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1. Introduction

Although physics in more than the traditional four dimensions has been long speculated to

be important for describing phenomena at energies above the electroweak scale, the idea

is presently enjoying additional scrutiny because of two more recent developments.

First came the understanding of the strong-coupling limit of string theory in terms of

11-dimensional supergravity interacting on spaces with boundaries [1]. Together with the

realization that observable particles can be trapped on these boundaries, or on D-branes,

this understanding freed the string scale from the Planck mass, allowing it to be as low

as the weak scale [2] or at intermediate or grand-unified scales [3]. Such low string scales

allow extra dimensions to be comparatively large, and so (potentially) to have much richer

implications at experimentally accessible energies.

Second came the observation that even very small extra dimensions might also have

interesting low-energy implications if their geometries are ‘warped’ [4, 5]. In this frame-

work, the four-dimensional metric has a nontrivial dependence on position in the extra

dimensions, allowing four-dimensional properties like masses and couplings to depend in

an interesting way on an observer’s position within the extra dimensions.

Although not required by either approach, the broader class of geometries which are

allowed once observable particles are confined to a brane includes many configurations

which violate Lorentz invariance within the observable four dimensions by picking out a

preferred frame [6, 7], such as by having gravitating objects displaced from our brane in

the extra dimensions. For example, within the warped framework one can have a 5D line

element of the form

ds2 = −(α+∆)dt2 + αd~x 2 +
dr2

α+∆
, (1.1)

where t, ~x are 4 dimensional time and space, r is the extra dimension, α(r) = r2/l2 and

∆(r) = −µ/r2 +Q2/r4. If µ = Q = 0 this is anti-de Sitter space with curvature radius l,

and there is no Lorentz violation. But if µ 6= 0, it is the AdS-Reissner-Nördstrom metric

with a singularity at r = 0 and a speed of light which varies with r as c2(r) = 1+ ∆
α . There

is a preferred frame with 4-velocity uµ = (1, 0, 0, 0) in these coordinates. In this example,

the preferred frame is not due to visible matter, but rather the presence of a “black brane”

at r = 0 which is displaced from our brane in the extra dimension. A priori its effects need

not be small, and could cause observable phenomena.

– 2 –
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Very strong limits exist on the size of various Lorentz-violating effects involving or-

dinary particles [8, 9], so one expects these to provide the most stringent tests of any

Lorentz-violation effects predicted in the brane-world scenario. Although this expectation

is borne out, the surprise in these scenarios is always the comparative difficulty of finding

good constraints in the event that the only known particle living in the bulk is the gravi-

ton, since so little is directly known about the graviton’s properties. Some comparatively

weak limits do exist, coming from parameterized post-newtonian tests of General Relativ-

ity within the solar system [10, 11], and from its success in describing the energy loss of

the binary pulsar, 1913+16 [11, 12, 13].

Much stronger limits on changes to the graviton dispersion relation may also be ob-

tained if they permit high-energy particles to Čerenkov radiate gravitons. In this case

bounds may be obtained from our observation of very high energy particles in cosmic rays.

Assuming these cosmic rays to be protons — as the best evidence indicates [14] — the

constraint (cp − cg)/cp < 10−15 was obtained in this way [15], strongly restricting the case

where the graviton velocity, cg, is smaller than that of the proton, cp.

Our purpose in this paper is to provide a complementary constraint for the case where

protons cannot radiate gravitons, and so the above bound does not apply. We obtain

our constraint by computing some of the Lorentz-violating effects which are implied for

fermions and photons by radiative corrections involving gravitons. Because the bounds

on such corrections for electrons and photons are extremely good, we are able to infer

reasonably strong bounds on Lorentz violation in the graviton sector.

We find two kinds of effects, each of which depends on physics at different scales. We

find the one-loop graviton-induced contributions to particle phase velocities to be highly

suppressed by the mass of the particle involved. This sensitivity is stronger the higher

the number of dimensions the graviton sees. The photon and electron are particularly

insensitive to this kind of correction. Because they are so mass-dependent, the largest

contributions to light particles are often due to higher-loop graphs within which a one-loop

graviton-induced modification to the propagation of a heavy particle (like a W boson or

top quark) is inserted. This makes predictions sensitive to the ultraviolet structure of the

theory.

Graviton loops also change light-particle dispersion relations by introducing contribu-

tions which involve higher powers of the particle momentum. We compute these and find

that they can be generically less ultraviolet sensitive than are changes to particle phase

velocities. Interestingly, the low-energy contributions of this form (i.e. the contributions

due to the massless 4D graviton) are already large enough to provide interesting bounds.

We organize our presentation as follows. In section 2 we discuss in general terms

how Lorentz-violating effects enter into the low-energy 4D theory at energies well below

the compactification scale. This is the regime of interest for experiments, and is not the

regime in which one can consider bulk particles to be moving on ballistic trajectories

through the extra dimensions. Then in section 3 we discuss the fermion and photon self

energies in general, to identify which features are required in order to make comparison with

experiments. Section 4 follows with the calculation of the graviton loop, and the derivation

of the induced Lorentz violation amongst visible brane-based particles. Given the mass
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dependence of the results of section 4, section 5 gives conservative estimates as to the size

which might be expected for photons, electrons and protons. Section 6 describes the bounds

on Lorentz violation for these particles, and computes the bound which may be inferred

indirectly on the strength of Lorentz violation in the gravity sector. Our conclusions are

summarized in section 6, and some of the cumbersome intermediate results are gathered

into two appendices A and B.

2. The 4d effective picture

In the brane-world picture photons and electrons usually are constrained to move on our

four-dimensional brane, while gravitons are free to explore the higher-dimensional bulk

surrounding space. It is intuitive in this kind of picture that brane and bulk particles

might propagate differently, since bulk particles might be free to take ‘shortcuts’ through

the extra dimensions which are forbidden to brane-bound particles [16]. This possibility

has been proposed to be, in some instances, a virtue in that it may provide a novel way to

address some cosmological problems [7, 17].

Although this kind of ballistic picture is appealingly intuitive, it is not really appro-

priate for the low energies at which tests of the dispersion relation actually take place.

Experimental tests only involve the one graviton which we see in 4 dimensions, and so

only involve the very lowest Kaluza-Klein (KK) state. By contrast, assigning the graviton

localized trajectories in the extra dimensions presupposes a localized wave packet in these

dimensions, which cannot be constructed purely from the lowest-energy mode.

We briefly detour in this section to describe how extra-dimensional Lorentz-violation

appears in the low-energy effective lagrangian which describes the lowest KK mode. Al-

though we start by using the simplest example of a scalar field, the conclusions we draw

will be shown to be equally valid for higher spin fields.

2.1 A scalar field

Consider, therefore, a bulk scalar field, Φ(x, y), where xµ labels the 4 dimensions parallel

to the brane, and ym labels the n various transverse dimensions. The four-dimensional

field content is obtained by resolving Φ into a basis of modes in the extra dimensions:

Φ(x, y) =
∑

k

ϕk(x)uk(y) , (2.1)

where the basis functions, uk(y), are eigenfunctions of the appropriate kinetic/mass oper-

ator: ∆uk = ωk uk.

