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1. Introduction

In this paper we revisit a somewhat old controversy: the origin of higher-order perturbative

contributions to the beta function in supersymmetric gauge theories. The relevance of in-

frared (IR) modes and the distinction between the wilsonian action and the generator of 1PI

functions are at the heart of this debate. A good understanding of these issues is relevant,

for instance, for the comparison of field theory results with holographic renormalization

group flows.1

The so-called “exact beta function” of general N=1 SYM was discovered by Novikov,

Shifman, Vainshtein and Zakharov (NSVZ) using instanton analysis [2]. In this approach

it is clear that corrections to the one-loop result have an IR origin in an imbalance in the

number of fermionic and bosonic zero modes. For pure SYM the NSVZ beta function reads

β(g)
NSV Z

=
−3CA

16π2
g3

1− (CAg2)/(8π2)
. (1.1)

This formula was first derived by Jones in [3]. Later on, superspace perturbative com-

putations to two loops were carried out using regularization by dimensional reduction

1The calculation of the beta function of N=1 SYM in the context of the AdS/CFT correspondence has

been recently considered in [1]. In order to discriminate between the different possible results (which depend

on the detailed UV/IR relation one uses), a preliminar requisite is to identify the field theory answer one

would like to reproduce. This requires a correct field-theoretical interpretation of the rôle of the IR degrees

of freedom.
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(DRed) [4, 5, 6]. In this method the two-loop correction to the beta function arises from a

local evanescent operator specific to DRed.2 This operator is not available in regularization

schemes that stay in four dimensions and Grisaru, Milewski and Zanon pointed out that

this seems to imply that no divergence should occur beyond one loop, in conflict with the

DRed result [6]. NSVZ then observed that in four dimensions the higher-loop corrections

can only arise from nonlocal operators that are nonanalytic at vanishing external momen-

tum [7]. This behaviour can appear only from the domain of virtual momenta of order of

the external momenta. Since this domain is excluded by definition in the Wilson action,

the flow of the wilsonian coupling constant is purely one-loop [8]. The standard modern

proof of this fact is based on the holomorphic dependence on the complexified coupling con-

stant. The running of the physical coupling constant, on the other hand, has higher-order

contributions that appear when one takes the expectation value (in an external field) of

the operators in the Wilson action. Furthermore, the IR pole is related to an anomaly, and

this is the crucial fact that allows to determine exactly the higher order contributions [8].

In a later contribution, Arkani-Hamed and Murayama rederived the NSVZ beta function

in a purely wilsonian setup [9]. They showed that the canonical wilsonian coupling con-

stant obeys a NSVZ flow. The reason is that keeping canonical kinetic terms at each scale

requires a rescaling of gauge field which is anomalous. This anomaly generates the higher

order corrections. These authors claimed that their calculation only depends on ultravi-

olet (UV) properties of the theory, and thus questioned the IR origin of the corrections.

Furthermore, they pointed out that the method of differential renormalization [12] clearly

displays an UV origin of the corrections. This interpretation has been criticized in [10].

The purpose of this paper is to try to contribute to the understanding of these issues by

performing an explicit calculation in differential renormalization (DiffR) [12]. The interest

of using this method is twofold: on the one hand we are able to derive the beta function

directly from the scale dependence of finite renormalized Green functions, rather than from

“infinite” counterterms; in this derivation we see explicitly how nonlocal terms contribute to

the beta function in a perturbative four-dimensional method. On the other hand, we clearly

separate UV divergences from the off-shell IR divergences that afflict these calculations.3

As a by-product, we develop some calculational tools that we believe have an intrinsic

interest to the SUSY-community. In fact, DiffR is a computational program that seems

to be especially taylored for supersymmetric theories: it neither requires continuation in

spacetime dimensions, nor changing the field content of the bare lagrangian. It is rather an

implementation of Bogoliubov’s R operation, which yields directly renormalized correlation

functions satisfying renormalization group equations. DiffR has been applied before to

supersymmetric calculations in the Wess-Zumino model [13] to three loops, in pure SYM

and SQED to one and two loops, respectively [14], and in supergravity to one loop [15]. Its
2This is the only local gauge invariant operator of the appropriate dimension: Tr

∫

d4xd4θΓaΓb(δ
b
a− δ̂ba),

where δ and δ̂ are Kronecker deltas in four and n dimensions, respectively. Using a Bianchi identity it can

be cast in a form proportional to the classical action: −εTr
∫

d4xd2θW aWa.
3In the dimensional methods UV and IR divergences are mixed. In [4] the IR divergences were removed

by the choice of a nonlocal gauge fixing that kept the renormalized quantum propagator in the Feynman

gauge. In [6] the IR divergences were simply subtracted by an R̃ operation [11]. We shall also perfom an

R̃ operation, but keeping track of the resulting finite part.

– 2 –
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implementation in symbolic programs [16] enables efficient one-loop calculations in more

involved models like the MSSM [17].

