to be eliminated by a

change of bosonic integration variables, so that the integral over the Grassmann variables

formally vanishes. However, this neglects the fact that the bosonic integral diverges near

the boundary of moduli space (the AdS5 boundary) and has to be regulated. Any regulator

necessarily introduces a dependence on the fermions at the boundary.

An ideal regulator would respect the Poincaré symmetries described in section 1.1.

This would require a detailed analysis of the instanton contributions in the theory with

SU(3)→ SU(2)×U(1) in the limit of large symmetry breaking, which we have not carried

out. Instead, in section 5 we shall simply cut off the integration over the moduli in a man-

ner that does not respect the Poincaré supersymmetries. We can anticipate that breaking

supersymmetry in such a manner will lead to a spurious dependence on the cutoff that will

have to be subtracted to restore superconformal invariance. After a certain amount of work

the fermionic integrations will be performed explicitly, leading to a density on the bosonic

moduli space. This has the form of a complicated tensor that contracts generators in the

coset SU(2, 2)/SO(2, 2) (or SO(5, 1)/SO(3) × SO(2, 1) in the euclidean theory) acting on

the bosonic loop. The bosonic integration has the form of the integral of a total divergence

so, using Gauss’ law, the result is given by a boundary contribution, as anticipated. Per-

forming the generalized angular momentum algebra with the aid of the algebraic software

package REDUCE enables the explicit calculation of the Wilson loop expectation value.
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As expected, the bulk divergences of the bosonic theory do not arise in the supersymmetric

case. However, the result of our calculation does have a linear divergence proportional to

the perimeter of the loop.6

As argued above, this perimeter divergence is a non conformally-invariant artifact of

our cutoff procedure. It can be eliminated by absorbing it into a counterterm for the mass

parameter of the test particle that defines the loop. This leaves a finite result for the loop

expectation value, which is consistent with conformal symmetry. Furthermore, we will see

in section 5.3.2 that the expression for the straight Wilson line has a pure linear divergence

of the same value per unit length as for the circular loop, but without the subleading finite

part. Therefore, the same mass counterterm eliminates the divergence and leads to the

vanishing of the instanton contribution to the straight line expectation value as required

by the supersymmetry argument in section 1.1.

In the concluding section we will discuss the generalization of these calculations to the

gauge group SU(N) in the semi-classical limit, which is the limit of weak ’t Hooft coupling

when N →∞. It would be good to be able to say something about the limit of strong ’t

Hooft coupling, which is of relevance for comparison with the supergravity description but

this is beyond explicit calculation. We will, however, make some comments on the way in

which the instanton contributions to the Wilson loop might be reconciled with the SL(2,Z)
Montonen-Olive duality of the N = 4 theory and its image in type-IIB string theory in

AdS5 × S5. The arguments given will be qualitative. We will also describe the calculation

of the instanton contribution to the correlation functions of the Wilson loop with gauge

invariant composite operators in. In fact, these calculations are often easier than the pure

Wilson loop calculation and result in manifestly finite expressions. In particular, we will

give a rather persuasive and simple argument that ∂〈W 〉/∂ϑ 6= 0, as follows if 〈W 〉 has an
instanton contribution.

2. Symmetries of the circular loop

The N = 4 supersymmetric Yang-Mills theory has a superconformally invariant phase in

which the scalar field expectation values are zero. The infinitesimal generators of the four-

dimensional conformal group, (Pµ, Jµν , D,Kµ), with conjugate parameters (aµ, ωµν , λ, bµ),

have the following action on the space-time coordinates

δxµ = aµ + ωµνxν + λxµ − x2bµ + 2b · xxµ , (2.1)

where x2 ≡ ηµνx
µxν and ηµν = diag (+−−−). The fifteen transformations of the SU(4) ≈

SO(6) R-symmetry group (with parameters ωij) have the form

δyi = ωijyj . (2.2)

In addition, there are four Poincaré supersymmetries with generators Qα
A and Q̄A

α̇ , as well

as four superconformal symmetries with generators SAα and S̄Aα̇. These generators form

6In the preliminary description of our calculation [14] we incorrectly assumed that this divergence would

be absent.
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the algebra associated with the supergroup SU(2, 2|4), in which the fermionic generators

satisfy the relations

[
P µ, SA

α

]
= σµ

αα̇Q̄
α̇A , [Kµ, QαA] = σµ

αα̇S̄
α̇
A ,

[D,QαA] = −1

2
QαA , [D,SA

α ] = +
1

2
SA
α ,

{QαA, Q̄
B
α̇ } = 2δBAσ

µ
αα̇Pµ , {SA

α , S̄α̇B} = 2δABσ
µ
αα̇Kµ ,

{Q̄A
α̇ , S

B
α } = 0 , {QαA, Qβ B} = 0 , {SA

α , S
B
β } = 0 ,

{QαA, S
β B} =

1

2
δA

B(σµν)βαJµν + 2δBAδ
β
αD + 2δβαT

B
A . (2.3)

In addition, Q, Q̄, S and S̄ transform as SO(3, 1) spinors of the appropriate chirality and

as 4’s or 4̄’s of SU(4). There is also a central U(1) generator that acts trivially on the

elementary fields and local composite operators formed from them.

We are now interested in determining the subgroup of SU(2, 2|4) that leaves the circular
loop, defined by

(x1)2 + (x2)2 = R2 , x3(s) = 0 , x0(s) = 0 , ẏi(s) = |ẋ|ni , (2.4)

invariant up to reparametrizations. Since we have fixed a direction (ni) in the internal

space, the loop is only invariant under an SO(5) ≈ Sp(4) subgroup of the SU(4) ≈ SO(6)

R-symmetry group. It is convenient to define the Sp(4) singlet

ΩAB = niΓ̂
i
AB . (2.5)

The coordinates in the plane of the loop will be denoted by (xl) = (x, y) ≡ (x1, x2) and

those transverse to the plane by (xt) = (z, t) ≡ (x3, x0). We will also define the quantities

x2l ≡ −xl xl and x2t ≡ −xt xt so that x2l ≥ 0 and (in the Wick-rotated theory) x2t ≥ 0. The

action of infinitesimal SO(4, 2) transformations on these coordinates is

δxl = al + ωlmxm + ωltxt + λxl + (x2l + x2t )b
l + 2(bmxm + btxt)x

l ,

δxt = at + ωtmxm + ωtsxs + λxt + (x2l + x2t )b
t + 2(blxl + bsxs)x

t . (2.6)

We are looking for the subset of these transformations that preserves the loop at x2
l = R2,

xt = 0. Along the loop the transformations in (2.6) become

δxl = al + ωlmxm + λxl +R2bl + 2bmxmx
l ,

δxt = at + ωtlxl +R2bt . (2.7)

The condition δxt = 0 implies

at = −R2bt , ωtl = 0 . (2.8)

The condition xlδx
l = 0 is imposed along the loop by contracting the first equation in (2.7)

with xl, giving

0 = alxl − λR2 − blxlR
2 , (2.9)
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which implies

al = R2bl , λ = 0 . (2.10)

Both ωlm and ωts remain undetermined. The resulting invariance of the loop is generated

by the six generators, Jxy, R
2Px + Kx, R

2Py + Ky, Jzt, R
2Pz − Kz and R2Pt − Kt. In

addition to the obvious rotations in the (x, y) plane and boosts in the (z, t) plane, there

are four combinations of translations and conformal boosts. These combinations will be

denoted by

Π+
l = RPl +

1

R
Kl , Π−t = RPt −

1

R
Kt . (2.11)

These generators define the algebra SO(2, 2) = SO(2, 1) × SO(2, 1),

[Π+
x ,Π

+
y ] = Jxy , [Jxy,Π

+
y ] = Π+

x , [Jxy,Π
+
x ] = −Π+

y ,

[Π−z ,Π
−
t ] = Jzt , [Jzt,Π

−
t ] = Π−z , [Jzt,Π

−
t ] = Π−z , (2.12)

which is a subalgebra of SO(4, 2). Note that the generators Π−l and Π+
t are in the coset

SO(4, 2)/SO(2, 2). The ten Sp(4) generators that leave the loop invariant are given by the

symmetric combinations of the SU(4) generators

TAB = TA
CΩCB + TB

CΩCA . (2.13)

The symplectic metric ΩAB and its inverse are used to lower and raise the indices A,B, . . ..

We now want to find the fermionic part of the superconformal group that leaves the

loop invariant. Since the bosonic symmetry that preserves the loop, SO(2, 2) × Sp(4), is

the bosonic part of the supergroup OSp(2, 2|4) (which is a subgroup of SU(2, 2|4)) this is

a natural candidate for the invariance group of the loop. To verify that this is indeed the

case we want to first identify the Killing spinors that satisfy

ẋµσ
µκ̄A(x) = ẏiΓ̂

i
ABκ

B(x) , (2.14)

where κA = ηA
⊕
+ x · σξ̄A

⊕
and κ̄A = ξ⊕ A + x · σ̄η̄⊕ A with ηA

⊕ α, ξ̄
A
⊕α̇, η̄⊕ A and ξ⊕ A constant

complex 2-component spinors. Using the parametrization ẋl = ωεlmxm and ẏiΓ̂
i
AB =

ωRΩAB and taking into account that xt = 0 along the loop gives

εlmxmσl(η̄⊕ A + xnσ̄
nξ⊕A) = RΩAB(η

B
⊕
+ xmσ

mξ̄B
⊕
) . (2.15)

More explicitly,

(x1σ2 − x2σ1)[η̄⊕ A + (x1σ1 + x2σ2)ξ⊕ A] = RΩAB[η
B
⊕
+ (x1σ1 + x2σ2)ξ̄

B
⊕
] . (2.16)

Using x21 + x22 = R2, this implies

(x1σ2 − x2σ1)η̄⊕ A +R2σ2σ1ξ⊕ A = RΩAB[η
B
⊕
+ (x1σ1 + x2σ2)ξ̄

B
⊕
] , (2.17)

so that

ξ⊕ A =
1

R
ΩABσ

12ηB
⊕
, ξ̄A

⊕
=

1

R
ΩABσ̄12η̄⊕B . (2.18)
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The resulting fermionic symmetries are thus generated by

GA =
√
Rσ12QA +

1√
R
ΩABS

B , ḠA =
√
Rσ̄12Q̄A +

1√
R
ΩABS̄B . (2.19)

The anti-commutators of the supersymmetry generators are

{GA, ḠB} = RσµPµ + σ12σµσ12
1

R
Kµ = σlΠ+

l + σtΠ−t ,

{GA, GB} = ΩAB(σ
12σµνσ12 + σµν)Jµν + (TAB + TBA)

= 2ΩAB(σ
xyJxy + σztJzt) + (TAB + TBA) . (2.20)

In a more compact notation the surviving supersymmetry generators G and Ḡ can be pack-

aged into Ga
A, where a is an index of the (2,2) of SO(2, 2), in which case the supersymmetry

algebra reads

{Ga
A, G

b
B} = ΩABJ

ab + T(AB) , (2.21)

where the six generators of SO(2, 2), (Π+
l , Jxy,Π

−
t , Jzt) have been assembled into Jab. The

remaining commutation relations of the OSp(2, 2|4) algebra are

[Jab, Jcd] = HbcJad + perms , [TAB , TCD] = ΩBCTAD + perms , [TAB , Jab] = 0 ,

[Jab, GAc] = HbcGAa −HacGAb , [TAB , GCa] = ΩBCGAc +ΩACGBc , (2.22)

where H (to be read as “capital η”) denotes the SO(2, 2) invariant metric tensor.

3. One-instanton contribution in the bosonic model

Before tackling the complete integral over the bosonic and fermionic instanton moduli in

theN = 4 theory, we will consider some essential features that arise purely from the bosonic

integrations. The expression for the Wilson loop that is obtained by simply substituting

the BPST instanton solution into (1.1), setting the fermionic variables to zero and ignoring

the fermionic integrations will be referred to as the “bosonic model” (it is not the Wilson

loop of pure Yang-Mills, which has a different and non conformally-invariant measure).

In calculating the Wilson loop we will make use of the fact that the form of the instan-

ton profile is invariant under euclidean conformal transformations with the understanding

that the moduli are transformed by compensating conformal transformations. In partic-

ular, it is possible to transform a one-instanton configuration into an equivalent one by

acting with an element of SO(3) × SO(2, 1), which maps the loop onto itself. Since the

moduli space is the five-dimensional anti de-Sitter space spanned by (xµ
0 , ρ0), we will need

to represent the action of SO(5, 1) and SO(3)×SO(2, 1) on these coordinates. These groups

act non linearly on euclidean AdS5 so it is convenient to represent them in terms of a six-

dimensional space with one time-like coordinate which has signature (5, 1) on which the

groups act linearly. This is the procedure first introduced by Dirac [15] in order to describe

the action of SO(4, 2) on four-dimensional Minkowski space.
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3.1 Six-dimensional representation of SO(4, 2) and SO(2, 2)

The flat six-dimensional coordinates XM (where X0 and X4 are time-like) are taken to

satisfy the rotationally invariant constraint

X2 ≡ ηMNX
MXN ≡ ηµνX

µXν + (X4)
2 − (X5)

2 = `2 , (3.1)

where ` is a constant scale and for the moment we are using six-dimensional metric ηMN =

diag(+ −− − +−) appropriate to Minkowski signature in four dimensions M = 0, 1, 2, 3.