The kinetic 4D action for the KK modes, ϕk(x), is obtained by inserting the mode

expansion into the higher-dimensional action and integrating the result over the extra

dimensions. Using an assumed form for the extra-dimensional background metric:

GMN =

(

gµν(x, y) 0

0 hmn(y)

)

(2.2)

– 4 –
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one finds in this way:

S = − 1

2

∫

d 4x dny
√
−GGMN∂MΦ∂NΦ

= − 1

2

∫

d 4x
√
−GGµν

kl ∂µϕk∂νϕl + · · · , (2.3)

where G = detGMN , etc., and the effective four dimensional metric governing the kinetic

terms is √
−GGµν

kl (x) :=

∫

dny
√

−gh gµν(x, y) u∗k(y)ul(y) . (2.4)

The main point is that the metrics (plural since there is a different metric for each

choice of the indices k, l) defined by eq. (2.4) differ, in general, from the induced metric

on the brane, γµν , which appears in the kinetic term for fields which are trapped on a

brane. For instance, for a brane defined by the surface y = y0 the induced metric is simply

γµν = gµν(x, y0). This is ultimately the source of Lorentz-violating effects due to the bulk

metric.

If we focus purely on the massless four-dimensional mode, which we label by k = 0,

then we must integrate out the other, more massive, KK modes. The kinetic term for

the massless field, ϕ = ϕ0(x), contains the metric Gµν = Gµν
00 which may differ from the

induced metric on the brane, γµν . In the rest of this paper we will focus on the implications

of this difference.

Two limits of the metric Gµν bear highlighting. First, in the absence of warping of the

bulk metric (i.e., if gµν(x) is independent of y) eq. (2.4) becomes:

√
−GGµν

kl =
√−g gµν(x)

∫

dny
√
hu∗k ul

= δkl
√−g gµν(x) , (2.5)

where the second line uses the orthonormality condition of the basis modes, uk(y). In this

case bulk and brane modes see the same metric, for branes defined by surfaces y = y0.

Second, in the absence of a preferred frame in the bulk metric (such as the AdS metric

used by Randall and Sundrum) the metrics Gµν and γµν must be conformal to one another

(i.e., Gµν(x) = f(x) γµν(x)), since Lorentz invariance implies they must both locally be

proportional to the Minkowski space metric ηµν .

2.2 The 4D graviton

A similar story gives the influence of Lorentz-violating effects on the propagation of low-

energy gravitons within the effective theory below the compactification scale (or the AdS

curvature scale, in the case of RS-II-like models without compactification [5]), although the

details are a bit more complicated due to gauge invariance. Our purpose here is to identify

the leading contributions of Lorentz violations in the higher-energy theory to graviton

propagation in the low-energy 4D theory, and to show that they always may be cast in

terms of an appropriate shift of the background metric.1

1We thank M. Pospelov for helpful conversations on this point.
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We assume: (i) our interest is in energies very low compared to the compactification

scale, allowing a treatment in terms of the low-energy 4D effective theory; (ii) there is only

a single massless spin-2 graviton mode2 in this effective theory, and (iii) that the dominant

effect of the higher-dimensional theory is to break Lorentz invariance but not translation

invariance or rotational invariance (in the preferred frame). Under these circumstances the

4D effective theory involves an effective 4D metric field coupled to an order parameter,

uµ, which defines the preferred frame. The assumptions of unbroken rotational invariance

imply uµ is timelike, and we rescale it so that it is normalized, satisfying gµνuµuν = −1.
On grounds of general covariance, the 4D effective theory with the fewest derivatives

has the form:3

L = − 1

2κ24

√−g
[

R+ a Rµν uµuν

]

+ · · · , (2.6)

for some dimensionless constant a. Here the ellipses indicate higher-derivative terms, and

we have not written a cosmological constant term, which we assume to be negligible. (We

shed no light in this paper on the vexing cosmological constant problem.) Here κ24 =

8π G4 = 1/M2
4 , where G4 and M4 are the usual 4D Newton’s constant and (rationalized)

Planck mass: M4 ∼ 2 × 1018 GeV. In order of magnitude we expect a ∼ κ24Λ
2, where Λ

is the scale associated with the Lorentz-violating effects at higher energies. Clearly a is

naturally very small to the extent that Λ is much smaller than the 4D Planck scale.

The main point now follows. The second term of eq. (2.6) may be completely absorbed

by performing the following field redefinition:

gµν → gµν −
a

2

[

gµν + 2uµuν

]

. (2.7)

After having performed this redefinition (and a constant rescaling of the metric), graviton

fluctuations about flat space are described performing the expansion gµν(x) = Gµν +

2κ4 hµν(x), in the Einstein-Hilbert action, using

Gµν = ηµν − δc2g uµuν , (2.8)

where ηµν = diag(−1, 1, 1, 1) is the usual Minkowski metric, uµ = ηµνu
ν , and δc2g is a small

quantity which we shall see has the interpretation as a change in the maximum propagation

speed, cg, of the graviton. The field hµν here is the canonically-normalized field describing

graviton propagation.

Just as was the case for the scalar field, the leading effect of higher-energy Lorentz

violation is in this way seen to be a modification of the background metric through which

the graviton propagates.

As a concrete illustration of this general argument, we can compute the effective 4-D

gravitational metric corresponding to eq. (1.1), treating the Lorentz-violating term as a

perturbation. The 4D effective gravitational action can be obtained by expanding the 5D

2We restrict ourselves to a genuine single masless spin-2 graviton. Some recent proposals have multiple

and bound-state gravitons [18], in which case our 4-D bounds apply to the massless 4-dimensional graviton.
3Our metric is ‘mostly plus’, and we follow Weinberg’s curvature conventions [19]. Momentum 4-vectors

are upper case (P ), the spatial vector is boldface (p), the magnitude of the spatial piece is lowercase (p).
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action S to linear order in δgµν = (−µ/r2 + Q2/r4)uµuν , and integrating over the extra

dimension. If we write

ds2 ∼= r2

l2

(

gµν(x)−
l2

r2
δgµν

)

dxµdxν +
l2

r2
dr2 (2.9)

(the correction ∆(r) in grr can be neglected to leading order in ∆) then4

δS =
1

2
M3

5

(
∫ r2

r1

dr
r

l
· l

2

r2

[

− µ
r2

+
Q2

r4

])

×√−g
(

Rµν − 1

2
gµνR

)

uµuν (2.10)

The upper limit of integration corresponds to the position of one brane, and the lower

limit might be that of another brane, or else the position of an event horizon where α(r1)+

∆(r1) = 0, if there is only a single brane. Comparing to the preceding discussion, we see

that the graviton sees a metric of the form (2.8), with

δc2g ∼
∫ r2
r1
dr l/r

[

−µ/r2 +Q2/r4
]

∫ r2
r1
dr (r/l)

. (2.11)

Interestingly, the sign of δc2g can be positive or negative, depending on the relative sizes of

black brane mass and charge.