The layout of the paper is the following. In section 2 we review the method of DiffR

and introduce the new tools needed for our calculation. In section 3 we quickly review the

supercovariant background field method to settle the notation. In section 4 we calculate,

to two loops, the renormalized correlation function of two background gauge superfields

in supersymmetric gluodynamics. The contribution of matter fields can also be computed

using the techniques described here, but the results will be presented elsewhere. In section 5

we write the renormalization group equation and determine the first two coefficients of

the beta function. Section 6 is devoted to a discussion of the origin of the higher-order

coefficients in our calculation and in previous works. In particular, we discuss the relation

between our result and the flow of the wilsonian coupling constant. Finally, in the Appendix

we compute the two-point function of quantum gauge superfields at one loop, and determine

the renormalization group coefficient associated to the gauge-fixing parameter.

2. Differential renormalization

Differential renormalization [12] is a method that defines renormalized correlation functions

without intermediate regulator or counterterms. This is achieved by writing coordinate-

space expressions that are too singular as derivatives of less singular ones. The derivatives

are then understood in the sense of distribution theory, i.e. , they are prescribed to act

formally by parts on test functions, neglecting divergent surface terms. Diagrams with

subdivergences are renormalized according to Bogoliubov’s recursion formula. This proce-

dure leads to bona fide distributions that respect the requirements of quantum field theory.

Consider as a simple example the singular function (1/x2)2. Its renormalized form is simply

expressed by
[

1

x4

]

R

= −
1

4

lnx2M2

x2
+ aUV δ(x) , (2.1)

where the d’alembertian acts “by parts”. Note that the bare and the renormalized expres-

sions, when understood as functions, coincide for x 6= 0. However, only the renormalized

expression is a finite distribution on test functions defined over the complete space. The

arbitrary scale M , with dimension of mass, must be included for dimensional reasons and

plays the rôle of a renormalization group scale. Related to this is the fact that one can al-

ways add a local term of the appropriate dimension, which reflects the freedom in choosing

a scheme. Note that the arbitrary constant aUV can be absorbed into a redefinition of M .

Different renormalized expressions can in principle have different renormalization scales

and/or different local terms. Our approach will be to write a single (UV) renormalization

scale and adjust the contact terms in such a way that gauge invariance is preserved.

Analogously, IR divergent expressions can be made finite by differential renormaliza-

tion in momentum space. For instance,

[

1

p4

]

R̃

= −
1

4
p
ln p2/M̄2

IR

p2
+ aIRδ(p) . (2.2)

– 3 –
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We have defined for convenience M̄IR = 2MIR/γE , where γE is Euler’s constant, and

distinguished the IR scale from the UV one. This is an explicit realization of the so-called

R̃ operation that subtracts IR divergences. Again, diagrams with IR subdivergences are

treated according to a recursion formula [11, 18] analogous to the UV one.

Since UV and IR overall divergences are local in coordinate and momentum space,

respectively, the R and R̃ operations commute, and one can define an operation R∗ =

R̃R to renormalize both UV and IR divergences [11, 18]. The fact that the UV and IR

renormalizations decouple means that the UV and IR renormalization scales should be

independent. In DiffR this can be achieved by a careful adjustment of the local terms

involving both scales.4 Let us implement this idea in an example which will play a central

role in the calculation of section 4. Consider the IR singular expression

ln p2/M̄2

p4
, (2.3)

that arises in IR divergent expressions after renormalization of a UV subdivergence (with

aUV=0). The consistent IR renormalization of (2.3) is given by

[

ln p2/M̄2

p4

]

R̃

= −
1

8
p
− ln2 p2/M̄2

IR + 2 ln p2/M̄2
IR (1 + ln p2/M̄2)

p2
+

+

(

aIR ln
M2

IR

M2
+ bIR

)

δ(p) . (2.4)

This expression differs from the usual one given in [12] by scale-dependent local terms

proportional to ln2M2/M2
IR (appart from the explicit local terms with coefficients aIR and

bIR). It should be used whenever the “new” scale is to be treated as independent from the

“old” one, for consistency of the loop expansion. The scale-dependent local terms of (2.4)

are fixed by the requirement that the IR renormalization commute with a rescaling of M ,

that is to say,

M
∂

∂M

[

ln p2/M̄2

p4

]

R̃

=

[

M
∂

∂M

ln p2/M̄2

p4

]

R̃

. (2.5)

Observe that the UV scale M only appears in (2.4) in single logarithms. This is fine, for

double logarithms of M are expected to appear only when the bare expression contains

both a UV subdivergence and a UV overall divergence. Observe also that a rescaling of

MIR in (2.4) gives a local term in p-space. This procedure can be extended to more general

situations, but the identity (2.4) is all we need for the calculation at hand.

Let us finally deal with the scale-independent local terms. They must be chosen such

that the renormalized correlation functions respect the fundamental symmetries of the

theory. In our problem these are supersymmetry and gauge invariance. Since the first

is automatically preserved in superspace, we only have to worry about the second. In

4IR DiffR was investigated in [19] where it was concluded that the combination of UV and IR DiffR

was inconsistent, as the results depended on the order in which integrations were performed. According to

[20], however, this corresponds to the natural arbitrariness of the IR renormalization, and this author has

actually proposed in [21] a consistent version of DiffR that deals with both UV and IR divergences. Our

approach here will be closer to the original version of DiffR

– 4 –
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ordinary DiffR, we would have to study the Ward identities order by order and adjust the

local terms by hand so that they are satisfied. For the calculation of the two-loop beta

function it is sufficient to impose the Ward identities at the one-loop level, but this is

complicated in the framework of covariant supergraphs. Life gets much easier, however,

when one uses the so-called constrained differential renormalization (CDR) [23]. This is

a procedure that fixes the arbitrary local terms a priori in such a way that the Ward

identities are directly fulfilled [23, 24, 25]. Furthermore, CDR respects supersymmetry

in component field calculations [15, 26]. In superspace calculations CDR is particularly

simple because, after performing the superalgebra, all subdivergences are Lorentz scalars.