The euclidean case is obtained by the Wick rotation X0 → iX0. The constraint is solved in

terms of five-dimensional coordinates that parameterize AdS5 with scale `. A conventional

parameterization of AdS5 in terms of xµ, ρ, is obtained by the identifications

Xµ = `
xµ

ρ
, X4 =

1

2

(
ρ+

`2 − x2

ρ

)
, X5 =

1

2

(
ρ− `2 + x2

ρ

)
, (3.2)

which represents an AdS5 hypersurface in R6. Inverting these conditions gives

xµ = `
Xµ

X4 −X5
, ρ =

`2

X4 −X5
, ρ2 − x2 = `2

X4 +X5

X4 −X5
. (3.3)

Recall that in the above parametrization the boundary of AdS5 is at ρ = 0. In the following

we will also find it useful to define X± = X4 ±X5.

It is then easy to check that the Lorentz transformations on the six-dimensional coor-

dinates, generated by

LMN = XM∂N −XN∂M , (3.4)

induce SO(4, 2) transformations on AdS5, with the identifications of the fifteen generators

Jµν = Lµν , D = L45 , `Pµ = L4µ + L5µ , Kµ = `(L4µ − L5µ) . (3.5)

Furthermore the trivial six-dimensional integration measure is equivalent, after the con-

straint, to the AdS5 measure

`−4
∫
δ(X2 − `2) d6X =

∫
d4xdρ

ρ5
. (3.6)

The boundary is mapped into itself under the SO(4, 2) transformations and the familiar

four-dimensional action of SO(4, 2) results from the boundary limit in which ρ → 0 [15].

The generators Π±µ introduced earlier are expressed in this six-dimensional notation as

Π±µ =

(
`

R
± R

`

)
L4µ +

(
`

R
∓ R

`

)
L5µ . (3.7)

Our aim is to consider a loop of radius R and to identify AdS5 with the one-instanton

moduli space. For this purpose we will need to consider the euclidean theory obtained by

Wick rotation, which involves insertion of judicious factors of i. Since the scale ` drops

out of all physical quantities it is convenient to choose ` = R for most of the following

(conformal invariance further implies that 〈W 〉 is a constant, independent of R). In this case
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the expressions (3.7) for Π±µ become particularly simple and the stability group generator

Π+
l acts only on (XL) = (X4, Xl) while Π−t acts only on (XT ) = (X5, Xt). We saw

earlier that the loop at ρ = 0, |xl|2 = R2, xt = 0 is invariant (after a Wick rotation)

under SO(3)L × SO(2, 1)T transformations. These transformations are described in the

six-dimensional formalism as those that leave invariant the quadratic form

U = X2
L ≡ (X4)

2 − (Xl)
2 =

1

4

(
ρ+

R2 + x2l + x2t
ρ

)2

−R2 x
2
l

ρ2
, (3.8)

where XL = (X1, X2, X4) are the components of XM that are transformed by the SO(3)L
subgroup while XT = (X0, X3, X5) transform under the SO(2, 1)T subgroup.7

For fixed U equation (3.8) defines a four-dimensional hyperbolic surface in AdS5, once

the constraint (3.1) is imposed. Such four-surfaces of constant U foliate the interior of

AdS5 in such a manner that they all meet on a circle of radius R centered on the point

xµ = 0 on the boundary at ρ = 0. In other words, all the four-surfaces are bounded by the

Wilson loop if the boundary of AdS5 is identified with four-dimensional space-time (see

the figure). The value of U is in the range R2 ≤ U ≤ ∞. There are two surfaces for every

value of U > R2, while the surface with the minimal value, U = R2, is degenerate since

it is two dimensional. It is defined by xt = 0, x2l + ρ2 = R2, which is just the surface of

minimal area embedded in AdS5 which bounds the loop of radius R on the boundary and

was considered in [6].

3.2 The Wilson loop in the bosonic model

The Wilson loop expectation value in the toy bosonic model is given by

〈WB〉 =
∫

d4x0dρ0
ρ50

WB [x(·);x0, ρ0] , (3.10)

where

WB [x(·);x0, ρ0] =
1

2
Tr P ei

∫
C
A·ẋ , (3.11)

with A denoting the standard BPST instanton solution, and where we are temporarily

adopting a notation that makes explicit that WB is a functional of the points on a circle

on the boundary of AdS5.

It will be important that WB is invariant under arbitrary SO(3) × SO(2, 1) transfor-

mations that map the circle into itself (in euclidean signature). To show this, consider the

action of a general SO(3)×SO(2, 1) transformation, x→ γ(x) ≡ x̃ on WB[x(·);x0, ρ0]. On

the one hand, this transformation maps the circle into itself so that, after a reparameteriza-

tion of the circle (under whichWB is invariant), the points on the circle are not transformed

7For convenience we are using the conventions

X
2
L = (X4)

2
− (X1)

2
− (X2)

2
≡ (X4)

2
−X

2
l ,

X
2
T ≡ ∓(X0)

2 + (X3)
2 + (X5)

2
≡ (X5)

2 +X
2
t , (3.9)

with the − sign for Minkowski signature and + sign after the Wick rotation of the time coordinate.

This means that with euclidean signature X2
t , X

2
T ≥ 0 and therefore X2

L = X2
T + R2 ≥ R2 after using

the constraint.
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Figure 1: Surfaces of constant U are SO(2, 2) orbits of codimension 1 in AdS5. The plot shows

a section with xt = 0. All surfaces with constant U end on the loop x2
l = R2, xt = 0 on the

boundary, ρ = 0. The surface with the minimal value, U = U0 = R2, coincides with the minimal

two-dimensional surface bounded by the loop. The surfaces shown have U ≥ R2 and intersect the ρ

axis with ρ ≤ R. The surfaces that intersect the axis with ρ > R have been omitted from the figure.

and therefore WB [x(·);x0, ρ0] = WB [x̃(·);x0, ρ0]. On the other hand the transformation of

x in the instanton solution is equivalent (up to an irrelevant gauge transformation) to a

transformation on the instanton moduli (x0, ρ0)→ (x̃0, ρ̃0) = γ−1(x0, ρ0). Therefore

WB [x(·);x0, ρ0] = WB [x(·); x̃0, ρ̃0] , (3.12)

and so the density WB depends only on the choice of SO(3)×SO(2, 1) orbit, which can be

labeled by the value of the invariant, U = X2
L, defined in the previous subsection.

We will soon find it useful to choose an appropriate SO(2, 2) transformation, γ, that

moves the instanton to a point (x̃µ
0 = 0, ρ̃0), which is at the centre of the loop. The scale

of the transformed instanton is fixed by the invariance of U = X 2
L = X2

L(x̃0 = 0; ρ̃0),

which implies

1

4

(
ρ0 +

R2 + x2l + x2t
ρ0

)2

−R2x
2
l

ρ20
=

1

4

(
R2

ρ̃0
+ ρ̃0

)2

, (3.13)

or

ρ̃0 = |XL| − |XT | . (3.14)

This expression relates the parameters of an instanton at a generic position in moduli

space to one at x̃0 = 0 with a scale ρ̃0(x
µ, ρ). The explicit transformation that moves the
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instanton from one point to another along an SO(3) × SO(2, 1) orbit is a group element

of the form exp(alΠ+
l + atΠ−t ), where the parameters al(xµ0 , ρ0) and at(xµ0 , ρ0) are specific

functions of the collective coordinates (which we do not need in the following).

It will prove efficient to express the integral over the instanton moduli space, (3.10),

as a six-dimensional integral with flat measure together with a δ-function constraint

〈WB〉 =
1

R4

∫
d6X0 δ(X

2
0 −R2)

1

2
TrP ei

∫
C A·ẋds

=
1

R4

∫
d6X0 δ(X

2
0 −R2)WB(X0) , (3.15)

where

WB(X0) =
1

2
TrP exp

(
i

∫
ηaµν(x

µ − xµ
0 )σa

ρ20 + (x− x0)2
ẋν ds

)
. (3.16)

The standard one-instanton solution in a “non-singular gauge” (a gauge in which the sin-

gularity arises at |x| = ∞) has been substituted for Aν in (3.16). The Pauli matrices σa

describe the SU(2) colour symmetry. Expression (3.15) does not include the correct pref-

actor that arises from gaussian fluctuations, which we are ignoring in the bosonic model.8

In the special case in which the instanton is at the centre of the loop the path ordered

exponential simplifies since σaη
a
µν x

µ ẋνds = R2σ3dφ, where 0 ≤ φ ≤ 2π is the angle

around the loop, which has been taken to lie in the (x1, x2) plane. So in this special

configuration the exponent is proportional to σ3 and the path ordering becomes trivial, as

in the abelian theory. More generally, it should always be possible to choose a gauge in

which the connection along a given curve is a non-vanishing constant (analogous comments

concerning the maximally abelian gauge appear in [19, 20, 21]). The integration over the

angle φ followed by evaluation of the trace leads to (dropping the subscript 0)

WB(X) = cos

(
2πR2

R2 + ρ̃2

)
. (3.17)

The value of ρ̃ may be expressed in terms of the invariant X 2
T = U − R2 by using (3.14),

giving
2πR2

R2 + ρ̃2
= π +

π|XT |√
X2

T +R2
, (3.18)

so the Wilson loop density can be expressed as

WB(X) = − cos


 π|XT |√

X2
T +R2


 . (3.19)

Since WB depends only on one parameter |XT | =
√
U −R2 that labels the SO(3) ×

SO(2, 1) orbits, the five-dimensional integration over the bosonic moduli in (3.15) reduces

to a one-dimensional integral over |XT | with a measure that is proportional to the volume

8Various overall numerical constants will be dropped from the expressions for the Wilson loop but they

will be reinstated in the final result.
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of the orbit labeled by |XT |. This leads to an infinite value due to the divergence of

the SO(2, 1) volume near the boundary of moduli space (ρ = 0 in our five-dimensional

coordinates). Similar considerations will also apply to the N = 4 theory and we therefore

anticipate the need to introduce a regulator that suppresses point-like instantons. Other

regions of moduli space also lead to divergences in the bosonic model.

We will proceed by explicitly performing the two-dimensional Xl integration in (3.15)

to eliminate the δ function and regulating the remaining integrations by introducing a large

X4 cutoff,

X4 ≤ Λ ≡ R2

ε
, (3.20)

where ε is a small scale with dimensions of length. This cutoff manifestly preserves a SO(5)

subgroup of SO(5, 1). Performing the X4 integral gives

〈WB〉ε = − 2π

R4

∫

|XT |≤
√
Λ2−R2

d3XT

(
Λ−

√
X2

T +R2

)
cos


 π|XT |√

X2
T +R2




= −2π
∫

|X|≤
√

R2/ε2−1
d3X

(
R

ε
−
√
|X|2 + 1

)
cos

(
π|X|√
|X|2 + 1

)
, (3.21)

where X ≡ XT /R. This integral diverges when ε → 0. The leading divergence is of order

ε−4 and arises from the regions in which the instanton has a scale that is very much greater

than R and those in which it has a fixed scale but is very far from the loop. This bulk

divergence has no analogue in the N = 4 case to be considered later. The region where the

instanton scale is very much smaller than R leads to the divergence of order ε−1 associated

with the volume of the SO(3)×SO(2, 1) orbits and which will remain as an important issue

in the analysis of the supersymmetric theory.

3.3 Comments on the straight Wilson line

If the curve C is taken to be a straight line there is room for potential confusion. One

well-defined way to obtain a straight Wilson line is to consider it to be a stereographic

projection of a circular loop passing through the north pole of S4 that is the boundary of

euclidean AdS5. Since the north pole is not a special point on the sphere, in a conformally

invariant theory this gives a result that is the same as that for a generic circular loop.

However, this differs from the natural definition of a straight Wilson line defined directly

in R4. The latter corresponds to the starting point of [11] where it was emphasized that

the presence of a conformal anomaly leads to a different expression from the circular loop.9

This will also be true in the presence of an instanton.

One subtlety in the analysis of the instanton contribution to the straight line concerns

the gauge independence of the calculation. The BPST instanton solution for the gauge

potential in the so-called “non-singular” gauge is, in fact, singular at the point at infinity.