2.3 Physical implications

The physical significance of the metric, Gµν , appearing in the kinetic term of a field

within the effective theory, is most easily seen by working within the geometrical-optics

approximation. Within this approximation, the propagating field is written in the form

ϕ(x) = A(x) exp[iPµx
µ], with A(x) assumed to be much more slowly-varying than is the

phase, Pµx
µ. With this choice the field equation, (Gµν∇µ∇ν −m2)ϕ = 0 is equivalent to

the dispersion relation: Gµν PµPν +m2 ≈ 0, or equivalently the normal vectors, Pµ, of the

surfaces of constant phase are timelike (or null, if m = 0) vectors of the metric Gµν .

If the (four-dimensional) wavelength of the mode is much smaller than the (four-

dimensional) radius of curvature of the background fields, then the motion of these wave

packets is along the geodesics of the 4D-metric Gµν . Clearly these trajectories and disper-

sion relations generically differ for fields which have different metrics in their kinetic terms.

The statement is slightly weaker for massless particles, since the latter move along null

geodesics of their respective metrics. Consequently, their trajectories only differ if the two

metrics are not conformal to one another. In particular, differences in the trajectories of

massless particles are not observable (in the geometric-optics limit) in the absence of a

preferred frame in the bulk or on the brane.

3. Loops: general considerations

We now turn to the general implications for fermions and photons of loop-generated

Lorentz-violating effects. Motivated by the considerations of the previous section 2, we
4For a warped metric of the form ds2 = a(r)gµνdx

µdxν + b(r)dr2, the reduction of the gravitational

action from 5D to 4D is S = − 1
2
M3

5 (
∫

a
√

b dr)
√−gR, where R is the Ricci scalar constructed from the 4D

part of the metric, gµν .

– 7 –
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imagine from here on that all brane fields — i.e., all experimentally observed elementary

particles except for the graviton — see only the induced metric on the brane, which we

take to be flat and Lorentz invariant: γµν = ηµν = diag(−1, 1, 1, 1). By contrast, the metric

appearing within the kinetic terms of any low-energy bulk fields — which we take to be

just the graviton — involves the Lorentz-violating metric of eq. (2.8). This is the dominant

low-energy source of Lorentz violation in the effective theory, and it is the only type of

Lorentz violation whose implications we shall follow.

In general, loops involving virtual bulk states communicate the news of Lorentz vi-

olation to the brane fields, and our task is to compute the size of this effect. In this

section we address general issues which follow purely from the assumption that Gµν =

diag(−1/c2g , 1, 1, 1) encodes all Lorentz-violating effects, and return in later sections to the

explicit calculation of these effects from graviton loops.

Since we know from direct bounds that Lorentz-violating bulk effects are small (more

about this later), we take cg = 1 + ε with ε ¿ 1. Because of the very strong constraints

already known for cg < 1 [15] our primary interest in what follows is in positive ε. In view

of the direct bounds arising from solar-system and binary-pulsar tests of general relativity

we imagine ε . 10−6.5

3.1 Photon propagation

We identify in this section those parts of the graviton-induced vacuum polarization which

have implications for the dispersion relation of transversely-polarized photons.

We first write the most general form for the vacuum polarization which can be built

from the tensors ηµν , Gµν = ηµν + (1− c2g)uµuν and the momentum 4-vector, Pµ, which is

consistent with symmetry (Πµν = Πνµ) and transversality (PµΠ
µν = 0). The most general

form is:

Πµν = A

(

ηµν − P µP ν

P 2

)

+B

[

uµuν +
(P · u)2
P 4

P µP ν − (P · u)
P 2

(P µuν + P νuµ)

]

, (3.1)

where at this point A and B are arbitrary functions of the two independent variables, P 2

and P · u.
The dispersion relation is found by searching for the zero eigenvalues of the inverse

propagator, ∆µν = ∆µν
0 +Πµν where ∆µν

0 = −(P 2 ηµν −P µP ν). In particular, our interest

is only in those which are transverse (orthogonal to the pure gauge directions). Working

in the rest frame, uµ = (1, 0, 0, 0), and taking the photon momentum to point in the

z-direction (i.e., P µ = (ω, 0, 0, p)), we therefore require that ∆µν = 0 in the directions

µ, ν = x, y.

A simple calculation using eq. (3.1) shows that this implies:

ω2 − p2 +A(ω, p) = 0 . (3.2)

5A weaker bound, ε . 10−3, is required if only terrestrial bounds, or the gravitational radiation rate

of the binary pulsar are used. The stronger limit follows from angular momentum conservation for the

Sun, as inferred by requiring the ecliptic and solar equatorial planes not to precess relative to one another

throughout the history of the solar system [20, 10, 11].

– 8 –
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Since A is perturbatively small, it suffices to write the dispersion relation as ω = ω0 + ω1,

where ω0 = p, and to evaluate A with ω = ω0. This leads to the present section’s main

result:

ω1 = −
1

2ω0
A(ω0, p) . (3.3)

As we shall find, A admits an expansion at low energies in powers of P 2 and u · P ,

leading to the form

A(ω0, p) = αp2 + β p4 + · · · , (3.4)

where rotational invariance precludes the appearance of odd powers of p. Using this in

eq. (3.3) and comparing the result with the general 4D photon dispersion relation

ω2(p) = p2c2γ + bγ p
4 +O(p6) . (3.5)

we readily identify

c2γ = 1− α , bγ = −β . (3.6)

3.2 Fermion propagation

We next ask how loop contributions to fermion self-energies can modify fermion dispersion

relations. We work within the rest frame defined by uµ. Writing the inverse electron

propagator as S = S0+Σ, with S0 = −(i/P+m), we see that to leading order in perturbation

theory the zeroes of S satisfy P µ = (E,p), where E = E0 +E1 with E0 =
√

p2 +m2
0 and:

iγ0E1 = −Σ(E0,p) . (3.7)

For small p, Σ has the expansion

Σ(E0,p) = A+ B(i~γ · p) + C p2 +D p2(i~γ · p) + E p4 + · · · (3.8)

and so eq. (3.7) implies a dispersion relation of the form

E2
f = m2

f + p2 c2f + bf p
4 + · · · (3.9)

with

mf = m0 −A+ · · · (3.10)

c2f = 1− 2(B +m0 C) + · · · (3.11)

bf = −2(D +m0 E) + · · · . (3.12)

In these last three equations the subscript f denotes the fermion species, and the ellipses

indicate higher-order contributions.

Since it is the quantities c2f and bf which we wish to compare with experiments, the

implications of graviton loops may be obtained by computing the coefficients B through E .

– 9 –
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hµν
X

γ

Figure 1: Graviton contribution to photon vacuum polarization.

hµν
X

f

Figure 2: Graviton contribution to fermion self-energy.