According to the CDR prescriptions, this means that the local terms in the renormalized

subdiagrams are universal, i.e. , they are independent of the Green function or diagram

they appear in. Specifically, in our calculation we shall take aUV = aIR = 0, and keep bIR
arbitrary (but unique) till the very end. When calculating beta functions, this is all we

need. Nevertheless, in order to calculate the complete two-point function, we shall also fix

by hand the local terms that appear in superficially divergent tensor structures, so that

gauge invariance be preserved. (We need this straightforward adjustment because CDR

has not been developed beyond the one loop level.)

3. Supercovariant background field method

In the background field method, the total gauge superfield VT is splitted into background

B and quantum V superfields according to

eVT = eΩegV eΩ̄ ; eB = eΩeΩ̄ . (3.1)

We will follow closely the notation and conventions given in [22]. Background covariant

derivatives can be defined as follows

∇α ≡ e−ΩDαe
Ω = Dα − iΓα(Ω)

∇̄α̇ ≡ eΩ̄D̄α̇e
−Ω̄ = D̄α̇ − iΓ̄α̇(Ω̄) . (3.2)

In the chiral representation for covariant derivatives, the “quantum-background” splitting

amounts to

∇α = e−VTDαe
VT = e−Ω̄e−gV ∇αe

gV eΩ̄

∇̄α̇ = D̄α̇ = e−Ω̄∇̄α̇e
Ω̄ . (3.3)

The classical action of pure N=1 SYM then adopts the following form

SYM =
1

g2

∫

d4xd2θTrW 2 =
1

2g2

∫

d4xd2θTr

(

i

2

[

∇̄α̇,
{

∇̄α̇,∇α

}]

)2

= −
1

2g2

∫

d4xd2θTr

(

1

2

[

∇̄
α̇ {

∇̄α̇, e
−gV ∇αe

gV
}

]

)2

. (3.4)

– 5 –
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The quantum-gauge fixing ∇2V = 0 retains background covariance. Usual averaging

requires the introduction of Nielsen-Kallosh ghosts:
∫

DfDf̄DbDb̄ δ(∇2V − f) δ(∇̄
2
V − f̄) exp

(

−
1

α

∫

d4xd4θ(f f̄ + bb̄)

)

=

=

∫

DbDb̄ exp

(

−
1

α

∫

d4xd4θ

[

1

2
V (∇2∇̄

2
+ ∇̄

2
∇2)V + bb̄

])

. (3.5)

Expanding SYM + Sgf in powers of the quantum field V yields

S = S0 + S2 + Sint

=
1

g2

∫

d4xd2θTrW2 −
1

2

∫

d4xd2θ V [ˆ + ξ(∇2∇̄
2
+ ∇̄

2
∇2)]V −

−

∫

d4xd4θ
(

c̄′c+ c̄c′ + (1 + ξ)b̄b
)

+ Sint(V, c, c
′) , (3.6)

where ξ = 1
α − 1, 2̂ = −iΓαα̇∂αα̇ −

i
2(∂αα̇Γ

αα̇)− 1
2Γ

αα̇Γαα̇ − iWα∇α − iW̄α̇∇̄α̇ and the

dots stand for terms with higher powers of V or c, c′. All anticommuting superfields, c, c′

and b interact with the background field Γ through the constraint that they be background

covariantly chiral, ∇̄c = ∇̄b = ∇c̄ = ∇b̄ = 0. The Effective Action in the Background

Field Gauge admits a gauge invariant expansion in the form

Γ[B] =

∫

d4xd4y d2θ [Wα(x)Wα(y)]G
(2)(y − x) + · · · . (3.7)

Our aim is to calculate the 2-point 1PI function G(2). For the perturbative computation

of Γ, we expand the action in powers of V and distinguish the “free” part (in the presence

of the background), S0, from the interacting part, Sint:

Γ[B] = S0 + Γ1 loop
ξ +

+expSint

[

δ

δJ
,
δ

δj
,
δ

δj̄

]

exp

[
∫

d4xd4θ(
1

2
J ˆ
−1
J − j̄ −1

+ j)

]

J=j=j̄=0

, (3.8)

where +Φ = ∇̄2∇2Φ = [ −iWα∇α −
i
2 (∇

αWα)]Φ is the d’alembertian acting on

background-covariant chiral fields (similarly for anti-chiral fields − Φ̄ = ∇2∇̄2Φ̄ =

[ −iW̄α̇∇̄α̇−
i
2(∇̄

α̇
W̄α̇)]Φ̄), and J , j, j̄ collectivelly denote sources for vector chiral super-

fields in (3.6). Γ1loop
ξ stands for the 1-loop contribution in the gauge ξ. We are interested

in computing the two-point amplitude at two loops in the Feynman gauge ξ = 0. However

the gauge parameter ξ is renormalized and the RG equation will generically contain a term

γξ∂/∂ξG
(2)|ξ=0. Since γξ = ∂ξ/∂ logM = O(g2) + · · · the linear dependence in ξ of the

1-loop Green’s function will be needed.