Since this point coincides with a point on the straight line it is best to avoid this gauge

9One way to think of this straight Wilson line is to consider it to be the limit of a “thermal Wilson

loop”, or a Polyakov loop, defined in R3 × S1, where the circular dimension has infinite radius.
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and use a “singular” gauge, in which the gauge potential is singular at the point x = x0,

t = t0. This gives the expression

〈WB(line)〉 =
∫

d3x0dt0dρ0
ρ50

W s
B , (3.22)

for the expectation value of the Wilson line at xi = 0, where

W s
B =

1

2
TrP

(
exp i

∫ +∞

−∞

ρ20 x0 · σdt
[ρ20 + |x0|2 + (t− t0)2][|x0|2 + (t− t0)2]

)
. (3.23)

We have used the fact that the vector potential is proportional to ηa
0i(x

i − xi
0)σa where

ηa01 = δai . The SU(2) connection in this expression is abelian since it always points along

x0 · σ so the path ordering is immaterial and the integral is then easily evaluated giving

∫ +∞

−∞

ρ20dt

[ρ20 + |x0|2 + (t− t0)2][|x0|2 + (t− t0)2]
=

π

|x0|
− π√

|x0|2 + ρ20
, (3.24)

so that

W s
B =

1

2
Tr exp

(
iπx0 · σ
|x0|

[
1− |x0|√

|x0|2 + ρ20

])
= − cos

(
π|x0|√
ρ20 + |x0|2

)
. (3.25)

Starting, instead, with the instanton in the “non-singular” gauge gives a result for the

Wilson loop expectation value with the opposite sign. However in that case there is a

subtlety because the gauge potential is actually singular at infinity, which is a point on the

straight line. To avoid this problem, in the following we shall choose the connection in the

“singular” gauge although the final results should not depend on this choice. Notice that

in the case of the straight line the calculation could also be simplified working in the Weyl

gauge [22].

The expression (3.25) has the same structure as (3.19), which refers to circular loops,

but with |XT |/R replaced by |x0|/ρ0. However, this is a rather formal correspondence since

in both cases integration over the moduli gives a divergent result. In order to understand

the connection between the straight line and the circular Wilson loops more quantitatively

we will discuss the group theoretical relation between them. In euclidean signature the

stability group of the straight line and the circle are isomorphic subgroups of SO(5, 1) —

they are both SO(3)×SO(2, 1). One of these subgroups is obtained from the other by con-

jugation with an infinite boost generated by Π−l . Alternatively, the straight line may be

obtained from the circle by inversion with respect to a point on the circle. In the case of the

straight line the SO(3) factor refers to rotations in the three dimensions orthogonal to the

line and the SO(2, 1) subgroup corresponds to a dilation combined with a translation and

a conformal boost along the direction of the line. In the supersymmetric case the surviving

R-symmetry is Sp(4) ≈ SO(5), as for the circle. There is, however, a crucial difference be-

tween the straight line and the circle when a regulator is introduced. In terms of the AdS5

description of the regulated field theory the natural regulator for the straight line defined in

R4 is the Poincaré invariant condition ρ0 ≥ ε which preserves the isometries of the loop. In
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this case the expectation value of the Wilson line has a finite contribution per unit length,

but diverges due to the integration over the length. Upon mapping the infinite line to a cir-

cle through the north pole of the S4 boundary of B5 this cutoff prescription is pathological

since the ρ = ε surface touches the boundary at the north pole. It is therefore not a good

regulator for loops on S4. An appropriate regulator in this case is obtained by cutting off the

moduli integrations on a spherical shell inside the B5 boundary in a manner that preserves

SO(5). As we will see, in the superconformal case this distinction becomes of paramount im-

portance since supersymmetry implies that the expectation value is unity in the case of the

straight Wilson line while it has non-trivial dependence on the coupling for a circular loop.

The expression for the straight Wilson line in the presence of a ρ ≥ ε cutoff has the

form

〈WB(line)〉ε =

∫
dt0

∫
d3x0

∫ ∞

ε

dρ0
ρ50

W s
B = −

∫
dt0

∫ ∞

ε

dρ0
ρ20

∫
d3X cos

(
π|X|√
|X|2 + 1

)

= −
∫
dt0

1

ε

∫
d3X cos

(
π|X|√
|X|2 + 1

)
, (3.26)

where X = x0/ρ0. This is the integral of a constant density over the infinite length of the

line. In the limit ε → 0 the divergence in the density is identical to that arising from the

1/ε term in the last equation in (3.21) that describes a circular loop of length 2πR. As

remarked earlier, the three-dimensional X integration gives rise to the bulk divergences of

the bosonic model which are not present in the supersymmetric theory.

4. Instanton superspace and the N = 4 Wilson loop

The bosonic toy model is not a realistic description of any bosonic quantum field theory.

In the case of pure Yang-Mills the quantum measure of integration involves a ratio of

determinants which is not scale invariant. A detailed computation of these determinants

was performed in ’t Hooft’s seminal paper on instanton calculus [23]. In supersymmetric

theories the fluctuation determinant leads to a dependence on the scale parameter µ of

the form

(µρ)nB−
1
2
nF , (4.1)

where nB and nF are the numbers of bosonic and fermionic zero modes, respectively. The

exponent nB − 1
2nF = kβ1 in (4.1) is the coefficient of the β-function of g

YM
at one-loop

times the instanton number. Indeed for a generic N = 1 supersymmetric theory

β1 =

(
11

3
− 1

2
× 4

3

)
CA −

∑

R

(
1

2
× 4

3
+

2

6

)
CR , (4.2)

where the CA term comes from the vector supermultiplet and the CR terms comes from

a sum of the chiral supermultiplets in representations labelled R (CA and CR being the

appropriately normalized Dynkin indices). Index theorems imply that

nB = 4kCA , nF = 2kCA + 2k
∑

R

CR . (4.3)
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For (super-)conformal theories, such as N = 4 Yang-Mills, β = 0 and the quantum mea-

sure for the collective (super-)coordinates exactly coincides with the classical one. For

supersymmetric non-superconformal theories the quantum measure is deformed so it is

“squashed”. But, in principle, one can still keep track of the transformations under the

sequence of steps that bring the instanton to the centre of the circular loop. Although this

is not the subject of the current paper it should be possible to generalize the manipulations

of the superconformal N = 4 theory to these cases.

In order to extend the analysis of section 3 to N = 4 supersymmetric Yang-Mills theory

we need to include the sixteen fermionic collective coordinates, ηA
α and ξ̄Aα̇ . This means

that we need to consider the extension of the six-dimensional representations of SO(4, 2)

and SO(2, 2) (and their euclidean continuations) to the supersymmetric case.

4.1 Six-dimensional chiral representation of SU(2, 2|4) and OSp(2, 2|4)
Using the methods of [24] we will present a supercoset construction to represent the action

of the superconformal group SU(2, 2|4) in terms of the six bosonic coordinates XM and of

four Grassmann spinors, ΘA
a , where a is a four-component spinor index appropriate to a

Weyl spinor in D = 6 with signature (4, 2). This provides a chiral representation of the

one-instanton superspace.

The instanton solution breaks a subset of the bosonic and fermionic symmetries in

SU(2, 2|4). It is invariant under rotations modulo gauge transformations and under the

linear combination Pµ + Kµ/ρ
2 of translational and conformal boost symmetries. Alto-

gether this means that an SO(4, 1) subgroup of SO(4, 2) is left unbroken. In addition, the

instanton preserves the SU(4)R symmetry. The supersymmetries that remain unbroken by

the instanton are Q̄A
α̇ and SA

α . Putting these together means that the N = 4 instanton

superspace may be described by the coset

G

H
≡ SU(2, 2|4)

Span{SO(4, 1) × SU(4); Q̄A
α̇ , S

B
α }

, (4.4)

where the elements of H form the stability group of unbroken generators. Although there

is a great deal of ambiguity in the choice of coordinates, it is convenient to choose the

coset representative

V (xµ, ηAα , ξ̄
A
α̇ , λ) = exP eηQeξ̄S̄eλD , (4.5)

with inverse

V −1(xµ, ηAα , ξ̄
A
α̇ , λ) = e−λDe−ξ̄S̄e−ηQe−xP . (4.6)

For simplicity the subscript 0 has been dropped from the collective coordinates. The left

invariant 1-form

L = V −1dV = e−λdxP + e−λ/2(ξ̄dx · σ̄ + dη)Q+ eλ/2dξ̄S̄ + dλD , (4.7)

satisfies the Maurer-Cartan equation

dL− L ∧ L ≡
(
dLΛ +

1

2
L∆ ∧ LΣ f Λ

Σ∆

)
TΛ = 0 , (4.8)
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where f Λ
Σ∆ are the structure constants and TΛ denotes the generators of SU(2, 2|4) which

divide into those that are in the coset and those that are in the stability group,

TΛ = (CA, Hi) , (4.9)

where A labels the elements of the coset and i the elements of the stability group. The

one-form may then be decomposed into the super-vielbein (EA
M ) and H-connection (ωi

M )

L = dZM (EA
MCA + ωi

MHi) = dZM L Λ
MTΛ , (4.10)

whereM is the “coordinate index”. The components of the super-vielbein follow from (4.7)

Eµ̂
µ = e−λδµ̂µ , Eα̂Â

µ = e−λ/2(ξ̄σ̄µ)
αÂ , Eα̂Â

αA = e−λ/2δα̂αδ
Â
A ,

E
ˆ̇αÂ
α̇A = e+λ/2δ

ˆ̇α
α̇δ

Â
A , Ed̂

d = 1 , (4.11)

with inverse

Eµ
µ̂ = e+λδµµ̂ , EαA

µ̂ = −e+λ/2(ξ̄σ̄µ)
αA , EαA

α̂Â
= e+λ/2δαα̂δ

A
Â
,

Eα̇A
ˆ̇αÂ

= e−λ/2δα̇ˆ̇αδ
A
Â
, Ed̂

d = 1 . (4.12)

The superisometries of the supercoset,

δZM = −ΞM , (4.13)

are defined to be those transformations of the super-coordinates that satisfy

LΞL+ dΛ
(H)
Ξ + [L,Λ

(H)
Ξ ] =

(
LΞL

Λ + dΛi δΛi +Λi LΣ f Λ
Σi

)
TΛ = 0 , (4.14)

where LΞ is the Lie super-derivative. This means that a coordinate transformation along Ξ

can be compensated by a local H-transformation, Λ
(H)
Ξ . This equation is not G-covariant

and it is convenient to rewrite it in terms of a covariantly constant Killing supervector,

Σ ≡ ΣΛGΛ ≡ ΣACA +ΣiHi , (4.15)

which is defined by

ΣÂ = ΞAE Â
A , Σi = Λi + ΞM ω i

M . (4.16)

By virtue of (4.8) and (4.14) this satisfies

DΣ ≡ dΣ+ [L,Σ] = 0 . (4.17)

This equation has the G-invariant solution

Σ = V −1Σ⊕V , (4.18)

where Σ⊕ is any constant element of the Lie algebra of G. In our case

ΣA
⊕
CA = xµ

⊕
Pµ + ηαA

⊕
QαA + ξ̄α̇A

⊕
S̄α̇A + λ⊕D , (4.19)

and

Σi
⊕
Hi = bµ

⊕
Kµ +

1

2
ωµν
⊕
Jµν + η̄⊕ α̇AQ̄

α̇A + ξ⊕ αAS
αA . (4.20)

The explicit expressions for ΣA are calculated in detail in appendix B. The isometries

follow by inverting (4.16),

ΞM = ΣAEM
A = (V −1Σ⊕V )AEM

A , (4.21)

and these are also given explicitly in appendix B.

– 21 –



J
H
E
P
0
4
(
2
0
0
2
)
0
4
0

4.2 Grassmann variables for instanton superspace

The quantities xµ, ρ ≡ eλ, η and ξ̄ are to be identified with the collective super-coordinates

of the instanton. The transformations given in appendix B suggest that the fermionic

variables should be packaged together into a sixteen component chiral spinor, ΘA
a , where

a = (α, α̇) is a spinor index of SO(4, 2) (or SO(5, 1) in euclidean signature). This is achieved

by defining

ΘA
a = (ηAα + x · σαα̇ξ̄α̇A, ξ̄Aα̇ ) . (4.22)

The chirality of this spinor is defined with the chirality of its four-dimensional spinor

components which, in turn, are correlated with the chirality of the BPST instanton solution.