4. Loops: graviton calculations

In this section we compute the one-loop self energy which is obtained when a fermion

or photon emits and reabsorbs a virtual graviton, as in figures 1 and 2. We present our

results in three steps. First, since the integrals involved strongly diverge in the ultraviolet,

we make some general remarks about the correct way to treat these divergences before

describing the calculations themselves. We then evaluate the graviton loop in two steps,

motivated by the picture that Lorentz violation is arising from field configurations within

the extra-dimensional bulk. First we consider loops involving only the lowest KK mode:

the massless 4D graviton. These loops have the virtue of only involving known particles

and couplings, and so the results we obtain are comparatively robust. They describe

the graviton contributions within the effective 4D theory, well below the compactification

scale, Mc ∼ 1/r, where r is a measure of the linear size of the extra dimensions. In the

case of a single noncompact extra dimension, the effective theory is good below the bulk

curvature scale
√

−Λ5/M3
5 , where Λ5 is the bulk cosmological constant and M5 is the 5-D

gravity scale.

Next, we compute the contributions of gravitons in the effective theory between Mc

and the scale Ml > Mc associated with the extra-dimensional Lorentz violating physics.

Since the theory is extra-dimensional in this energy range, this involves calculating the

loop contributions of higher KK graviton modes. In order to do this we make several

simplifying assumptions about the nature of the extra-dimensional Lorentz violation, which

we believe suffices for the purposes of establishing the order of magnitude of the extra-

dimensional result.

4.1 Ultraviolet divergences

In d spacetime dimensions the gravitational coupling has dimension κd ∼ M
1−d/2
d , where

Md is the d-dimensional Planck mass. On dimensional grounds we therefore expect the
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most divergent contribution to one-loop brane-particle dispersion relations to be

c2 − 1 ∼ κ2d Λd−2, b ∼ κ2d Λd−4 , (4.1)

where Λ is the ultraviolet cutoff scale.

As is usual within an effective theory, this indicates that the result is most sensitive to

the most energetic degrees of freedom in the problem, suggesting that calculations within

the full theory would produce results that are of order c2− 1 ∼ κ2dMd−2 and b ∼ κ2dMd−4,

where M might be the mass of a heavy particle which was integrated out to produce the

low-energy effective theory.

As we shall see, the above mass-dependence is roughly right, although some care is

required due to the appearance of power-law divergences [21]. Care is required because,

although the renormalization group ensures that the coefficient of large logarithms like

log(M) in observable quantities like c2 − 1 or b may be read off from the coefficients of log

divergences (like log(Λ)) within the effective theory, the same is not true for higher (power-

law) divergences. As a result in this section we ignore all power divergences, and compute

only the log-divergent parts of the results. If the results do not have log divergences (as

will be the case with an odd number of extra dimensions), then we compute only the finite

parts of the loops.

Neglecting the power divergences minimizes the Lorentz symmetry violation which is

seen by particles on the brane, and so leads to conservative conclusions. It corresponds

to considering the theory in which brane-bound particles respect Lorentz invariance at the

energy scale where the theory becomes 4 dimensional. We return in section 5 to the issue

of contributions which are proportional to positive powers of large mass scales, M , by

considering higher loops which explicitly involve more massive virtual particles. We shall

there see that naive power-counting estimates do correctly reproduce the M dependence

of the results, but miss important dimensionless loop factors.

In practice the finite and log-divergent terms are most easily obtained within dimen-

sional regularization, within which power-law divergences do not arise. We have computed

our results both using dimensional regularization and using an explicit ultraviolet cutoff,

however, and have verified that the answers obtained are the same in both cases.

4.2 Four-dimensional graviton

The Feynman rules for fermions and gravitons in the absence of Lorentz-violating effects

are standard, and are obtained by linearizing the Maxwell-Dirac-Einstein-Hilbert action in

curved space,

L = −√−g
[

1

2κ24
R+ ψ(/D +m)ψ +

1

4
Fµν F

µν

]

, (4.2)

about flat space: gµν = ηµν + 2κ4 hµν . As before κ4 denotes the rationalized Planck mass

in 4D: M4 ∼ 1018 GeV. hµν represents the canonically-normalized graviton field. A recent

statement of the resulting Feynman rules can be found in references [22, 23].

As we have argued in previous sections, we know that the only Lorentz-violating modi-

fication to these rules consists in replacing the Minkowski metric, ηµν , with the nonstandard
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metric, Gµν , when linearizing the first term in eq. (4.2) to obtain the graviton propagator.

In de Donder gauge this gives:

Gµν:αβ(Q) =
Pµν:αβ

GλρQλQρ − iε
, (4.3)

where

Pµν:αβ =
1

2
(GµαGνβ +Gµβ Gνα −Gµν Gαβ) , (4.4)

and ε — not to be confused with ε = cg − 1 — is the infinitesimal which ensures the

propagator satisfies Feynman boundary conditions. The fermion propagators and vertices

arise on the brane, and so use only the usual Minkowski metric.

4.2.1 The photon vacuum polarization

After Wick rotation, the one-loop Feynman graph in which a virtual graviton is emitted

and reabsorbed by the photon (figure 1) leads to the following expression for the photon

vacuum polarization:

Πµν =
(κ4
2

)2
∫

d4Q

(2π)4
Nµν

D
, (4.5)

where D = (P −Q)2 GαβQαQβ and

Nµν = V µλ:αβ(P, P −Q) Vλ
ν:σρ(P −Q,P ) Pαβ:σρ . (4.6)

Appendix A gives explicit expressions for the vertex functions, V αβ:µν(P,Q). In these

expressions all dependence on the metric Gµν is explicit, and the brane metric, ηµν , is to

be used to perform any implicit index contractions, such as in (P −Q)2.

Evaluating this expression (we used the programs FORM and MATHEMATICA to

perform the tensor contractions), Taylor expanding in powers of ε = cg− 1 and performing

the momentum integral gives the following expression for the coefficient function, A, of

eq. (3.1):

A(ω0, p) =
304

15
λ4 ε

2 p4 +O(ε3) , (4.7)

where λ4 = (κ4/8π)
2 L. Here L = log(Λ2/µ2) = 2/(4 − n), where the first equality

is evaluated using an ultraviolet cutoff, Λ, and the second regularizes by continuing the

spacetime dimension, n, away from 4. µ is an arbitrary scale. We ignore the finite part of

the integral relative to its log-divergent part.