4. Calculation of the two-point function

4.1 One Loop

Formally, the exact one-loop contribution in an arbitrary Lorentz gauge, ξ, is

Γ1loop
ξ = −

1

2
Tr ln

(

ˆ + ξ(∇2∇̄
2
+ ∇̄

2
∇2)

)

+2Tr ln(∇2∇̄
2
)+Tr ln

(

(1 + ξ)∇2∇̄
2
)

. (4.1)

– 6 –
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WΓW

ξ

 a)  b)

W

Figure 1: Diagrams contributing to Γ1loop
ξ .

The three terms represent a loop of quantum gauge superfields, Faddeev-Popov ghosts and

Nielsen-Kallosh ghosts, respectively. Expanding to linear order in ξ

Γ1loop
ξ = −

1

2
Tr ln ˆ + 3Tr ln(∇2∇̄

2
) +

ξ

2
Tr

[(

1

−
−

1

ˆ

)

∇2∇̄
2
+ h.c.

]

+O(ξ2) . (4.2)

From this expression, we are instructed to expand in powers of the external background

field Ω. The first term in (4.2) is well known to start contributing from four-point functions

up [22]. The second piece, stemming from the ghosts, yields the standard contribution to

the 1-loop beta function in the Feynman gauge. The diagram involved is shown in figure 1a

and yields [14]

3CA

2

∫

d4xd4yd4θWα(x)Γα(y)∆
2(x− y)

R
→

R
→ −

3CA

43π2

∫

d4xd4yd2θWα(x)Wα(y)
[

∆(x− y) ln(x− y)2M2
]

(4.3)

after use of (2.1) with aUV = 0. Here the free propagator is ∆(x) ≡
1
(x) = −

1

4π2
1

x2
.

The last term in (4.2) involves corrections to the gauge parameter. Standard ∇-algebra

manipulations reduce it to

−
ξCA

4

∫

d4xd4yd2θWα(x)Wα(y)

[

∆(x− y)

∫

d4z∆(z − y)∆(z − x)

]

(4.4)

The integral that remains to be done corresponds to the insertion diagram of figure 1b, and

diverges logarithmically for large |z|. This is the first instance of an off-shell IR singularity,

that we renormalize along the lines explained in section 2:

∫

d4z
1

(x− z)2
1

(z − y)2
=

∫

d4p
1

p4
e−ip(x−y)

R̃
→ −

1

4

∫

d4p p

ln p2

M̄2
IR

p2
e−ip(x−y)

= −π2 ln(x− y)2M2
IR . (4.5)

We have used the identity (2.2) with aIR = 0. In the end we obtain the following contri-

bution to linear order in ξ:

ξCA

43π2
[∆(x− y) ln(x− y)2M2

IR] , (4.6)

– 7 –
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Γ Γ

Γ Γ

W W

Figure 2: Diagrams contributing to G(2) at two loops.

and the full one-loop contribution results in

Γ1loop
ξ = −

CA

43π2

∫

d4xd4yd2θWα(x)Wα(y)
[

3∆(x− y) ln((x− y)2M2)

− ξ∆(x− y) ln((x− y)2M2
IR)
]

+O(ξ2) + . . . (4.7)

4.2 Two Loops

We will compute the two-loop contribution in the Feynman gauge, ξ = 0. From (3.8), the

higher-loop contributions come from the expansion of a vacuum diagram with propagators

and vertices made out of background covariant derivatives (figure 2). In particular there

is a single such diagram at two loops, as shown in [5].

After performing the ∇-algebra we find the following nonvanishing contributions (up

to a common factor −3g2C2
A/2):

D1 = i

∫

d4xd4yd4θ W̄α̇(x, θ)Wα(y, θ) σµαα̇ [−∆(x− y)∂µI
0(x, y) ] ,

D2 = i

∫

d4xd4yd4θ W̄α̇(x, θ)Wα(y, θ) σµαα̇ ×

×
[

2∆(x− y)∂µI
0(x, y)− ∂µ(∆(x− y)I0(x, y))

]

D3 =
1

2

∫

d4xd4yd4θ Γµ(x, θ)Γν(y, θ)×

×
[

−∂µ∂ν(∆I
0(x, y)) + 4∂µ((∂ν∆)I0(x, y))− 4((∂µ∂ν∆)I0(x, y))

]

,

D4 =
1

2

∫

d4xd4yd4θ Γµ(x, θ)Γν(y, θ)
(

I1µν(x, y)− I2µν(x, y)
)

,

D5 =
1

2

∫

d4xd4yd4θ Γµ(x, θ)Γν(y, θ) δµν ( ∆(x− y))I0(x, y) .