The 32 supersymmetry parameters are contained in a spinor εAa and its conjugate ε̄aA,

defined by

εAa = (ηA
⊕
+ σ · x ξ̄A

⊕
, ξ̄A

⊕
) , ε̄aA = (η̄⊕ A , ξ⊕ A + σ · x η̄⊕ A) . (4.23)

The superconformal transformations on the coordinates xµ, ρ, η and ξ̄ can be compactly

rewritten as

δΘA
a = εAa , δ̄ΘA

a = −ΘA
b Θ

B
a ε̄

b
B ,

δXM = 0 , δ̄XM =
1

2
ε̄AΓ

MNΘAXN . (4.24)

The transformations in (4.24) are generated by supercharges εAaQa
A and ε̄aAQ̄A

a , where

Qa
A =

∂

∂ΘA
a

, Q̄A
a = ΘA

b Θ
B
a

∂

∂ΘB
b

+
1

4
ΓMN
a

bΘA
b LMN , (4.25)

and satisfy the SU(2, 2|4) superalgebra

{Qa
A, Q̄B

b } =
1

4
δBAΓMN

b
aJMN +

1

4
δab Γ̂

ij
A
BTij , (4.26)

with {Q,Q} = {Q̄, Q̄} = 0, where JMN = LMN + SMN are the standard generators of

SO(4, 2) and Tij are the generators of SO(6). More explicitly,

LMN = XM∂N −XN∂M , SMN =
1

2
ΘA

a Γ
a
MNb

∂

∂ΘA
b

,

Tij =
1

2
ΘA

a Γ̂ijA
B ∂

∂ΘB
a

. (4.27)

In principle, this algebra can be extended by adding a term αΘ to Q̄. This generates an

additional term α δab δ
B
A on the right-hand side of (4.26), which is a U(1) central extension.

The other anticommutators are unaffected. In what follows we have only been able to make

sense of 〈W 〉 by choosing α = 0 as in (4.27).
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4.3 Superinvariants

The bosonic invariant of SO(4, 2), R2 = ηMNX
MXN , is also invariant under SU(2, 2|4), as

is easily seen from the representation defined by (4.25) and (4.27). Given an invariant of

the bosonic subgroup of OSp(2, 2|4), such as the quadratic invariant U ≡ X 2
L = (X4)

2 −
(X1)

2 − (X2)
2 = R2 − (X3)

2 − (X0)
2 − (X5)

2 ≡ R2 − V , it is natural to ask whether it is

possible to find its supersymmetric extension.

The condition that a quantity Ψ should be invariant under a linear combination of the

supersymmetries requires

(εAaQa
A + ε̄aAQ̄A

a )Ψ(X,Θ) = 0 , (4.28)

with the boundary condition Ψ(X, 0) = ΨB(X) for some bosonic invariant ΨB(X). The

restriction to OSp(2, 2|4) is implemented by choosing

ε̄aA = ΩABH
abεBb , (4.29)

where ΩAB = niΓ̂
i
AB is antisymmetric in A and B and Hab = Γab

412 is symmetric in a and

b. The former is a symplectic metric of Sp(4) ≈ SO(5) while the latter is a symmetric

metric of SO(2, 2). Each of these can be used to raise and lower indices of the relevant

bosonic subgroup. The condition (4.29) eliminates half of the supersymmetry parameters,

so (4.28) ensures invariance under a total of sixteen residual supersymmetries that may

be parameterized by εAa . In our case the superinvariant, Ψ(X,Θ), will be the Wilson loop

density in supermoduli space, W (X,Θ), while ΨB(X) will be the bosonic density WB(X)

(defined in (3.19)). Equation (4.28) can be written as

∂W (X,Θ)

∂ΘA
a

+ΩABH
ab

[
ΘB

c Θ
C
b

∂W (X,Θ)

∂ΘC
c

+
1

4
ΓMN
b

cΘB
c LMN W (X,Θ)

]
= 0 (4.30)

with W (X, 0) = WB(X). It is convenient to rewrite this in the form

DaB
Ab (Θ)

∂W (X,Θ)

∂ΘB
b

= −1

4
ΩABH

abΓMN
b

cΘB
c LMN W (X,Θ) , (4.31)

where

DaB
Ab (Θ) = δab δ

B
A +ΩACH

acΘC
b Θ

B
c . (4.32)

Inverting DaB
Ab (Θ) and setting B(t) = W (X, tΘ) gives

dB(t)

dt
=

Θ

t

∂W (X, tΘ)

∂Θ
= − t

4
ΘD−1(tΘ)ΩHΓMNΘLMNW (X, tΘ)

= − 1

4t
bMN (tΘ)LMN W (X, tΘ) , (4.33)

where

bMN (Θ) = ΘD−1 (Θ)ΩHΓMNΘ . (4.34)

This has a formal solution

B(t) = P exp

(
−
∫ t

0

dt′

4t′
bMN (t′Θ)LMN

)
B(0) , (4.35)
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so that

W (X,Θ) = B(1) = P exp

(
−
∫ 1

0

dt

4t
bMN (tΘ)LMN

)
WB(X) . (4.36)

The symbol P in these expressions denotes that the exponentials are defined by path

ordering the operators in the usual manner. Given the quantity W (X,Θ), the Wilson loop

expectation value is given by the integral

〈W 〉 =
∫
d16Θ

∫
d6X

R4
δ(X2

L −X2
T −R2)W (X,Θ) (4.37)

(recalling the conventions of (3.9)).

At this point it becomes apparent that fermions enter the Wilson loop density in a

remarkably simple fashion. The density W (X,Θ) is simply obtained from the bosonic

expression WB(X) (3.19) by the replacement

XM −→ X̃M = RM
N (Θ)XN , (4.38)

where the matrix R(Θ) is given by the six-dimensional (fundamental) representation of the

operator P exp(−
∫
dt bMNLMN/4t) that acts as a rotation on the X coordinates. This

observation makes it seem as though the fermionic coordinates can be eliminated from the

integrand simply by changing the integration variables from X to X̃. The jacobian for this

change of variables is unity so that the fermionic variables disappear from the density and

the resulting expression for the Wilson loop expectation value can be written as

〈W 〉 =
∫
d16Θ

∫
d6X̃

R4
δ(X̃2

L − X̃2
T −R2)WB(X̃) . (4.39)

The Grassmann integrals apparently vanish. However, there is an important subtlety due

to the fact that the bosonic integral diverges and the expression is really of the form 0×∞.

This means that it must be regulated by cutting off the region near the boundary. We will

choose to impose the cutoff X4 ≤ Λ, where Λ is large. For fixed |x| this translates into

a cutoff ρ ≥ ε, where ε = `2/Λ is small (and we have chosen ` = R), so it is cut off at

the boundary of AdS5. This cutoff is invariant under SO(5) transformations but it is not

Poincaré invariant and, as we will discuss in subsection 5.3, does not preserve any of the

supersymmetries. In the presence of this cutoff the change of variables (4.38) introduces

a dependence on the fermion coordinates in the cutoff-dependent endpoint of the bosonic

integral. This suggests a non-zero result may arise as a boundary term. Although it seems

probable that the result can be determined by careful analysis of this boundary term we

shall proceed by evaluating the integral directly in the original coordinates.

In order to evaluate the integral in (4.37) we will first need to expand the exponential

in (4.36) to select the sixteenth power of Θ. This produces a series of powers of L acting

on WB. Eventually only the even powers will survive the bosonic integration and need to

be evaluated. A great simplification emerges from observing that

bMN (Θ) = ΘD−1ΩHΓMNΘ = Θ̄AΓ
MNΘA − Θ̄AΘ

B Θ̄BΓ
MNΘA , (4.40)
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where we are using the short-hand notation

Θ̄a
A ≡ HabΩAB ΘB

b . (4.41)

All higher powers of Θ in bMN (Θ) vanish as can be seen by making use of the antisymmetry

of Hab ΘA
a Θ

B
b under interchange of the Sp(4) indices A and B. An identity that needs to

be used here and later on is

Θ̄AΘ
B Θ̄BΓ

MNΘA = ΩADΩBCΘ
AHΘB ΘCHΓMNΘD

=
1

3
εABCDΘAHΘB ΘCHΓMNΘD . (4.42)

Antisymmetry on the R-symmetry indices also implies that the only non-zero elements

of the terms in (4.40) are those that are in the coset. This means that the only non-

zero terms arise when M is a “longitudinal” index of SO(2, 1)L and N is a “transverse”

index of SO(3)T . Therefore only the subset of LMN ’s that are in the coset enter into the

exponent of (4.36). It is therefore convenient to decompose the indices under the subgroup

H and define

Φ = Θ̄AΓ
MNΘALMN = 2Θ̄AΓ

irΘALir ,

A = Θ̄AΘ
B Θ̄BΓ

MNΘALMN = 2Θ̄AΘ
B Θ̄BΓ

irΘALir , (4.43)

where i = 1, 2, 3 label SO(2, 1)L and r = 4, 5, 6 label SO(3)T . Since the operators Φ and

A do not commute with each other it is essential to take care of the path ordering when

expanding the exponential P exp
(∫

du(Φ− uA)/8
)
(where u = t2).

5. Integration over the instanton supermoduli

We will now explicitly evaluate the integral in (4.37) in the presence of a cutoff.

5.1 General properties of the integral

The Grassmann integration selects the terms with sixteen powers of Θ that are obtained

by expanding (4.36), which have the schematic form
(
1

8!
Φ8 − 1

6!2
Φ6A+

1

4!2!4
Φ4A2 − 1

2!3!8
Φ2A3 +

1

4!16
A4

)
WB(X) . (5.1)

This formula suppresses the combinatorics associated with the path ordering that is non

trivial since the operators Φ and A do not commute. Although the structure of the terms

in (5.1) is reminiscent of the expansion of the exponential in (1.1) in powers of ϕ̂ and

Â, described in the introduction, it is significantly simpler. While (1.1) involved path

ordering of matrices in the gauge group that depend on the position around the loop the

expression (4.36) does not have this complication. In other words, the use of superconformal

symmetries has led to the abelianization of the bosonic connection.

Using the constraint X2
L−X2

T = R2 (which commutes with the operator RM
N defined

in (4.38)) one can think of WB as a function of |XT | only, so that

LirWB(|XT |) =
XiXr

|XT |
∂

∂|XT |
WB(|XT |) , (5.2)

(recalling that the indices i and r are longitudinal and transverse, respectively). As we will
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see below the Grassmann integration produces a rather complicated tensor that induces

all sorts of contractions of the L’s acting on the bosonic invariant WB(X). We intend to

carry out the Grassmann integration first, so we will define

F (|XT |;R) =

∫
d16ΘW (X,Θ) . (5.3)

The general structure of this function can be expressed as

F (|XT |;R) ≡
∫
d16Θ

[
1

8!
Φ8 +

1

4!2!4
Φ4A2 +

1

4!16
A4

]
WB(|XT |)

=
8∑

n=1

[n+2
2 ]∑

k=0

C
(n)
n+2−2k|XT |n−2kR2k ∂

(n)WB

∂|XT |n
, (5.4)

where the intermediate equation is a symbolic summary of the expansion of the exponential

in the integrand. The odd powers of A in (5.1) have been dropped since they are odd in

X and do not contribute to the Wilson loop expectation value since they vanish after

integration. A crucial point is that the resulting expression F (|XT |;R), being H-invariant,

can only depend on the single invariant X2
T .

The integral (4.37) that defines the Wilson loop expectation value has a divergent

contribution from the infinite volume of the subspace with constant X 2
T , i.e. from the

infinite volume of the integral over each SO(3)×SO(2, 1) orbit that comes from the region

close to the AdS5 boundary (near ρ = 0 in the original coordinates). We will regularize

such divergences by introducing a cutoff X4 ≤ Λ = R2/ε which breaks the conformal

symmetry. The X4 integral simply gives (again ignoring a known overall coefficient that

will be reinstated at the end)

〈W 〉ε =

∫ Λ dX4

R4

∫

X2
l
+X2

T≤X2
4−R2

d2Xld
3XT δ(X

2
4 −X2

l −X2
T −R2)F (|XT |;R)

=
1

R4

∫

X2
l +X2

T≤Λ2−R2

d2Xld
3XT√

X2
l +X2

T +R2
F (|XT |;R) , (5.5)

where the subscript ε indicates the presence of the cutoff Λ = R2/ε. Performing the

elementary integrals over Xl gives

〈W 〉ε =
2π

R4

∫

|XT |≤
√
Λ2−R2

d3XT

(
Λ−

√
X2

T +R2

)
F (|XT |;R)

= 2π

∫

|X|≤
√

R2/ε2−1
d3X

(
R

ε
−
√
X2 + 1

)
F (|X|; 1) , (5.6)

where the same rescaling has been used as in (3.21).

The possible divergences of this integral can be analyzed by noting the following prop-

erties of WB(X) and its derivatives, which arise in the definition of F (|XT |;R) in (5.4).

Firstly, note that (5.4) is unaltered if WB = − cos(π|XT |/
√
X2

T +R2) is replaced by
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W
(0)
B ≡WB − 1 which has asymptotic behaviour for large |XT |

W
(0)
B ≡WB − 1 ∼ − π2R4

8|XT |4
. (5.7)

Similarly, derivatives of WB have asymptotic behaviour

W
(n)
B =

∂(n)WB

∂|XT |n
∼ (−)n+1 (n+ 3)!π2

4!2

R4

|XT |n+4
. (5.8)

From these expressions it follows that 〈W 〉ε is at most linearly divergent. The fact that

the quartic divergence of the purely bosonic integral is absent is a consequence of super-

symmetry.