Comparison with the general expressions provided earlier gives the following dispersion

coefficients:

c2γ − 1 = 0 , bγ = − 304

15
λ4 ε

2 . (4.8)

4.2.2 The fermion self-energy

We proceed in a similar way for the changes to the fermion self energy. Evaluating the

one-loop Feynman graph using the graviton propagator of eq. (4.3), and Wick-rotating to

Euclidean momenta, leads to the following expression for the fermion self energy:

Σ4 = −
(κ4
2

)2
∫

d4Q

(2π)4
N1

D
, (4.9)
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where

N1 =
1

2
Gµν γ

µ[−i(/P − /Q) +m]γνGαβ(2P −Q)α(2P −Q)β ,

D = GλρPλPρ [(P −Q)2 +m2] . (4.10)

Again all dependence on the metric Gµν is explicit, and the brane metric, ηµν , is used to

perform the implicit index contractions in (P − Q)2 and /P . To derive this we used the

simple vertex function (k1 + k2)µγν + (k1 + k2)νγµ of ref. [22] for the fermion-fermion-

graviton coupling rather than the more complicated one of [23], which includes an extra

term (i/k1 + i/k2 + 2m)ηµν . The neglect of this extra term is justified — even within loop

graphs — because it vanishes if the fermion field equations are used. This ensures that it is

an irrelevant operator, in the sense that it can be removed by performing a field redefinition

of the fermion of the form δψ ∝ hµµ ψ.
We have evaluated this integral to the lowest two orders in the small parameter ε =

cg−1, using the programs FORM/MATHEMATICA to keep track of the various 4-vectors

in the problem. We find the following results for the logarithmically-divergent part of the

coefficients A through E of eq. (3.8):

A4 = m3λ4

(

4 + 13ε+
33

2
ε2 + · · ·

)

,

B4 = m2λ4
(

4ε+ 10ε2 + · · ·
)

,

C4 =
mλ4
3

(

16ε+ 35ε2 + · · ·
)

,

D4 = λ4
(

6ε2 + · · ·
)

,

E4 = 0 + · · · , (4.11)

where as before λ4 = (κ4/8π)
2 L, with L = log(Λ2/µ2) = 2/(4 − n).

These imply the following contributions to the dispersion relation of eq. (3.9):

c2f − 1 = −
2m2

fλ4

3

[

28ε+ 65ε2 + · · ·
]

,

bf = −λ4
[

12ε2 + · · ·
]

. (4.12)

For the case of interest, ε > 0, we see that c2f < 1 corresponding to fermions propagating

slower than light. It follows that (for a given momentum, p) the fermion energy is depressed

compared to the photon energy for small p.

Notice that the coefficients bf and bγ both first arise at O(ε2), and so their sign (which

is negative for both) does not depend on the sign of ε. Furthermore, these terms satisfy

bf > bγ . These terms therefore act to raise the fermion energy relative to the photon, and

so act in the opposite direction of the effect of cf < cγ (when ε > 0).

4.3 Higher-dimensional gravitons

We may now estimate the contributions of the higher KK graviton modes to the propagation

of brane-based fermions. Rather than doing so by performing a sum over a tower of 4-D

KK states, we proceed by directly performing the loop graph using higher-dimensional

gravitons.
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The first step is to specify what the higher-dimensional metric is about which the

graviton fluctuation is to be considered. In principle this should be the metric which

describes the gravitational field of the object or objects in the bulk, whose presence gives

rise to the preferred frame which violates Lorentz invariance. Since the explicit form for

such metrics is rarely known, we proceed by a more approximate route.

Our approximation is based on the observation that higher-dimensional graviton loops

are ultraviolet sensitive, with their dominant contributions arising from the circulation of

very short-wavelength modes. So long as the wavelength of these modes is much shorter

than the radii of curvature of the background Lorentz-violating metric, it should be suf-

ficient to replace the background metric by one which is approximately flat, but Lorentz-

violating. In particular, this should be sufficiently accurate for our purposes of estimating

the order-of-magnitude of the resulting loop-generated contributions to fermion propaga-

tion on the brane.

Accordingly we imagine the higher-dimensional graviton to propagate about a flat met-

ric in which there is a preferred frame defined by an approximately constant d-vector, uµ.

Such a metric is again described by eq. (2.8), although with Gµν now being d-dimensional.

Linearizing the extra-dimensional Einstein-Hilbert action about this metric — gab =

Gab + 2κd hab — we find the following d-dimensional graviton propagator in de Donder

gauge:

Gµν:αβ =
(1/2) (GµαGνβ +Gµβ Gνα)− [1/(d − 2)] Gµν Gαβ

GλρPλPρ − iε
. (4.13)

Again ε in this expression is the infinitesimal which enforces Feynman boundary conditions.

The quantity κd is related to the d-dimensional Newton’s constant and Planck mass by

κ2d = 8πGd = (1/Md)
d−2. We take the fermions and photons to move on a 3-brane, for

which the induced metric is the usual Minkowski metric.

4.3.1 The photon vacuum polarization

Computing the photon vacuum polarization with this propagator gives no correction to

the photon dispersion relation at low energies, if the number of dimensions exceeds the

usual four. This can be understood purely in terms of dimensional analysis, and the fact

that we are computing only the finite or log-divergent contributions. The one-loop contri-

butions to the photon self-energy have two graviton vertices, so they are proportional to

κ2d =M
−(d−2)
d . Since the log-divergent and finite parts do not involve powers of the cutoff

Λ, the only quantity which can be used to make a dimensionally correct answer is the

photon momentum, p. Thus the result is proportional to κ2d p
d. This gives a p4 correction

to the dispersion relation, but only if d = 4. For d > 4 the correction always gives only

a higher than quartic power of p. (Section 5 discusses the physics of the power-divergent

contributions to c2γ − 1 and bγ .)

4.3.2 The fermion self-energy

Evaluating the one-loop fermion self-energy graph using the d-dimensional graviton prop-

agator of eq. (4.13), and Wick-rotating to Euclidean momenta, leads to the following ex-
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pression for the fermion self energy:

Σd = −
(κd
2

)2
∫

ddQ

(2π)d

(

N1 +N2

D

)

, (4.14)

where N1 is as given by eq. (4.10) and

N2 = Cd

{

[i(/P−/Q)+m]Gµν (2P−Q)µ(2P−Q)ν−2iGαβγ
α(2P−Q)βGλρ(P−Q)λ(2P−Q)ρ

}

,

(4.15)

with Cd = (d− 4)/[2(d − 2)].

Evaluating the integral in powers of ε = cg − 1 gives an ultraviolet divergent result.

We have evaluated the result using both dimensional regularization and an explicit cutoff,

and have verified that the coefficients of the logarithmically-divergent and pole terms are

the same in both cases. For odd dimensions the integrals are finite in dimensional regu-

larization, and we have verified that the result agrees with the finite part when evaluated

with an ultraviolet cutoff.

We are led in this way to the following expressions for the quantity c2f−1 for dimensions

d = 5 through 10. (We give the quantities A through E in appendix B.):

c2f−1 = m3
f λ5

[

110

9
ε+

239

9
ε2 + · · ·

]

, (d = 5)

= m4
f λ6

[

48

5
ε+

99

5
ε2 + · · ·

]

, (d = 6)

=−m5
f λ7

[

616

75
ε+

244

15
ε2 + · · ·

]

, (d = 7)

=−m6
f λ8

[

464

63
ε+

890

63
ε2 + · · ·

]

, (d = 8)

= m7
f λ9

[

333

49
ε+

1245

98
ε2+ · · ·

]

, (d = 9)

= m8
f λ10

[

115

18
ε+

421

36
ε2 + · · ·

]

, (d = 10) . (4.16)

Here the quantities λd are defined in terms of the couplings κd by:

λ5 =
κ25

(8π)2
, λ6 =

2κ26
(8π)3

L , λ7 =
κ27

6(4π)3
,

λ8 =
2κ28
(8π)4

L , λ9 =
κ29

15(4π)4
, λ10=

4κ210
3(8π)5

L . (4.17)

As before L = log(Λ2/µ2) when a cutoff is used, or L = 2/(d− n) in dimensional continu-

ation of n away from n = d.