Here and in the following, all derivatives act on x unless otherwise stated. In D5 we have

– 8 –
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replaced δ(x) by ∆(x− y). The integrals I i are defined as follows:

I0(x, y) =

∫

d4ud4v ∆(x− u)∆(y − v)∆2(u− v)

I1µν(x, y) =

∫

d4ud4v ∆(u− v)∆(x− v)∂xµ∆(x− u)∆(y − v)∂yν∆(y − u)

I2µν(x, y) =

∫

d4ud4v ∆(u− v)∆(x− u)∂xµ∆(x− v)∆(y − v)∂yν∆(y − u) .

As shown above, all expressions but D4 are obtained from a single integral I0, which is

both UV and IR logarithmically divergent. On the other hand, derivatives of I 0(x) are

just UV divergent. The integrals I1 and I2, which appear in D4, are IR safe as well.

The strategy now is to look for a renormalized expression for the sum
∑5

i=1Di. To

begin with we renormalize the integral I0. We must first cure the UV subdivergence, using

the DiffR identity (2.1) with aUV = 0:

I0 =
1

(4π2)4

∫

d4ud4v
1

(x− u)2
1

(y − v)2
1

(u− v)4
.

R
−→ −

1

4(4π2)4

∫

d4ud4v
1

(x− u)2
1

(y − v)2
u ln(u− v)2M2

(u− v)2

=
1

4(4π2)3

∫

d4v
1

(y − v)2
ln(x− v)2M2

(x− v)2

= −
1

4(4π2)3

∫

d4p
ln p2/M̄2

p4
e−ip(x−y) . (4.8)

We are left with an IR divergent expression, which is renormalized using the identity (2.4)

(with aIR = 0). Integrating by parts and Fourier transforming back into x space we finally

find

I0R =
1

32(4π2)2
[

ln2(x− y)2M2
IR + 2 ln(x− y)2M2

IR

(

1− ln(x− y)2M2
)

+ bIR
]

. (4.9)

Using this result we readily obtain, with κ = 1/(4π)4,

D1 +D2 = −i

∫

d4xd4yd4θ Wα(x, θ)W̄α̇(y, θ)×

× σµαα̇∂µ
(

−κ∆(x−y) ln(x−y)2M2 +∆(x−y)I0R(x−y)
)

, (4.10)

which, through the use of Bianchi identities ∇αWα = ∇̄
α̇
W̄α̇, can be written as an F

term:

D1 +D2 = −

∫

d4xd4yd2θ Wα(x, θ)Wα(y, θ)×

×
(

κ∆(x− y) ln(x−y)2M2 −∆(x− y)I0R(x− y)
)

. (4.11)

To calculate D3 + D5 it is convenient to decompose the last term of D3 (which has an

overall divergence) into trace and traceless parts:

4
[

(∂µ∂ν∆)I0
]

R
=
[

((4∂µ∂ν − δµν )∆)I0
]

R
+ δµν

[

( ∆)I0
]

R
+ c δµνδ(x − y) . (4.12)
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According to CDR, we have included a local term that can appear in the trace-traceless

decomposition at the renormalized level [23]. We shall fix its coefficient later on requiring

gauge invariance. Up to this term, the trace cancels the complete diagram D5. The rest

of D3 is overall UV finite. Renormalizing the subdivergences we find, after some algebra,

D3 +D5 =

∫

d4xd4yd4θ Γµ(x, θ)Γν(y, θ)×

×

{

(∂µ∂ν − δµν )

(

−
1

2
∆(x− y)I0R(x− y) + κ∆(x− y)×

×

[

ln(x− y)2M2 +
1

2

]

)

+

+ δµν

[κ

4

(

∆(x− y) ln(x− y)2M2
)

+ e δ(x − y)
]

}

. (4.13)

With e = 3
8κ+

c
2 . The non-trasverse pieces in the last line must be cancelled by D4. Let us

consider this contribution next. Again, it is convenient to split it into traceless and trace

parts:

I1Rµν−I
2
Rµν =

(

I1µν −
δµν
4
I1
)

−

(

I2µν −
δµν
4
I2
)

+
δµν
4

(I1Rρρ−I
2
Rρρ)+c′δµνδ(x−y) . (4.14)

We have included again an arbitrary local term in the trace-traceless decomposition. The

trace can be computed using Gegenbauer polynomials [13, 14]. (Alternatively, its scale

dependent part can be easily obtained with “systematic” DiffR [27].) The traceless part is

UV and IR finite. Therefore, it is fixed by dimensionality and by the traceless condition to

be of the form a(∂µ∂ν −
δµν
4 ) 1

(x−y)2
. The coefficient a may be determined from a rather

cumbersome calculation with Feynman parameters. Adding trace and traceless parts we

find

I1Rµν − I2Rµν = a(∂µ∂ν − δµν )∆(x− y)− (4.15)

− δµν

[

∆(x− y)

(

κ

4
ln (x− y)2M2 −

(

3

4
ζ(3)κ+ c′ +

3

4
a

))]

.