Clearly, a linearly divergent term cannot be present in the exact solution. Such a

term, which has the form R/ε and is proportional to the circumference of the loop, would

represent a breakdown of conformal invariance. However, our calculation introduced a

cutoff in the moduli space integration that excludes a region close to the loop. There is

therefore a possibility that we have ignored a singular contribution that arises when the

instanton touches the loop. Such a term could cancel any apparent singular behaviour in

the integral. The coefficient of the term linear in 1/ε in (5.6) is finite and so the linear

divergence arising from the Λ→∞ limit has the form

2πR

ε

∫
d3XT F (|XT |;R) ≡ 2πR

ε
D , (5.9)

where D is a finite coefficient since the integral converges.

The behaviour of the integral can be analyzed in terms of the coefficients C
(n)
m in (5.4),

noting that ∫ ∞

0
d|XT | |XT |pW (n)

B = 0 , (5.10)

for all p < n. After a change of variables one can express the terms with p = n and

p = n+ 2 in terms of Bessel functions

∫
d|XT | |XT |n+2W

(n)
B = (−)n+1(n+ 2)!

∫
d|XT | |XT |2W (0)

B

= (−)n+1n!
π2

3
[J1(π) + πJ0(π)]R , (5.11)

∫
d|XT | |XT |nW (n)

B = (−)n+1n!

∫
d|XT |W (0)

B = (−)n+1n!π2J1(π)R . (5.12)

J1(π) and J0(π) are incommensurable while the coefficients C
(n)
n+2 are essentially integers.

This means that the coefficient of the linear divergence gets independent contributions from

these two types of terms. However, the coefficients turn out to satisfy the identity

8∑

n=1

(−)nn!C(n)
n = 0 , (5.13)
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which eliminates the p = n contribution. The remaining contribution is equal to

D ≡
8∑

n=1

(−)n+1(n+ 2)!C
(n)
n+2 . (5.14)

The evaluation of D requires extensive computation that will be described in the next

section.

There is also an apparent subleading logarithmic divergence in (5.6). This can be

isolated by taking the derivative of 〈W 〉ε with respect to ε. Since the integrand vanishes

at the upper bound one gets

ε2
d〈W 〉ε
dε

∼ 〈W 〉lin + ε 〈W 〉log + · · · , (5.15)

where 〈W 〉lin is the coefficient of the linear divergence and 〈W 〉log the coefficient of logarith-

mic divergence. These quantities depend on the polynomials of degree n+2 that multiply

W (n) in F . A little algebra shows that the coefficients satisfy the condition

〈W 〉log =

8∑

n=1

C
(n)
n+2(−)n(n+ 3)! = 0 , (5.16)

so that the logarithmic divergence vanishes.

To summarize, the integral (5.5) gives an expression of the form

〈W 〉ε = D
2πR

ε
+ F +O(ε) , (5.17)

where F is the finite integral

F ≡ 〈W 〉 = − 1

R4

∫
d3XT

√
X2

T +R2 F (|XT |;R) . (5.18)

Although it is not immediately apparent, the integrand is a total derivative and this in-

tegral only gets a contribution from the boundary at |XT | = ∞. This is in line with the

expectation based on the original expression for 〈W 〉, which was the integral of a total

divergence. Performing the integration in detail and reinstating all the constants that have

been dropped up to now gives the expression

〈W 〉 = g8
YM

4!250π7
e2πiτ

8∑

n=2

n∑

k=2

(−)n (n+ 3)!

k + 3
C

(n)
n+2 , (5.19)

where τ = ϑ/2π + 4πi/g2
YM

is the complexified Yang-Mills coupling.

In order to convert this expression into a number we need to calculate the coefficients

C
(m)
n , which will be the subject of section 5.2.
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5.2 Evaluation of the integral

The sixteen-component Grassmann integrations can be performed by decomposing the

sixteen-component SO(4, 2) × SU(4) variable ΘA
a into two eight-component spinors. This

is achieved by choosing a basis in which Ω12 = −Ω21 = 1 and Ω34 = −Ω43 = 1 (with all the

remaining components zero). This will allow us to separate ΘA
a into two SO(6, 2) spinors,

θ̂ = (Θ1
a,Θ

2
a) , θ̌ = (Θ3

a,Θ
4
a) . (5.20)

The identifications made in these expressions are clarified by considering the decomposition

SO(6, 2) → SO(2, 2) × U(1) × SU(2), which is also a subgroup of SO(4, 2) × SU(4). The

SO(6, 2) spinors θ̂ and θ̌ both transform as (2,1,2)+⊕ (1,2,2)−, where the notation refers

to the factors in the subgroup (with ± being the U(1) charge). The overall SO(4, 2)×SU(4)

chirality determines the chirality of the SO(6, 2) spinors. The R-symmetry indices (1, 2)

and (3, 4) are doublets of the SU(2) factor and the SO(4, 2) chirality is the same for all

components. Therefore the two SO(6, 2) spinors have the same chirality which is inherited

from the chiralities of ΘA
a with respect to the SO(6) R-symmetry and the SO(4, 2) conformal

symmetry.10 Recall that this chirality originates from the fact that the BPST instanton is

an anti self-dual solution.

From here on we will replace SO(6, 2) by SO(8) for notational convenience.11 The

spinor bilinears of relevance to our problem are rewritten in SO(8) notation by using

Θ1HΓirΘ2 =
1

2
θ̂γirθ̂ , Θ3HΓirΘ4 =

1

2
θ̌γirθ̌ , (5.21)

and

Θ1HΘ2 =
1

2
θ̂γ78θ̂ , Θ3HΘ4 =

1

2
θ̌γ78θ̌ , (5.22)

where i = 1, 2, 3 are the transverse indices, r = 4, 5, 6 are the longitudinal indices and

the SO(8) γ matrices are Clebsch-Gordan coefficients that couple the vector 8v to the two

inequivalent spinors, 8c and 8s.

With these identifications Φ can be rewritten in the form

Φ = ΩABΘ
AH ΓMNΘB LMN = 2(θ̂γirθ̂ + θ̌γirθ̌)Lir . (5.23)

After some manipulations the quantity A defined in (4.43) can be rewritten as

A =
8

3

(
Θ1HΘ2Θ3ΓMNΘ4 +Θ3HΘ4 Θ1ΓMNΘ2+

+
1

8
εPQRSMN Θ1HΓPQΘ

2Θ3HΓRSΘ
4

)
LMN

=
4

3

(
θ̂γirθ̂ θ̌γ78θ̌ + θ̂γ78θ̂ θ̌γirθ̌ +

1

2
εirksmt θ̂γksθ̂ θ̌γmtθ̌

)
Lir . (5.24)

10There is plenty of scope for a sign error in determining the absolute sign of the SO(6, 2) chirality so we

have performed the following calculations allowing for either sign.
11This makes no difference to the following discussion and, in any case, we need to make a Wick rotation

of one of the time-like coordinates in order to evaluate the instanton contribution.
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The signs of the ε terms in these expressions are correlated with the chirality of the instan-

ton solution. This sign changes in the case of an anti instanton. In that case the chirality

of both SO(8) spinors also changes, which changes the signs of the other terms in (5.24).

Therefore, changing from an instanton to an anti instanton simply reverses the sign of

A, which leaves the value of 〈W 〉 unaltered since it only receives contributions from even

powers of A.
Substituting (5.23) and (5.24) into (4.36) gives

W (X,Θ) = P exp

{
−
∫ 1

0
dt′
(
t′

2
ΘΩHΓirΘLir +

t′3

2
ΘΩHΘΘΩHΓirΘLir

)}
WB(X)

= P exp

{
−
∫ 1

0
du

[
1

4

(
θ̂γirθ̂ + θ̌γirθ̌

)
Lir+

+
u

6

(
θ̂γ78θ̂θ̌γir θ̌ + θ̌γ78θ̌θ̂γirθ̂ +

1

2
εjskuirθ̂γjsθ̂θ̌γkuθ̌

)
×

×Lir

]}
WB(X) , (5.25)

where u = t′2. In order to evaluate the Wilson loop expectation value we need to extract

the θ̂8 θ̌8 term from the expansion of the exponential, taking account of the path ordering,

P. The SO(8) Grassmann variables can be integrated out by using the standard result,
∫
d8θ̂θ̂γm1n1 θ̂ · · · θ̂γm4n4 θ̂ = t̂m1n1···m4n4

8 , (5.26)

where mr, nr = 1, . . . , 8 and t̂8 is a standard SO(8)-covariant tensor. Similarly, the integral

over θ̌ can be expressed in terms of a tensor ť8. We will be using the explicit form of

t̂8 and ť8 given in [25] but the range of the indices is restricted to the situation in which

mr = ir = 1, 2, 3, 7 and nr = jr = 4, 5, 6, 8. Explicitly, the non-vanishing elements of either

of these tensors are [25, 26]

ti1r1i2r2i3r3i4r48 =
1

2
εi1r1i2r2i3r3i4r4 −

− 1

2

(
δi1i2δi3i4δr1r2δr3r4 + δi1i3δi2i4δr1r3δr2r4 + δi1i4δi2i3δr1r4δr2r3

)
+

+
1

2

(
δi1i2δi3i4δr2r3δr1r4 + δi1i2δi3i4δr2r4δr1r3 + δi1i4δi2i3δr2r4δr1r3+

+ δi1i4δi2i3δr1r2δr3r4 + δi1i3δi2i4δr1r2δr3r4 + δi1i3δi2i4δr1r4δr2r3
)
, (5.27)

where the sign of the first term is correlated with the SO(8) chirality of θ̂ and θ̌. This ε

tensor arises from terms that include a γ78 factor that can arise from (5.22) and (5.24).

The three terms in the first parentheses in (5.27) involve Kronecker deltas that contract

the i’s in the same sequence as the r’s. We will refer to these three terms as “disconnected”

contributions. The six terms in the second parentheses in (5.27) give rise to “connected”

contributions. A useful shorthand notation is illustrated by considering the contraction

2ti1r1i2r2i3r3i4r48 Mi1r1 · · ·Mi4r4 = −3TrM 2 TrM2 + 6TrM4

= −3
()()

+ 6

[ ]
, (5.28)
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where Mir is an arbitrary matrix with left and right indices in separate SO(3)’s. The

second line of this equation indicates the contractions diagrammatically. The vertical and

horizontal lines indicate contractions of the indices. The coefficients indicate the number

of such terms that occur. In the case illustrated above this number is simply an overall

multiplicity. However, in the application of interest later on the matrix Mir is replaced

by the operator matrix Lir, and it will be important to keep track of the ordering of

the indices within each of these different combinations. In other words, many different

combinations are subsumed in the notation of (5.28). Furthermore, although the ε term

in t8 did not contribute to (5.28) it does contribute to the expressions that enter into the

Wilson loop calculation.

After the Grassmann integration each of the terms in (5.1) gives rise to the sum of a

very large number of distinct contractions of powers of Lir. These are evaluated by making

repeated use of (5.2) which involves a great deal of computation. Some of the details are

discussed in appendix C. In this way the coefficients C
(n)
m are calculated and the various

contributions to the linear divergence and the finite parts determined. The coefficient, D,
of the linear divergence in (5.17) turns out to be a non-zero rational number. For the finite

part the result is

〈W 〉 = µSU(2)
π3

214 34 5
, (5.29)

where µSU(2) is the standard measure for a single instanton in N = 4 supersymmetric

SU(2) Yang-Mills,

µSU(2) = g8
YM

1

234π10
e2πiτ . (5.30)

Since the absolute sign of the chirality of the SO(8) spinors is difficult to determine, we

note that with the other choice of chirality the result would be µSU(2) π
32671/(210 34 ·5 ·7).

The relative simplicity of (5.29) suggests that the first choice is the correct one.

5.3 Cutoff dependence — straight line versus circular loops

We now want to examine whether the result is independent of the cutoff and consistent

with supersymmetry. Since the SO(5)-invariant cutoff already breaks all the supersym-

metries no supersymmetries survive the introduction of the loop. However, the presence

of the loop in the theory with a Poincaré-invariant cutoff leads to further supersymmetry

breaking. As discussed in section 1.1 the condition (1.2) (or, equivalently, (4.29)) defines

the combinations of supersymmetries that are preserved in the presence of the loop. We

argued that the instanton contribution to a circular loop should give a finite value that is

independent of the cutoff, but that a straight line should receive a vanishing contribution.