Notice that the corrections to c2f which are implied in this way are not universal in

size for all fermions, being suppressed by powers of mf for lighter fermions.

The corresponding higher-order dispersion coefficient, bf , is similarly:

bf = mf λ5

[

26

3
ε2 + · · ·

]

, (d = 5)
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= m2
f λ6

[

36

5
ε2 + · · ·

]

, (d = 6)

= −m3
f λ7

[

32

5
ε2 + · · ·

]

, (d = 7)

= −m4
f λ8

[

124

21
ε2+ · · ·

]

, (d = 8)

= m5
f λ9

[

39

7
ε2 + · · ·

]

, (d = 9)

= m6
f λ10

[

16

3
ε2 + · · ·

]

, (d = 10) . (4.18)

Just as we saw for d = 4, bf always arises at second order in ε, and so its sign is completely

determined in our calculation. As we shall see, the best bound on this coefficient arises

when bf > bγ ≈ 0.

The above expressions were derived specifically with the scenario of large, flat extra

dimensions in mind. However we can also interpret at least the 5D result in terms of a

warped extra dimension. This has more interesting consequences than the flat case, where

the quantum gravity scale would have to exceed M5 & 108 GeV in order to comply with

sub-millimeter tests of gravity [24]. In the warped case, even ifM5 ∼Mp, the KK gravitons

couple to the TeV brane with TeV strength, and they have a mass gap of order TeV. In

this model, we live on a “TeV brane” at r = r1, displaced from the “Planck brane” at

r = r2 such that r1
r2
∼ 10−16 in accordance with solving the hierarchy problem. As far as

the contributions from the ultraviolet graviton loops are concerned, this looks like quantum

gravity with a scale of M5 ∼ TeV. The TeV mass gap protects low energy gravity from any

observable distortion, but not so the loop effects from momenta pÀ TeV.

5. Real-world complications

A further step is required before these results can be compared with the experimental limits

on the dispersion relations of real particles. This step involves identifying which low-energy

particles produce the largest contributions to any given dispersion relation.6

There are two reasons why this additional step is required. First, we would like to apply

the above calculations to protons, for which the experimental limits are the strongest.

Unfortunately, our calculations treat all fermions as elementary, and so can only apply

directly to the proton for scales below roughly mp ∼ 1 GeV. (Notice these low energies

may nonetheless be described by an extra-dimensional effective theory within ADD-type

scenarios.) For higher energies, we must apply our calculations to the constituent quarks

and gluons, and infer from these how the proton dispersion is affected. Unfortunately,

the resulting strong-interaction uncertainties prohibit us from following in more detail the

O(1) factors and signs of the results, limiting us to an order-of-magnitude analysis for the

proton.

The second reason for being careful in applying our results is the strong dependence

which they have on the relevant fermion masses. In particular, it may be that larger
6We thank M. Pospelov for making many very useful suggestions for this and the next sections.
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contributions are obtained for light particles (like electrons and photons) by embedding

the graviton-induced Lorentz-violating contributions of heavier particles (like top quarks)

within additional loops. This is how we will recover the larger contributions that might

have naively been obtained by keeping the power divergences of the graviton loop graphs.

5.1 Photons

Our result for the photon dispersion relation is particularly simple, with cγ = 1 for all d,

and bγ 6= 0 only for d = 4. This simplicity is largely due to our concentrating on the finite

and log-divergent contributions, however, which suggests that larger contributions may be

found at the (comparatively cheap) expense of introducing additional loops.

For instance, at two loops the photon vacuum polarization acquires contributions by

inserting a Lorentz-violating graviton self-energy within a charged-fermion loop (fig. 3).

Assuming all charged fermions to be brane-bound, and so 4-dimensional, we estimate the

following results for the photon: c2γ − 1 ∼ (α/(4π)) (c2f − 1), giving

c2γ − 1 ∼
( α

4π

)

(

ε

(4π)[d/2]

) (

mf

Md

)d−2

∼







1× 10−10
(

ε× 103
)

(TeV/M4)
2 (d = 4)

2× 10−11
(

ε× 103
)

(TeV/M5)
3 (d = 5)

3× 10−13
(

ε× 103
)

(TeV/M6)
4 (d = 6)

, (5.1)

where [d/2] denotes the integer part of d/2 and we use the heaviest known elementary

particle, the top quark (mt = 175 GeV), for numerical purposes. Although this is still

negligibly small for d = 4, we shall see that the d > 4 result can be large enough to provide

new constraints on ε if Md is not too far above the TeV range.

A similar contribution arises to bγ , although because of the weaker dependence on mf

the price of a loop factor, α/4π, is not worthwhile when d = 4, where the direct one-loop

result of eq. (4.8) is larger. We expect, then

bγM
2
4 = − 304

15

( ε

8π

)2
(d = 4)

= −3× 10−8
(

ε× 103
)2

(5.2)

in four dimensions, where the numerical result uses the conservative estimate log(Λ2/µ2)∼1.
For d > 4 we estimate the two-loop result by bγ ∼ (α/(4π)) bf , and so find:

bγM
2
d ∼

( α

4π

)

(

ε2

(4π)[d/2]

) (

mf

Md

)d−4

(d > 4)

∼
{

7× 10−13
(

ε× 103
)2

(TeV/M5) (d = 5)

1× 10−14
(

ε× 103
)2

(TeV/M6)
2 (d = 6)

, (5.3)

with mt being used for the fermion mass. The sign of bγ and c2γ − 1 are not determined by

these estimates (although they are certainly calculable within a more careful evaluation of

figure 3).
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γ γ

hµν
X

t

Figure 3: Two loop contribution to photon vacuum polarization from top quark and graviton.

X

ν

W

hµν

e e

Figure 4: Two-loop contribution to electron self-energy from W boson and graviton, which can

dominate over the one-loop graph with gravitons alone, figure 2.

5.2 Electrons

The next-cleanest application of the above analysis is to electrons, since so far as we know

these are elementary and so our earlier results may be directly applied. Again taking the

conservative estimate log(Λ2/µ2) ∼ 1, we find that the direct graviton-loop contribution

to the electron dispersion relation is

c2e − 1 ∼ ε

(4π)[d/2]

(

me

Md

)d−2

,

be ∼
ε2

(4π)[d/2]M2
d

(

me

Md

)d−4

, (5.4)

where d counts the number of spacetime dimensions seen by the graviton within the effective

theory at scales µ < Λ ∼ 1 TeV.