Adding this to (4.13) we obtain

D3 +D4 +D5 = −
1

2

∫

d4xd4yd4θ Γµ(x, θ)Γν(y, θ)×

× (∂µ∂ν − δµν )

[

∆(x− y)
(

I0R(x− y)− 2κ ln(x−y)2M2 − a
)

]

+

+
h

2

∫

d4xd4yd4θ Γµ(x, θ)Γν(y, θ)δµν ∆ , (4.16)

with h = 3
4κ(1 + ζ(3)) + 3

4a+ c+ c′. The M - and MIR-dependent parts are automatically

transverse, and the non transverse contribution of the scale independent local part can be

set to zero (so that the sum is gauge invariant) adjusting c and c′ appropiately. Thanks to

– 10 –
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its transversality, we can then rewrite this expression in a form proportional to the classical

action:

D3 +D4 +D5 = −
3

4

∫

d4xd4yd2θ Wα(x, θ)Wα(y, θ)×

×
[

∆(x− y)
(

I0R(x− y))− 2κ ln(x− y)2M2 − a
)]

. (4.17)

Summing up all diagrams and using (4.9), we finally obtain for the full 2-loop contribution

in the Feynman gauge (ξ = 0)

−3g2C2
A

2

5
∑

i=1

Di = −
3g2C2

A

46π4

∫

d4xd4yd2θ Wα(x, θ)Wα(y, θ) ×

×

[

∆(x− y)

(

ln2(x−y)2M2
IR + 2 ln(x−y)2M2

IR(1− ln(x−y)2M2) +

+ 4 ln(x−y)2M2

)]

. (4.18)

A possible local and scale-independent contribution has been cancelled by an adequate

choice of bIR in (4.9). We see that only single logarithms of M appear in the final re-

sult, as required by renormalization group invariance (see section 5). This fact can also

be understood in the following way: for a double M logarithm we must have both UV

subdivergences and overall UV divergences. By power counting, only the ΓΓ terms may

contain overall UV divergences. Furthermore, the traceless parts multiplying ΓΓ are finite

and can have only single logarithms of M , arising from the subdivergences. But gauge

invariance, i.e. transversality, forces the trace part to have the same logarithm structure,

so double logarithms of M are also forbidden in the complete result. The same argument

shows that were the theory scale independent (i.e. , finite) to n loops, the background

two-point function would also be scale independent to n+ 1 loops.5 This line of reasoning

can be pushed even further if we distinguish in our calculation the two-loop UV scale, M ′,

from the one-loop scale, M . Requiring transversality on M and M ′ independently we see

that M ′ must cancel in the final result. (This means that the coefficient c contains the

expression lnM ′2/M2.) So, it is only the one-loop scale that appears in the renormalized

two-loop function. The significance of this observation is discussed in section 6.

5. Renormalization group equation

After adding up the partial results (4.7) and (4.18), the final renormalized expression for

the background two-point function reads

G(2)(x) =
1

2g2
δ(x) +

3CA

42(4π2)2
ln(x2M2)

x2
−

ξCA

42(4π2)2
ln(x2M2

IR)

x2
+O(ξ2) +

3g2C2
A

44(4π2)3
×

×

{

ln2(x2M2
IR) + 2 ln(x2M2

IR)(1 − ln(x2M2)) + 4 ln(x2M2)

x2
+O(ξ)

}

+

+O(g4) . (5.1)
5The corresponding properties for the 1/ε poles in DRed were found in [6].
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Due to background gauge invariance,W undergoes no wave function renormalization. Thus

the renormalization group equation for this Green function reads
(

M
∂

∂M
+ β(g)

∂

∂g
+ γξ(g)

∂

∂ξ

)

G(2)(x)

∣

∣

∣

∣

ξ=0

= 0 . (5.2)

Note that we can only go into the Feynman gauge after evaluating the derivative with

respect to ξ. We have not included a term γIRMIR∂/∂MIR because in deriving the renor-

malization formula (2.4) we required that the UV and IR scales were independent from

each other, and hence γIR = M/MIR ∂MIR/∂M = 0. In fact, MIR parametrizes nonlocal

contributions, which are not object of UV renormalization.

We solve the renormalization group equation perturbatively to order g2 (two loops).

The first coefficient in the expansion of γξ(g) can be read off from the 1-loop vacuum polar-

ization for the gauge superfield field V , which is calculated in the Appendix with the result

γξ(g) = − 3CA
4(4π2)

g2 + O(g4). With this input, all the nonlocal and scale dependent pieces

cancel out in (5.2). This is a check of the consistency of our renormalization procedure.

In particular, note that the IR scale generated in the gauge parameter at two loops is

cancelled by corrections to the gauge parameter at one loop. The remaining local parts of

the renormalization group equation (5.2) uniquely fix the first two coefficients of the beta

function:6

β(g) = −
3

4

CA

8π2
g3 −

3

8

[

CA

8π2

]2

g5 +O(g7) . (5.3)

6. Discussion

Using DiffR, we have calculated the complete renormalized correlation function of two

background gauge superfields in pure N=1 SYM. This calculation illustrates the power and

simplicity of this method in applications to supersymmetric gauge theories. In particular,

we have seen that DiffR can be employed to subtract IR divergencies as well, and that the

corresponding IR scale can be clearly distinguished from the UV one. From the dependence

of the two-point function on the renormalization scale we have derived the first and second

coefficients of the beta function, b0 and b1. Furthermore, we have presented a new argument

showing that the n + 1-loop coefficient vanishes for any supersymmetric theory which is

finite to n loops. This important property had been proven before using DRed [6].