In this subsection we shall demonstrate that the expectation value of a circular Wilson

loop is independent of the cutoff procedure — more precisely, we will demonstrate that the

result does not depend on whether we use the SO(5)-invariant or Poincaré-invariant cutoff,

ρ ≥ ε. In each case the result is given by (5.17). By contrast, we will see that the cutoff

ρ ≥ ε, that is natural for the straight line in R4, leads to a vanishing finite part, Fline = 0.
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It is easy to see that the SO(5)-invariant cutoff breaks all the supersymmetries, even in

the absence of the loop.12 To see this, recall that a globally defined Killing vector in AdS5 is

timelike, which means that the vector εγµε′ (where ε and ε′ are supersymmetry parameters,

or global Killing spinors) is timelike. However, the surface X4 = Λ preserves SO(5), which

is euclidean de Sitter space and has space-like global Killing vectors. Therefore, none of

the AdS5 supersymmetries can be preserved in the cut-off theory.

The Poincaré invariant cutoff ρ ≥ ε is adapted to loops on R4 and is more commonly

used in the context of the AdS/CFT correspondence (see references in [1]) and the specific

context of holographic renormalization ([27] and references therein). In the absence of the

loop this cutoff preserves the sixteen Poincaré supersymmetries, breaking only the sixteen

conformal supersymmetries. In terms of the constrained six-dimensional coordinates ρ =

R/(X4−X5) (recall that we have set ` = R), so a cutoff at small ρ is equivalent to a cutoff

at large light cone coordinate X− = X4 − X5. Whereas the endpoint X4 = Λ = R2/ε

intersects the constraint hyperboloid, (X4)
2− (X5)

2− (X0)
2− (X1)

2− (X2)
2− (X3)

2 = R2,

on a four-sphere, the endpoint X− = R2/ε intersects the hyperboloid on a paraboloid.

We will now see that the expressions obtained in earlier sections are in accord with

these symmetry considerations, once a divergent perimeter term is subtracted.

5.3.1 Cutoff independence

Whereas the expression (5.6) for a circular loop expectation value was obtained from (5.5)

with X4 ≤ R2/ε we here consider the cutoff X4 ≤ R2/ε + X5. Integration over the two

Xl’s followed by the integral over X4 gives

〈W 〉′ε =
1

R4

∫
d2Xt dX5

(
R2

ε
+X5 −

√
X2

T +R2

)
F (|XT |;R) , (5.31)

where the ′ indicates the use of the alternative cutoff. This expression is similar to the

earlier one (5.6) that used the X4 ≤ Λ cutoff, apart from the presence of the term linear

in X5. The boundary conditions require R2/ε+X5 ≥
√
X2

T +R2, or

X5 ≥
ε

2R2
(X2

t +R2)− R2

2ε
. (5.32)

This means that there is no upper limit to the X5 integral, but since (5.31) converges for

large X5 this does not cause a problem. The term linear in X5 is antisymmetric under

X5 → −X5 so that it is useful to write it as the sum of two contributions,

∫ ∞

−Λ̃/2
dX5X5 F (|XT |;R) =

∫ Λ̃/2

−Λ̃/2
dX5X5 F (|XT |;R) +

∫ ∞

Λ̃/2
dX5X5 F (|XT |;R) , (5.33)

where Λ̃ = R2/2ε − ε(X2
t + R2)/2R2. The first term in (5.33) vanishes identically. More-

over the second term also vanishes as 1/Λ̃ in the Λ̃ → ∞ limit. But Λ̃ is finite only if

X2
t ∼ R4/ε2, in which case the second term vanishes at least as fast as |Xt|−4, so its con-

tribution will vanish after integration over Xt in (5.31). Thus, the X5 term in (5.31) gives

a vanishing contribution.
12We are grateful to Gary Gibbons for the following argument.
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This means that the expectation value of the circular Wilson loop, 〈W 〉′ε, has the same

value, (5.17), that was found earlier, so the result is not sensitive to the cutoff procedure.

We could presumably have regularized the calculation by cutting out any small region of

AdS5 with topology B3 × S1 around the loop and obtained the same result.

The presence of a linearly divergent term proportional to the circumference of the loop

is obviously inconsistent with conformal invariance and an artifact of the non-supersym-

metric cutoff. As argued in the introduction, a more complete treatment would consider

the cutoff theory obtained by the spontaneous symmetry breaking SU(3)→ SU(2)×U(1).

In that case there is a dynamical cutoff induced by fluctuations of theW -boson test particle

that defines the loop. This radically changes the behaviour of instantons with scales smaller

than the inverse W -boson mass, M−1. In the M → ∞ limit such effects are localized on

the loop and should generate a perimeter effect. Therefore, in the absence of a complete

analysis of such effects, a pragmatic procedure for eliminating the divergent term is to

make a local modification of the Wilson loop by absorbing the linearly divergent term into

a constant “renormalization” of the test particle mass.

The fact that the terms ignored by our cutoff procedure are localized on the loop

suggests that the finite result (5.29) that remains after subtraction of the divergent term is

determined uniquely. Since it is independent of the radius the calculation can be repeated

for any value of R, including the straight line.13 In each case the linearly divergent term

can be subtracted by the same mass “renormalization”, with the same finite result.

5.3.2 The straight Wilson line

However, as emphasized in the context of the bosonic model of section 3, there is a different

definition of the straight Wilson line in R4 which utilizes the Poincaré-invariant cutoff. This

is pathological from the point of view of S4 since both the loop and the cutoff surface touch

the north pole.

The integrand for the straight line expectation value can be obtained from that of

the circular loop (5.6) in the same way as in the bosonic case where (3.26) is obtained

from (3.21). The result for the straight line per unit length is simply equal to

〈W (line)〉ε =
1

ε

∫

X≤
√

R2/ε2−1
d3XF (|X|; 1) . (5.34)

This is a pure linear divergence which vanishes after subtracting the same mass term that

renders the circular loop finite. This is in accord with the constraints of supersymmetry

discussed in section 1.1.

6. Discussion and other issues

In summary, after subtracting a linearly divergent term, we have found the finite value

in (5.29) for the expectation value of a circular Wilson loop of radius R. The prescription

for subtracting the perimeter divergence corresponds to the addition of a counterterm for

13In this argument we are considering general radii with R 6= `.
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the (infinite) mass of the test W -boson that defines the loop. We believe that the specific

finite result that remains after subtraction of the divergent term is unambiguous since there

is no candidate local counterterm that would give a finite contribution. Importantly, the

same mass counterterm leads to the vanishing of the instanton contribution to the straight

Wilson line, as required by supersymmetry. However, understanding the precise origin of

this subtraction is an obvious challenge. It indicates a contribution that is missing from

our cutoff prescription and arises from small instantons touching the loop.

The problem is that the BPST instanton solution is not an exact solution of Yang-Mills

theory in the presence of the Wilson loop. We argued that the deviation from the exact

solution should not be relevant in the semi-classical (g
YM
→ 0) approximation in most of

moduli space. However, a zero size instanton touching the loop is a particularly singular

configuration that we excluded by our cutoff. No matter how small g
YM

is, in this region of

moduli space the exact solution is very far from the BPST solution. Therefore, the fact that

our cutoff neglects the effect of such small-scale instantons localized on the loop might be

responsible for the divergent perimeter term. If, instead, the theory were to be regularized

by considering the Wilson loop to be the holonomy of a W -boson of large but finite mass,

as described in the introduction, these singular small-scale instanton contributions should

automatically be incorporated.

The calculations described in this paper raise a number of other interesting issues that

we will now turn to.

6.1 Generalization to SU(N)

Having evaluated the instanton contribution to the Wilson loop for gauge group SU(2) we

may now consider the extension to SU(N) and other groups. The semi-classical calcula-

tion turns out to be very simple. The additional bosonic moduli parameterize the coset

SU(N)/SU(2)×SU(N−2)×U(1). Since the Wilson loop is gauge invariant the extra 4N−8

bosonic integrations simply give the volume of the coset. This amounts to multiplying the

SU(2) group theoretic coefficient with

bN =
24N−8π4N−8

(N − 1)!(N − 2)!

(
ρ

g
YM

)4N−8
. (6.1)

Similar considerations apply to other gauge groups. The extra fermionic zero modes

are a different story. As is well known, only 16 of them — those associated with the broken

supersymmetry and superconformal transformations — are exact. The other 8N − 16,

commonly called νAf and ν̄Bf (f = 1, . . . , N − 2) enter into the moduli space action as the

quartic interaction

S4F =
π2

4g2
YM

ρ2
εABCDν

Af ν̄Bf ν
Chν̄Dh . (6.2)

This means that the Grassmann integration over these variables can be saturated by bring-

ing down 2N − 4 powers of S4F from e−S4F . In fact, this is the leading contribution to the

Wilson loop expectation value for small g
YM

. Although the fields A and ϕ in the Wilson

loop integrand (1.1) can also soak up the extra fermionic variables such contributions are
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suppressed by powers of g
YM

. Consequently, the leading contribution can be computed by

means of a familiar (Hubbard-Stratonovich) transformation as demonstrated in [28],

aN =

∫ ∏

A,f

dνAf dν̄
B
f

(
g2

YM

2π2

)4(N−2)

e−S4F =
(2N − 2)!

2

(
g2

YM

8π2ρ2

)2N−4

. (6.3)

When combined with the bosonic factor (6.1) this simply modifies the overall coefficient

of the measure but does not affect its non-trivial dependence on the collective coordinates

and on g
YM

. The result is

〈W 〉SU(N) =
(2N − 2)!

22N−3(N − 1)!(N − 2)!
〈W 〉SU(2) . (6.4)

The generalization to higher instanton numbers |k| > 1 is more difficult for general

values of N . First of all it is not possible to use the symmetry arguments that we have

used to simplify the problem. On top of that we are faced with the problem of integrating

over the unknown multi-instanton moduli space. As shown in [28] drastic simplifications

emerge from a saddle point evaluation of the large-N limit, where duality with multi D-

instanton effects suggests the multi-instanton moduli space collapses to a copy of AdS5.

This means that the dominant region of moduli space is the one in which all the instantons

are at the same position and have the same scale and lie in commuting SU(2) factors inside

SU(N) [17, 28, 29]. Once again, in this limit and in the semi-classical approximation, the

non-trivial part of the computation is already contained in the SU(2) instanton calculation.

The overall measure for arbitrary k at leading order in the 1/N expansion given in [28]

replaces the factor in (6.4).

6.2 Speculations concerning AdS/CFT

The really interesting question from the point of view of the AdS/CFT correspondence is

what happens at strong ’t Hooft coupling, λ ≡ g2
YM

N → ∞? In this situation it is not

possible to neglect the contributions that arise from the νAf and ν̄Bf modes in the expo-

nent of the one-instanton contribution to the Wilson loop density. Roughly speaking each

fermion bilinear ν̄
[A
f νB]f is replaced by

√
λ while ν̄

{A
f νB}f is replaced by g

YM
. This gives

plenty of scope for reproducing the kind of exp
√
λ factors that enter into the perturbative

expressions. However, for large λ there are many other sources of perturbative corrections

to the instanton calculation that also have to be considered, which is a sobering prospect.

Clearly there should be a string theory viewpoint that corresponds to the Yang-Mills

calculations even though we are unable to calculate the instanton contribution in the limit

of large λ and make a direct comparison with type-IIB supergravity. The arguments

of [11] are in accord with the expectation [6, 7] that the Wilson loop in the strongly

coupled perturbative sector is determined by the functional integral over all world-sheets

bounded by the loop — the world-sheet of minimal area being the dominant configuration.

The addition of an instanton corresponds to the addition of a D-instanton in AdS5. The

general supersymmetry considerations of section 1.1 again imply a non-zero contribution

to circular loops.
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Making quantitative headway with this description does not appear to be simple.

However, the strong constraints implied by SL(2,Z) S-duality might help. This is first seen

from the perturbative formula for the Wilson loop of [10] which is in qualitative accord

with the supergravity side of the AdS/CFT correspondence where the exponential part of

the loop expectation value has the form, exp(−Amin) = exp(`2/α′) = exp
√
g2

YM
N . This

satisfies the simplest of these conditions

〈W1,0(R; gs)〉 ∼
〈
W0,1

(
R;

1

gs

)〉
, (6.5)

where gs = g2
YM
/4π and Wp,q is the Wilson loop in which the test charge is a dyon with

electric charge p and magnetic charge q. The symbol ∼ indicates that the matching is not

known to be exact when the prefactors multiplying the exponentials are included. However,

an equality is expected by Montonen-Olive duality which equates the expectation value of

a Wilson loop for an electrically charged test particle with coupling constant gs to that of

a Wilson loop with a magnetically charged test particle (a ’t Hooft loop) with coupling

constant 1/gs (when ϑ = 0). This is just the simplest example of the more general statement

of how the expectation values should transform under SL(2,Z). More generally, there is a

separate species of Wilson loop for each of the infinite number of different possible dyonic

test particles. Under the SL(2,Z) transformation of the complex coupling,

τ −→ τ ′ =
aτ + b

cτ + d
(6.6)

(ad− bc = 1 with integer a, b, c, d), the expectation value of the Wilson loop must satisfy

〈Wp,q(R; τ)〉 = 〈Wr,s(R; τ ′)〉 , (6.7)

where the coprime integers r, s are related to p, q by SL(2,Z) in the usual manner. This

indicates that the ’t Hooft loop and all the p, q loops with q 6= 0 must have non-trivial

dependence on τ1 = ϑ/2π. In particular, under a shift of τ1 (a = 1, b = Z, c=0, d =

1) the loop Wp,q transforms into Wp−Z,q. This means that any loop for a test particle

carrying a magnetic charge transforms into a different loop under an integer shift of τ1.