This should be compared with the result of inserting more massive particles into higher

loops. For instance, a loop with a W boson and neutrino, with the graviton coupling to

the W (figure 4) gives the alternative contribution

c2e − 1 ∼
(αw
4π

)

(

ε

(4π)[d/2]

) (

mw

Md

)d−2

∼







1× 10−10
(

ε× 103
)

(TeV/M4)
2 (d = 4)

3× 10−12
(

ε× 103
)

(TeV/M5)
3 (d = 5)

6× 10−14
(

ε× 103
)

(TeV/M6)
4 (d = 6)

, (5.5)

usingmw = 80 GeV, and log(Λ2/µ2) = 1. This last contribution (for d ≥ 4) is always larger

than the direct one, eq. (5.4), because (me/mw)
d−2 ∼ (6×10−6)d−2 ¿ (αw/4π) ∼ 3×10−3.

The higher-loop result can also provide a larger estimate for be, to wit:

beM
2
d ∼

(αw
4π

)

(

ε2

(4π)[d/2]

)(

mw

Md

)d−4

(d ≥ 5)
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∼
{

4× 10−13
(

ε× 103
)2

(TeV/M5) (d = 5)

9× 10−15
(

ε× 103
)2

(TeV/M6)
2 (d = 6)

. (5.6)

This dominates the direct one-loop result for all d ≥ 5, because (me/mw)
d−4 ∼ (6 ×

10−6)d−4 ¿ (αw/4π) ∼ 3× 10−3.

When d = 4 the direct one-loop result wins, for which the results of the previous

section give

beM
2
4 = −12

( ε

8π

)2
(d = 4)

= −2× 10−8
(

ε× 103
)2
. (5.7)

5.3 Protons

The direct calculation of section 3 applies directly for the proton only within the effective

theory below a GeV, because it is only within this theory that the proton may be considered

to be elementary. For higher scales the relevant degrees of freedom are quarks and gluons,

for which we must estimate the size of Lorentz-violating effects.

The Lorentz-violating gluon and quark contributions may be estimated using our pho-

ton and electron results, eqs. (5.1) and (5.5), giving:

c2g − 1 ∼
(αs
4π

)

(

ε

(4π)[d/2]

) (

mt

Md

)d−2

c2q − 1 ∼
(αw
4π

)

(

ε

(4π)[d/2]

) (

mw

Md

)d−2

, (5.8)

where αs is the QCD coupling, which we take to be 0.119. From this we estimate the

proton result to be

c2p − 1 ∼ Max(c2g − 1, c2q − 1)

∼
(αs
4π

)

(

ε

(4π)[d/2]

) (

mt

Md

)d−2

∼







2× 10−9
(

ε× 103
)

(TeV/M4)
2 (d = 4)

3× 10−10
(

ε× 103
)

(TeV/M5)
3 (d = 5)

4× 10−12
(

ε× 103
)

(TeV/M6)
4 (d = 6).

(5.9)

The loop contributions to bp can also dominate for large numbers of dimensions, but

not for d = 4. We have the higher-loop contribution

bpM
2
d ∼

(αs
4π

)

(

ε2

(4π)[d/2]

) (

mf

Md

)d−4

(d ≥ 5)

∼
{

1× 10−11
(

ε× 103
)2

(TeV/M5) (d = 5)

1× 10−13
(

ε× 103
)2

(TeV/M6)
2 (d = 6)

, (5.10)

when mf = mt.
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By contrast, for d = 4 it is the direct one-loop result which dominates. In this case we

have a result for fermions which is largely insensitive to the fermion mass:

bfM
2
4 = −12

( ε

8π

)2
(d = 4)

= −2× 10−8
(

ε× 103
)2
. (5.11)

For low-energy gravitons in the effective theory below the proton mass, the proton may be

considered to be elementary and eq. (5.11) can be directly applied to the proton itself.

For higher-energy gravitons, eq. (5.11) would instead be applied to the light quarks,

and the result for the proton would be obtained by taking the matrix element for the

resulting effective quark operator, such as Oeff = ε2 uµuνuαuβ qγµ∂ν∂α∂β q, within the

proton. On dimensional grounds this would produce the same result as eq. (5.11), but

potentially with a different numerical coefficient. For concreteness, when comparing with

the observables we use eq. (5.11) including the numerical factor obtained for an elementary

proton.

Notice that the above estimates suggest that so long as higher-loop contributions dom-

inate, a hierarchy is to be expected: |c2p − 1| À |c2γ − 1| ∼ |c2e − 1|. The same would not be

expected to apply for |bp|, |bγ | and |be| when d = 4, however.

6. Experimental constraints

We now turn to the experimental constraints which can be imposed on the quantities c2−1

and b. Because we are interested in order-of-magnitude bounds, we derive constraints on

each of these quantities as if they had arisen in the absence of the other. That is, we

consider bounds on c2 − 1 while taking b = 0 and vice versa. This is justified unless

there is an unnatural cancellation between the contributions of these quantities to physical

observables.

6.1 Existing bounds on c2f − c2γ
Good bounds exist on a difference between the propagation speeds of fermions and photons.

Among those which do not depend on the sign of cf − cγ are [9]:

|cf − cγ | < 6× 10−22 Atomic spectroscopy

|c′ − c|µe < 4× 10−21 µ→ eγ

|cKL − cKS | < 3× 10−21 K −K oscillations . (6.1)

In the second bound c′ denotes a particular combination of the Lorentz-violating couplings

in flavor space, whose details are not important in what follows.

Although these bounds apply to both signs of c2− c2γ , they are also subject to specific

assumptions which need not apply to our calculation. For instance the µ → eγ bound

assumes the existence of Lorentz-violating terms which also violate lepton number, while

the bounds involving neutral kaons require strangeness violation in addition to Lorentz-

violation. Since the loops which would produce both type of flavor-symmetry violations

from Lorentz-violation in the graviton sector are further suppressed by masses and mixing

angles, we do not consider these bounds further.
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The bounds from atomic spectroscopy are usually derived under the assumption that

all matter particles share the same maximum propagation speed which differs from that of

the photon — i.e., cf 6= cγ is independent of f . Nevertheless these bounds are likely also

to apply if cf differs for electrons and nucleons. Although we use the bound of ref. [9] in

what follows, we regard a more careful analysis of constraints which are implied by these

experiments to be worth pursuing.

If we apply these bounds directly to protons, we find |c2p − c2γ | < 6× 10−22. Using our

previous estimates for the proton, eq. (5.9), and our expectation (see above) that c2p differs

from unity by more than does c2γ , we find comparison with the bound implies,

ε <

(

4π

αs

)

(4π)[d/2]
(

Md

mt

)d−2

10−21 . (6.2)

This is stronger than the direct bound ε < 10−67 only if

Md

TeV
< 0.2

[

1013

(4π)[d/2]

]1/(d−2)

∼







3× 104 (d = 4)

700 (d = 5)

46 (d = 6)

. (6.3)

The bound so obtained is not useful for d = 4. With extra dimensional gravitons the bound

becomes useful only when Md is very small. It is only of borderline interest for the ADD

scenario, for which d = 6 but M6 > 50 TeV is required from stellar-cooling bounds [25].