It is interesting to have a closer look at the way in which the two-loop coefficient of

the beta function, b1, is generated in our calculation.

1. UV one-loop subdivergencies are subtracted. This entails a one-loop wave-function

renormalization of the quantum gauge superfield. The corresponding renormalized

subdiagrams depend on the one-loop renormalization scale M in a local way.

2. The overall UV divergencies are subtracted and a new renormalization scale M ′ is

introduced. However, the combination of supersymmetry, gauge invariance and power

6A word on normalization. The coupling constant g as given in (3.4) is
√
2 times larger than the standard

Yang-Mills coupling, gYM (see [22, p. 55]). In terms of the latter, β(gYM ) = − 3
2

CA

8π2 g
2
YM − 3

2
( CA

8π2 )
2g5
YM+· · ·

which matches the expansion of expression (1.1).
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counting implies thatM ′ cancels out in the complete renormalized two-point function.

On the other hand, there remains a nonlocal dependence on M (see eqs. (4.10)

and (4.16)).7

3. After integration over half the supercoordinates, the dependence onM becomes local.

4. Finally, this local scale dependence is compensated by b1 in the renormalization group

equation. The off-shell IR divergencies only play a passive rôle, as they exactly cancel

in the renormalization group equation.

Summarizing, the scale associated to the one-loop renormalization of the quantum super-

field is the one that gives rise to the two-loop coefficient of the beta function! This is

somewhat surprising because näıvely one would think that the two-loop coefficient should

have its origin in M ′, which is the scale associated to two-loop superficial divergencies.

Should this be the case, the beta function would be purely one loop (remember that no

overall scale can appear at any order n > 1). However, we have seen explicitly in a two-

loop calculation that the subdivergences play a nontrivial role. More generally, we expect

that subdivergencies are responsible for all higher-order coefficients of the beta function.

This agrees with the NSVZ form of the beta function. The fact that M ′ disappears in

our method is directly related to the observation in [6] that in invariant four-dimensional

regularization methods there are no superficial divergencies have been subtracted. As we

have seen, this does not imply b1 = 0. Therefore, it seems that the näıve perturbative

derivation of the beta function from renormalization constants needs some modification

in this case. This modification is surely related to the presence of the anomaly discussed

in [8, 9, 28, 29]. From this point of view, the fact that the standard derivation from renor-

malization constants works in DRed seems related to the fact that there are no rescaling

anomalies in this method [22].

As a matter of fact, the mechanism we have just described agrees with previous cal-

culations in which the corrections to the one-loop result arise from a one-loop anomaly [8,

9, 28, 29]. This anomaly manifests itself in different ways: as a nonzero expectation value

for the operator WW [8]; as the noninvariance of the measure under the rescaling of the

gauge field [9]; or as the quantum breaking of either supersymmetry or holomorphy in

the framework of local coupling [28, 29]. In our description, the anomaly is to be asso-

ciated with the external loop, and is responsible for the promotion of the M dependence

into a non-vanishing nonlocal structure that eventually generates b1. This is completely

analogous to the explicit calculations in SQED performed in [8] (except for the fact that

we subtract the subdivergencies). Note that even though M ′ cancels out, the presence

of a ∞ − ∞ UV behaviour is crucial for the anomaly to exist. On the other hand, as

emphasized in [8], this nonlocal structure is nonanalytic at vanishing external momentum.

Such on-shell IR divergence, which cancels after integration over the θ̄ coordinates, is a

manifestation of the “IR side” of the anomaly [30] and should not be confused with the

off-shell IR divergences that we have renormalized in our calculation. More generally, IR

7Note that the expression “dependence on M” refers to the derivative with respect to M and not to the

term in which M appears, which is always nonlocal.
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effects are known to be responsible for quantum corrections to F terms in the 1PI effective

action [31]. The on-shell IR divergence arises from the region of virtual momenta of order

the momentum of the external field. If this region is excluded, one finds b1 = 0. Our

subtraction of IR divergencies, on the other hand, is local in momentum space and does

not modify the analiticity properties of the two-point function. The same applies to the IR

subtractions in [6]. Summarizing, the two-loop coefficient of the beta function arises from

a one-loop UV scale which survives at two loops only when IR effects are included.

For completeness, we discuss in the rest of this section the connection between the

Gell-Mann-Low beta function we have computed (1PI beta function) and the flow of the

coupling in the wilsonian action (wilsonian beta function). The wilsonian effective action

can be understood as the generating functional of Green functions with an IR cutoff, for

external momenta smaller that this cutoff [33]. Therefore, at least in perturbation theory,

the (“holomorphic”) wilsonian coupling obeys a one-loop renormalization group flow. (For

pure Super Yang-Mills this result also holds when nonperturbative effects are included.)