The exponential factor exp
√
g2

YM
N in the expression for the fundamental Wilson loop has

an obvious generalization that has the correct properties, namely

〈Wp,q(R; τ)〉 ∼ P (τ, τ̄ ) exp
(
|p+ qτ |

√
g2

YM
N
)
, (6.8)

where the prefactor P is undetermined (but was proportional to λ−3/4 in the limit of large

λ in the perturbative sector considered in [10]). Although in the case of the fundamental

Wilson loop with p = 1, q = 0 the exponential factor does not depend on τ1 = ϑ/2π,

it is difficult to imagine that the prefactor has no such dependence. The constraints of

SL(2,Z) covariance typically mix perturbative effects with instanton contributions of the

type discussed in this paper.
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6.3 Instanton n-point functions in the presence of a Wilson loop

In addition to 〈W 〉 it is of interest to consider correlation functions of gauge invariant

composite operators in the background of the Wilson loop. Such correlation functions

encode detailed information about the expansion of the Wilson loop in terms of local

operators [13, 30, 31] and are interesting for a variety of other reasons. Among many

possible choices of correlation functions, let us focus on two that are particularly special.

Firstly, consider the correlation function 〈Λ(x1) · · ·Λ(x16)W 〉, where Λ ∼ Tr(F−µνσ
µν λ)

is the composite operator dual to the supergravity dilatino. This correlation function is

special because in an instanton background each dilatino contains one factor of ζ. This

means that, as in [17], all of the sixteen superconformal collective coordinates have to be

absorbed by the dilatini. Consequently, to leading order in g
YM

the Wilson loop density

contains no fermionic coordinates and is given by WB(XT ). Therefore, the correlation is

simply an integral over the bosonic moduli and has the form

〈Λ(x1) · · ·Λ(x16)W 〉 =
∫

d4x0dρ

ρ5

(
16∏

r=1

K7/2(xr;x0, ρ)

)
cos

(
2πR2

ρ̃2 +R2

)
, (6.9)

where ρ̃ is defined in (3.13) and (3.14). Although the integral cannot be performed explic-

itly, the result is manifestly finite and almost certainly non vanishing for generic positions,

xr, of the dilatini (although singularities arise when these operators touch the loop).

The second correlation function we will discuss is 〈C(x)W 〉, where the operator C(x) =

Tr(F−)2 is dual to the complexified dilaton τ and does not absorb any fermionic modes.

This means that the final bosonic integral has an additional factor of

C(x) =
ρ4

[(x− x0)2 + ρ2]4
, (6.10)

which is simply the classical value of C(x). The calculation can be performed in much the

same way as in the case of the pure Wilson loop, leading to

〈C(x)W 〉 =
∫

d4x0dρ

ρ5
ρ4

[(x− x0)2 + ρ2]4

∫
d8ηd8ξ̄ W [x0, ρ0; η, ξ̄] , (6.11)

where W [x0, ρ0; η, ξ̄] is the Wilson loop density derived earlier. The integration over the

fermionic moduli can be performed exactly as in the case of the loop with no additional

insertions. Further integration over the insertion point x gives the Ward identity
∫
d4x〈C(x)W 〉 = ∂

∂τ
〈W 〉 . (6.12)

Similarly, ∫
d4x〈C̄(x)W 〉 = ∂

∂τ̄
〈W 〉 . (6.13)

The sum of (6.12) and (6.13) gives an identity for ∂〈W 〉/∂ϑYM. In sectors with non-zero

instanton number the left-hand sides of (6.12) and (6.13) appear to be very different since

C̄ contains eight fermionic moduli (since C̄ ∼ (TrF+)2) whereas C contains none. This

indicates that ∂〈W 〉/∂ϑ
YM

6= 0, which would mean that 〈W 〉 has a non-trivial depen-

dence on ϑ
YM

.
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Other correlation functions of composite gauge-invariant operators in a Wilson loop

background can be computed in a similar manner, such as those involving the lowest

chiral primary operator Qij. These kinds of calculations may reveal interesting information

concerning the operator product expansion of the Wilson loop [13, 31] and the structure of

non-local operators, much as the operator product expansion of correlation functions [18,

32, 33, 34, 35] has revealed a rich structure of local scaling operators.
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A. Six-dimensional representation of conformal transformations of AdS5

In this appendix we will describe the finite SO(2, 2) transformations that map (xµ, ρ) into

(xµ′, ρ′), where both points have the same value of the SO(2, 2) invariant, U . We will use

a 6 × 6 matrix representation of the elements of the group. In this representation the

generators of translations and special conformal transformations are given by

(Pµ)
M

N = δMµ ηN4 + δMµ ηN5 + ηµNδ
M
4 + ηµNδ

M
5 (A.1)

and

(Kµ)
M

N = δMµ ηN4 − δMµ ηN5 + ηµNδ
M
4 − ηµNδ

M
5 . (A.2)

The cube of any of these matrices vanishes, P 3
µ = K3

µ = 0, which makes it very easy to

determine the finite transformations. A finite translation is represented by

(ea
µPµ)MNX

N = XM + (aµPµ)
M

NX
N +

1

2
(aµaνPµPν)

M
NX

N , (A.3)

which implies

xµ′ = xµ + aµ , ρ′ = ρ . (A.4)

Similarly, a special conformal transformation is represented by

(eb
µKµ)MNX

N = XM + (bµKµ)
M

NX
N +

1

2
(bµbνKµKν)

M
NX

N , (A.5)

which implies

xµ′ =
xµ + bµ(x2 + ρ2)

1 + 2b · x+ b2(ρ2 − x2)
, ρ′ =

ρ

1 + 2b · x+ b2(ρ2 + x2)
. (A.6)

It is important that these transformations preserve the boundary ρ = 0 and that they

reduce to the usual four-dimensional conformal transformations on the boundary.
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We are interested in the transformations generated by

Π+
l = RPl +

1

R
Kl , Π−t = RPt −

1

R
Kt . (A.7)

Using the matrix representation one finds

eαΠ
+

= 1 +
1

2
Π+ sinh 2α+

1

4
(Π+)2(cosh 2α− 1) . (A.8)

The action on the coordinates is easiest to describe by decomposing xµ into components

parallel x‖ to and orthogonal x⊥ to the vector αµ, which gives

x
′(+)
‖ =

x‖ + a
(
1 + x2+ρ2

R2

)

1
2

(
1 +

√
1− 4a2

R2

)
+ 2

ax‖
R2 + 1

2R2

(
1−

√
1− 4a2

R2

)
(ρ2 − x2)

,

x
′(+)
⊥ =

√
1− 4a2

R2 x⊥

1
2

(
1 +

√
1− 4a2

R2

)
+ 2

ax‖
R2 + 1

2R2

(
1−

√
1− 4a2

R2

)
(ρ2 − x2)

,

ρ′(+) =

√
1− 4a2

R2 ρ

1
2

(
1 +

√
1− 4a2

R2

)
+ 2

ax‖
R2 + 1

2R2

(
1−

√
1− 4a2

R2

)
(ρ2 − x2)

, (A.9)

where

a =
R

2
tanh 2α . (A.10)

Similarly using the matrix representation one finds

eβΠ
−
= 1 +

1

2
Π− sin 2β − 1

4
(Π−)2(cos 2β − 1) . (A.11)

The transformation of the coordinates, now decomposed into components perpendicular

and parallel to the vector βµ, is given by

x
′(−)
‖ =

x‖ + b
(
1− x2+ρ2

R2

)

1
2

(
1 +

√
1 + 4b2

R2

)
− 2

bx‖
R2 + 1

2R2

(√
1 + 4b2

R2 − 1

)
(ρ2 − x2)

,

x
′(−)
⊥ =

√
1 + 4b2

R2 x⊥

1
2

(
1 +

√
1 + 4b2

R2

)
− 2

bx‖
R2 + 1

2R2

(√
1 + 4b2

R2 − 1

)
(ρ2 − x2)

,

ρ′(−) =

√
1 + 4b2

R2 ρ

1
2

(
1 +

√
1 + 4b2

R2

)
− 2

bx‖
R2 + 1

2R2

(√
1 + 4b2

R2 − 1

)
(ρ2 − x2)

, (A.12)

where

b =
R

2
tan 2β . (A.13)
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Since Π
(+)
l and Π

(−)
t commute with one another, one can easily combine the two trans-

formations and explicitly determine the parameters al = al0 and bt = bt0 that give the

transformation taking the instanton to the centre of the loop x′0 = 0. The scale ρ̃ is

thereby determined.

B. Killing supervectors of the instanton superspace

In this appendix we shall present the detailed expressions for the coefficients ΣA that enter

into (4.15) and (4.19). We will consider the dependence on the different constants — x⊕ ,

λ⊕ , w⊕ , b⊕ , η⊕ , η̄⊕ , ξ̄⊕ and ξ⊕ — in turn.

1) Translations, xµ
⊕
:

Σ(x⊕) = x⊕

(
e−λP + e−λ/2ξ̄σQ

)
. (B.1)

2) Dilations, λ⊕ :

Σ(λ⊕) = λ⊕

(
D − 1

2
e+λ/2ξ̄S̄ +

1

2
e−λ/2(η + 2ξ̄x · σ)Q+ e−λx · P

)
. (B.2)

3) Rotations, ωµν
⊕
:

Σ(ω⊕) =
1

2
ωµν
⊕

(
Jµν + e−λ[xµPν − xνPµ]−

1

2
e+λ/2ξ̄σ̄µν S̄−

− 1

2
e−λ/2ησµνQ+ e−λ/2ξ̄σ̄µxνQ

)
. (B.3)

4) Conformal boosts, bµ
⊕
:

Σ(b⊕) = bµ
⊕

(
e+λKµ − xµD −

1

2
xνJνµe

−λ

[
xµxP −

1

2
x2Pµ

]
+

+ e−λ/2ξ̄

[
xµxσ −

1

2
x2σµ

]
Q+ e+λ/2

[
ησµS̄ +

1

2
xµξ̄S̄ −

1

2
xν ξ̄σ̄νµS̄

]
−

− 1

2
e−λ/2 [xµηQ+ xνησνµQ]

)
. (B.4)

5) Left supersymmetries, ηαA
⊕

:

Σ(η⊕) = e−λ/2η⊕Q . (B.5)

6) Right supersymmetries, η̄α̇
⊕A:

Σ(η̄⊕) = η̄⊕

(
e−λ/2Q̄+ e−λ/2σ̄ηξ̄σ̄Q+ e−λσ̄µηP − ξ̄D − 1

4
σ̄µν ξ̄Jµν −

1

2
Γ̂ij ξ̄ Tij−

− 1

4
ξ̄e+λ/2ξ̄S̄ − 1

16
σ̄µν ξ̄e+λ/2ξ̄σ̄µν S̄ +

1

8
Γ̂ij ξ̄e

+λ/2ξ̄Γ̂ijS̄

)
. (B.6)

7) Right conformal supersymmetries, ξ̄α̇A
⊕

:

Σ(ξ̄⊕) = ξ̄⊕(e
+λ/2S̄ + e−λ/2x · σQ) . (B.7)
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8) Left conformal supersymmetries, ξα
⊕A:

Σ(ξ⊕) = ξ⊕

(
e+λ/2S + e+λσξ̄K + x · σσ̄η

[
e−λP + e−λ/2ξ̄σ̄Q

]
+

+ η

[
D +

1

4
e−λ/2ηQ− 1

4
e+λ/2ξ̄S̄

]
+

1

4
σµνη

[
Jµν +

1

4
e−λ/2ησµνQ

]
+

+
1

2
Γ̂ijη

[
Tij +

1

4
e−λ/2ηΓ̂ijQ+

1

4
e+λ/2ξ̄Γ̂ijS̄

]
+ x · σξ̄

[
D − 1

4
e+λ/2ξ̄S̄

]
+

+
1

4
x · σσ̄µν ξ̄

[
Jµν +

1

4
e+λ/2ξ̄σ̄µν S̄

]
+

+
1

2
x · σΓ̂ij ξ̄

[
Tij +

1

4
e+λ/2 ξ̄Γ̂ijS̄

])
. (B.8)

Using these expressions in (4.21) and the expressions for the inverse supervielbeins

(4.12) we can deduce the superisometries, as follows.