The higher-order contributions to the physical beta function appear when calculating ex-

pectation values of the operators in the wilsonian action [8]. On the other hand, in [9] the

“canonical” wilsonian coupling was shown to obey instead an NSVZ flow. According to this

work, in a wilsonian setup this comes about because a rescaling of the gauge superfields at

each scale is needed in order to keep kinetic terms canonically normalized. This rescaling

induces an anomalous jacobian, and it is this anomaly that induces the corrections to the

one-loop result [9]. In this reference, the anomaly is calculated à la Fujikawa. A basic

element of the calculation is the introduction of a UV cutoff and one might believe that

the anomaly (and thus the running of the canonical coupling) depends only on the UV

properties of the theory. However, a closer look shows that the low-energy degrees of free-

dom play a fundamental rôle [10, 30]. In fact, the IR degrees of freedom must be included

in the derivation of the anomaly if low-energy physics is to remain unchanged under the

field rescalings. In this sense, taking the rescaling anomaly into account is equivalent to

calculating the expectation value of the wilsonian action [8].

It was also argued in [9] (see [34] as well) that the canonical wilsonian coupling is

closely related to the 1PI running coupling. (This implies that the expectation value of the

canonical wilsonian action is basically trivial.) This relation has been made more precise,

in a general context, in [35]. There it is shown that, when all kinetic terms are canonically

normalized, the wilsonian coupling becomes independent of the renormalization scale for

large cutoff. Then one can derive the equation (see also [36])

β(g) =

[

Λ∂/∂Λ gcW (g,Λ/M)

∂/∂g gcW (g,Λ/M)

]

Λ→∞

. (6.1)

Here g is the physical coupling, gcW is the canonical wilsonian coupling, Λ is the flowing

cutoff in the wilsonian action andM is the renormalization scale, introduced by low-energy

normalization conditions. Using this equation, we show now that (at least for large Λ) the

1PI and the canonical wilsonian beta functions agree to two loops in perturbation theory,

as functions of g and gcW , respectively. The flow of gcW is of the generic form

βcW (gcW ) ≡ Λ∂gcW /∂Λ = b0g
3
cW + b1g

5
cW + b2g

7
cW +O(g9cW ) , (6.2)
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with constant coefficients bn. On the other hand, gcW can be perturbatively expanded in

powers of g:

gcW = g
(

1 + C0(Λ/M)g2 + C1(Λ/M)g4 +O(g6)
)

, (6.3)

where we have taken gcW = g at tree level. Inserting (6.3) into (6.2) we see that

C0(Λ/M) = b0 ln
Λ

M
+ c0 ,

C1(Λ/M) =
3

2
b20 ln

2 Λ

M
+ (2b0c0 + b1) ln

Λ

M
+ c1 , (6.4)

where cn are scheme dependent constants. Using (6.2) and (6.3) in eq. (6.1) we find

β(g) =
[

b0g
3 + b1g

5 + (b2 + 2b1C0 + 3b0C
2
0 − 2b0C1)g

7 +O(g9)
]

Λ→∞
, (6.5)

and using also (6.4) we see that the beta function is finite:

β(g) = b0g
3 + b1g

5 + (b0(3c
2
0 − c1) + b1c0 + b2)g

7 +O(g9) . (6.6)

Hence, the first two coefficients of the 1PI beta function coincide, in any (mass-independent)

scheme, with the first two coefficients of the canonical wilsonian beta function. The other

coefficients are scheme dependent, as expected. This scheme dependence has been studied

for general N=1 theories in [37].
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A. Calculation of γξ

The classical action in a generic Lorentz gauge reads

S = −
1

2g2

∫

d8z (e−gVDαegV )D̄2(e−gVDαe
gV )− (ξ + 1)

∫

d8z (D2V )(D̄2V ) . (A.1)

To second order in the quantum field V it reduces to

S(2) =
1

2

∫

d8z V DαD̄2DαV −
(ξ + 1)

2

∫

d8z V (D2D̄2 + D̄2D2)V

= −
1

2

∫

d8z V Π1/2V −
(ξ + 1)

2
d8zV Π0V , (A.2)

were we have defined the projectors

Π1/2 = −
DαD̄2Dα

Π0 =
D2D̄2 + D̄2D2

. (A.3)
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The one-loop correction to this quadratic action can be easily computed. The result in the

Feynman gauge is

Γ = −
3CAg

2

4(4π2)2

∫

d8z1d
8z2 V (z1)D

αD̄2DαV (z2)δ12
1

(x1 − x2)4

R
→ −

3CAg
2

16(4π2)

∫

d8z1d
8z2 V (z1)D

αD̄2DαV (z2)δ12
[

∆(x12) ln x
2
12M

2
]

. (A.4)

Therefore, the one loop effective action quadratic in the quantum gauge field is

Γ =

∫

d8z1d
8z2 V (z1)Γ

(2)(z1, z2)V (z2)

=

∫

d8z1d
8z2 V (z1)×

×

[

−
1

2
δ(8)(z12) Π1/2 −

(ξ + 1)

2
δ(8)(z12) Π0 +

+
3CAg

2

16(4π2)

( [

∆(x212) lnx
2
12M

2
]

Π1/2 +O(ξ)
)

]

V (z2) . (A.5)

The renormalization group equation for the correlation function of two quantum gauge

fields has the form:
(

M
∂

∂M
+ β

∂

∂g
+ γξ

∂

∂ξ
− 2γV

)

Γ(2)

∣

∣

∣

∣

ξ=0

= 0 . (A.6)

To order g2 (one loop) it is solved for

γV = −
3CA

8(4π2)
g2 + · · ·

γξ = −
3CA

4(4π2)
g2 + · · · . (A.7)
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