(a) Left supersymmetry:

δQx
µ = 0 , δQλ = 0 , δQη

αA = ηαA
⊕

, δQξ̄
α̇A = 0 . (B.9)

(b) Right conformal supersymmetry:

δS̄x
µ = 0 , δS̄λ = 0 , δS̄η

αA = ξ̄A
⊕α̇σ̄

α̇α
µ xµ , δS̄ ξ̄

α̇A = ξ̄α̇A
⊕

. (B.10)

(c) Right supersymmetry:

δQ̄x
µ = η̄⊕σ

µη , δQ̄λ = −η̄⊕ ξ̄ , δQ̄η
αA = 0 ,

δQ̄ξ̄
α̇A = −1

4
η̄⊕ ξ̄ ξ̄

α̇A +
1

16
η̄⊕ σ̄

µν ξ̄ (ξ̄σ̄µν)
α̇A +

1

16
η̄⊕ Γ̂

ij ξ̄ (ξ̄Γ̂ij)
α̇A . (B.11)

(d) Left conformal supersymmetry:

δSx
µ = ξ⊕σ · xσ̄µη +

1

2
e2λξ⊕σ

µξ̄ + ξ⊕σν ξ̄ (η
µνx2 − 2xµxν) ,

δSλ = −ξ⊕(η + σ · xξ̄) ,

δSη
αA = −1

4
ξ⊕ηη

αA +
1

16
ξ⊕σ

µνη (ησµν)
αA +

1

16
ξ⊕ Γ̂

ijη (ηΓ̂ij)
αA ,

δS ξ̄
α̇A = −1

4
ξ⊕(η + σ · xξ̄)ξ̄α̇A +

1

16
ξ⊕Γ̂

ij(η + σ · xξ̄) (ξ̄Γ̂ij)
α̇A . (B.12)

From these symmetry transformations it is simple to deduce the OSp(2, 2|4) transfor-

mations generated by (here we are setting R = 1 for simplicity of notation)

GA = σ12QA +ΩABS
B , ḠA = σ̄12Q̄A +ΩABS̄B , (B.13)

with constant parameters that we denote by εA
⊕
, ε̄⊕ A. These are

δGx
µ = ΩABε

A
⊕
(σµξ̄Be2λ + σ · xσ̄µηB) ,

δGλ = ΩABε
A
⊕
(ηB + σ · xξ̄B) ,

δGη
A = σ12εA

⊕
− 1

4
ΩBCε

B
⊕

(
ηCηA +

1

4
σµνηC(ησµν)

A + Γ̂C
ij Dη

D(ηΓ̂ij)A
)
,

δGξ̄
A = −1

4
ΩBCε

B
⊕

(
(ηC + σ · xξ̄C)ξ̄A + 2Γ̂ij C

D (ηD + σ · xξ̄D)(ξ̄Γ̂ij)
A
)
, (B.14)
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and

δḠx
µ = ε̄⊕Aσ̄

12σµηA ,

δḠλ = ε̄⊕Aσ̄
12ξ̄A ,

δḠη
A = ΩAB ε̄⊕B σ̄ · x ,

δḠξ̄
A = ΩAB ε̄⊕B −

1

4
ε̄⊕B σ̄

12

(
ξ̄B ξ̄A +

1

4
σ̄µν ξ̄B(ξ̄Aσ̄µν) +

1

4
Γ̂B
ij C ξ̄

C (ξ̄Γ̂ij)A
)
. (B.15)

C. Computation of the integral

The various terms that need to be considered in the integrand of the Wilson loop are those

denoted by Φ8, Φ4A2 and A4 in (5.4). In this appendix we will sketch the systematics of

the calculation of each of these terms and the way in which they contribute to the linearly

divergent part of the integral as well as to the finite part. The precise details are too

complicated to warrant presentation here (but can be obtained by direct communication

with the authors). We will discuss only the case corresponding to the choice of chirality

for the SO(8) spinors that leads to the simpler result of equation (5.29).

C.1 The Φ8 terms

Since there is no issue of noncommutativity for these terms they are relatively straightfor-

ward to evaluate. The expansion of eight powers of (θ̂γirθ̂ + θ̌γirθ̌) gives

Φ8|8×8 =
∑

(70)

θ̂γi1r1 θ̂ · · · θ̂γi4r4 θ̂θ̌γi5r5 θ̌ . . . θ̌γi8r8 θ̌Li1r1 · · ·Li8r8 , (C.1)

where the subscript (70) indicates a sum over the 8!/4!4! = 70 terms that contain four

pairs of θ̂’s and four pairs of θ̌’s. Using (5.26) in order to perform the integrals over θ̂ and

θ̌ gives a contribution to the Wilson loop of the form

Φ8 =
∑

(70)

t̂8
i1r1···i4r4t8

i5r5···i8r8Li1r1 · · ·Li8r8

=
∑

(70)

((6)δ1234 − (3)δ12δ34)((6)δ5678 − (3)δ56δ78)L(1) · · ·L(8) . (C.2)

In this expression the coefficients (6) and (3) indicate the six connected contributions and

the three disconnected contributions that enter into each of the t8’s. We have also indicated

the index contractions impressionistically. Each of the terms that arises from (C.2) has the

form of a specific contraction between the eight powers of Lir. Because each term in the sum

over permutations factorizes into the product of two t8’s the contractions between the L’s

also factorize into two groups — the product of contractions on the indices i1r1 · · · i4r4 and

the contractions on i5r5 · · · i8r8. Performing these contractions gives a total contribution

from the Φ8 term of the form

1

8!
Φ8WB(X) =

1

8!
70×

{
36

[ ] [ ]
− 36

[ ]()()
+ 9

()()()()}

=
1

8!
(L44− L422 + L2222) . (C.3)
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The notation L44 indicates the collection of all terms that are connected on the i1, r1 · · · i4,
r4 indices as well as on the i5, r5 · · · i8, l8 indices. Since the individual Lir’s do not commute

with each other it is important to keep the correct ordering. As a result there are 70×36 =

2520 distinct terms in L44, corresponding to the different possible contractions. The terms

in L422 are those that are connected on the i1, r1 · · · i4, r4 indices but disconnected on

i5, r5 · · · i8, r8 , as well as those that are related by interchanging 1, 2, 3, 4 with 5, 6, 7, 8.

This also has 2520 terms. Likewise L2222 indicates those terms that are disconnected in

both sets of indices. There are 70× 9 = 630 such terms.

Each of the quantities L44, L422 and L2222 has the form of a polynomial in |XT |
multiplying a differential of WB(X), as indicated in (5.4). Since each of the many thou-

sands of terms involves the product of eight Lir’s there is a substantial computational

problem, for which we have made extensive use of REDUCE in order to determine the

explicit expressions. Substituting these in (5.6) we can extract the Φ8 contribution to the

linear divergence,

D1 =
1

8!

∫ ∞

0
d|XT | |XT |2 Φ8WB(X) =

1

8!
(L44− L422 + L2222) =

35

192
. (C.4)

Similarly the Φ8 contribution to the finite term is given by

F1 =
1

8!

∫ ∞

0
d|XT | |XT |2

√
X2

T +R2Φ8WB(X) = − 1

45
. (C.5)

C.2 The Φ4A2 terms

The terms Φ4A2 need special attention since Φ and A do not commute. There are 15

distinct orderings of the Φ’s and A’s. In the path ordered expansion of the exponential

in (4.36) there is a factor that arises from the u integrations that depends on which of

these fifteen orderings is being considered. Thus, if the two A operators are the pth and

qth positions in the chain of six operators this factor is proportional to

apq =

∫ 1

0
du1

∫ u1

0
du2 · · ·

∫ u5

0
du6 up uq , (C.6)

where ur = t2r.

We will illustrate the procedure for the simple example in which the two A’s are the

last operators in the chain. This has the form

(
4

3

)2 (
(θ̂γpqθ̂ + θ̌γpqθ̌)Lpq

)4
×

×
(
(2θ̂γ78θ̂θ̌γirθ̌ + 2θ̂γirθ̂θ̌γ78θ̌ + εirksmtθ̂γksθ̂θ̌γmtθ̌)Lir

)2
. (C.7)

The Grassmann integration selects the terms with eight θ̂’s and eight θ̌’s in the expansion

of this expression. It is convenient to group these terms according to the number of ε
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tensors they contain.14 The term with no ε tensors is

(
8

3

)2



∑

(6)

θ̂γi1r1 θ̂θ̂γi2r2 θ̂(θ̂γ78θ̂)2θ̌γi3r3 θ̌ · · · θ̌γi6r6 θ̌ + (θ̂ ↔ θ̌)+ (C.8)

+
∑

(6)

θ̂γi1r1 θ̂θ̂γi2r2 θ̂θ̂γi3r3 θ̂θ̂γ78θ̂θ̌γi4r4 θ̌θ̌γi5r5 θ̌θ̌γi6r6 θ̌θ̌γ78θ̌



Li1r1 · · ·Li6r6 ,

where the sums are over the 6 = 4!/2!2! distributions of 4 elements into two groups of 2.

Integrating over θ̂ and θ̌ gives

(
8

3

)2∑

(6)

(
ti1r1i2r27878ti3r3···i6r6 + ti1r1···i4r4ti5r5i6r67878 + 2ti1r1.i3r378ti4r4.i6r678

)
×

×Li1r1 · · ·Li6r6 =

(
8

3

)2 [
6(−δ12)((6)δ3456 − (3)δ34δ56)+

+ 6((6)δ1234 − (3)δ12δ34)(−δ56) + 12((6)δ12δ34δ56 +

+(12)δ123456 − (18)δ1234δ56)
]
L(1) · · ·L(6) . (C.9)

As before, the notation is symbolic, the numbers in parentheses indicating the number of

distinct permutations involved. The expression (C.9) is again evaluated by a REDUCE

programme. The terms with one or two ε’s in the expansion of (C.7) must also be in-

cluded by a similar analysis in order to complete the first of the fifteen permutations. The

result is a contribution to the Φ4A2 term that is a sum of terms with the structures L6,

L42 and L222 — in the earlier terminology these are connected, partially connected and

disconnected, respectively.

A similar procedure is carried out for each of the other fourteen distinct orderings of

the Φ and A operators in the chain. They each give rise to contributions to the Φ4A2 term

that have the structures L6, L42 and L222. The result of the REDUCE computation of

the sum of these terms gives the contribution to the linearly divergent part, (5.6),

D2 =
1

4!2!

∫ ∞

0
d|XT | |XT |2Φ4A2WB(X) = − 7

10
. (C.10)

The contribution to the finite part is

F2 =
1

4!2!

∫ ∞

0
d|XT | |XT |2

√
X2

T +R2Φ4A2WB(X) =
11

5
. (C.11)

C.3 The A4 terms

The last set of terms that arises in the expansion of the integrand are those of the form

A4 terms for which there is again no problem with noncommutativity.

14We are here referring to the number of explicit ε’s in the expansion of (C.7). Other factors of ε arise

from the definition of the t8 tensors.
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It is again convenient to group terms according to the number of ε tensors. The terms

with no ε come from the expansion of

(
(θ̂γirθ̂θ̌γ78θ̌ + θ̂γirθ̂θ̌γirθ̌)ir

)4
=
∑

(70)

θ̂γi1r1 θ̂ · · · θ̂γi4r4 θ̂θ̌γi5r5 θ̌ · · · θ̌γi8r8 θ̌ ×

× Li1r1 · · ·Li8r8 , (C.12)

where the sum is over the 70 = 8!/4!4! distributions of 8 elements into two groups of 4.

Integrating over θ̂ and θ̌ gives

∑

(70)

ti1r1···i4r4ti5r5...i8r8Li1r1 · · ·Li8r8 =

=
∑

(70)

((6)δ1234 − (3)δ12δ34)((6)δ5678 − (3)δ56δ78)L(1) · · ·L(4) . (C.13)

Performing the contractions gives the expression

A4WB(X) = [6L4− 4L22] . (C.14)

Similar manipulations are needed to determine the contributions from terms with one,

two, three or four factors of ε in the expansion of the A4 term. These are to be added

together to get the total contribution. The result is that these terms give a contribution

to the linear divergence of the form

D3 =
1

4!

∫ ∞

0
d|XT | |XT |2A4WB(X) =

80

27
, (C.15)

while the finite contribution from these terms is

F3 =
1

4!

∫ ∞

0
d|XT | |XT |2

√
X2

T +R2A4WB(X) = −176

81
. (C.16)

The total coefficient of the linear divergence arising from the sum of all terms is

D = D1 +D2 +D3 =
21127

8640
, (C.17)

and the total finite result is

F = F1 + F2 + F3 =
2

405
. (C.18)
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