(We do not quote here the stronger limits coming from the non-observance of gamma-ray

decay products [26], or which apply for supersymmetric models [27], because these may be

evaded depending on model-dependent details.)

The bound is competitive, however, for the warped 5D model described below eq.

(4.18), where M5 is effectively the TeV scale.

6.2 Čerenkov bounds on bf and c2f − 1

We next consider constraints from high-energy cosmic rays, typically protons or photons.

Their observation precludes the existence of processes which would too-efficiently deplete

the energy of these particles. Since the particles involved are at higher energies, these

processes are more sensitive to the higher-momentum coefficients, bf , bγ , than are low-

energy laboratory limits.

Lorentz-violation can introduce dangerous processes by allowing decays in vacuum

of the form p → pγ or γ → e+e− or γ → pp. Such decays are precluded by energy

and momentum conservation in Lorentz-invariant systems, but are allowed given Lorentz-

violating dispersion relations. For instance, the process p → pγ becomes allowed if the

dispersion relation raises the energy of the proton at a given momentum more than it does

for the photon. Similarly, the process γ → e+e− can occur if the photon energy is raised

more than the electron’s at a given momentum.

As applied to changes in the maximum propagation speed, the resulting bounds are

therefore one-sided, in the sense that they are only relevant for one sign of cp−cγ or cγ−ce.
7Using the weaker bound ε < 10−3 makes the limits for Md larger by a factor of 10

3/(d−2).
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For protons the strong one-sided bound obtained from p→ pγ requires cp > cγ . Similarly,

for γ → e+e− or γ → pp, ce < cγ and cp < cγ are required to use the one-sided bound.

Keeping in mind that our estimates of the previous sections imply |δc2p| À |δc2γ | ∼ |δc2e |,
we find the limits obtained in this way for electrons and protons are

−2× 10−8 < c2p − c2γ ∼ c2p − 1 < 2× 10−23

c2e − c2γ > −6× 10−15 . (6.4)

In order of magnitude, these bounds are obtained by demanding that |c2f − c2γ | < m2
f/E

2

where mf is the relevant fermion mass, E is the energy of the observed cosmic ray, and the

bound only applies to the appropriate sign of c2f − c2γ . The bound from γ → ff is weaker

than that from p → pγ because the most energetic cosmic ray proton has E ∼ 108 TeV,

while the most energetic observed gamma ray has E ∼ 50 TeV.

A similar bound also applies to the parameter bf , which controls the dispersive part

of the dispersion relation, eq. (3.9). For p→ pγ the bound then applies only if bp > bγ and

for γ → ff it requires bf < bγ . When the bound applies, it is of order |bf − bγ | < m2
f/E

4.

We find in this way the constraints

−(5× 108 GeV)−2 < bp − bγ < (3× 1022 GeV)−2

be − bγ > −(1× 1012 GeV)−2. (6.5)

6.2.1 bp > bγ

Consider first the case bp > bγ , for which the best bound applies. For d > 4 we compare

this to the order-of-magnitude of the higher-loop results, with the resulting expectation

|bp| À |bγ |. Using eq. (5.10) for bp, as discussed in the previous section, and assuming the

sign of the result is the one relevant for the bound’s applicability, we obtain the limit

ε <

[

(4π)[(d+2)/2]

αs

(

Md

mt

)(d−4)
]1/2

(

Md

3× 1022 GeV

)

. (6.6)

This is an improvement over ε < 10−6 if

Md

TeV
<

[

3× 1013 (0.175)(d−4)/2
√

αs
(4π)[d/2]+1

]2/(d−2)

<



































2× 107 (d = 5)

9× 104 (d = 6)

6× 104 (d = 7)

800 (d = 8)

300 (d = 9)

70 (d = 10) .

(6.7)

(An improvement on the bound ε < 10−3 is obtained forMd which can be a factor 106/(d−2)

larger.) We see the bound can be competitive for all d, provided Md is in the lower end

of its allowed range. It is particularly strong for the ADD (d = 6) and warped RS (d = 5)

cases, for which Md is in the TeV range.
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To apply the bound to d = 4 we instead use the one-loop result, for which the numerical

factors and sign are known from our previous calculation (provided that the high-energy

quark contribution does not dominate that for the low-energy proton, as discussed above).

Although bp which is obtained is negative, the bound nonetheless applies because for d = 4

we know that bγ is also negative, with bf > bγ (c.f. eqs. (5.2) and (5.11)).8 We find

bp − bγ = 10−8
(ε× 103)2

M2
4

< (3× 1022 GeV)−2 (6.8)

which, using M4 = 2 × 1018 GeV, implies ε < 7 × 10−4 — a result which is competitive

with the terrestrial bound, ε < 10−3, when ε > 0, but is not as good as the bound ε . 10−6

obtained from the conservation of angular momentum of the sun (see the footnote 5).

6.2.2 bp < bγ

If bp < bγ , then the best bound comes from the process γ → pp, which does not give a

bound even as good as ε < 10−3 for any d given the constraint Md > 1 TeV.

6.3 be < bγ

The bound when be < bγ is not strong enough to be interesting for d = 4, so we consider

only higher dimensions. Since the order-of-magnitude result for the electron has |be| ∼ |bγ |
we have

bγ ∼
ε2

(4π)[d/2]M2
d

(

mt

Md

)d−4
( α

4π

)

, (6.9)

and so, if bγ − be > 0 the bound becomes:

ε <

[

(4π)[d/2]+1

α

(

Md

mt

)(d−4)
]1/2

(

Md

1012 GeV

)

. (6.10)

For Md > 1 TeV this is never better than ε < 10−6, but it represents progress relative to

ε < 10−3 if

Md

TeV
<

[

106 (0.175)(d−4)/2
√

α

(4π)[d/2]+1

]2/(d−2)

=

{

90 (d = 5)

10 (d = 6)
, (6.11)

which is only of interest for 5D warped scenarios.

8In fact, at the energies under consideration the graviton should resolve the proton as a number of

partons, each carrying a small momentum fraction x ¿ 1. Since the importance of the dispersive term

grows with momentum as p2, there will be a suppression ∼ x2
av. Hence, compared to the photon, the

effective b for the proton may be close to zero.
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6.4 Direct bounds on bγ

The observation of cosmologically distant gamma rays from gamma-ray bursters can pro-

vide a bound on |bγ | which is similar in strength to the one just obtained, but applies

equally well to both signs of the result. Ref. [28] argues that the absence of dispersion in

these signals provides a sensitivity to changes in the photon dispersion which can be as

small as

|bγ | < (9× 1011 GeV)−2 , (6.12)

which would correspond to

ε <

[

(4π)[d/2]+1

α

(

Md

mt

)(d−4)
]1/2

(

Md

1011 GeV

)

. (6.13)

This is better than ε < 10−3 provided

Md

TeV
<

[

105 (0.175)(d−4)/2
√

α

(4π)[d/2]+1

]2/(d−2)

=

{

20 (d = 5)

3 (d = 6)
(6.14)

which is comparable in strength to what was found above.

7. Conclusions

Brane-world scenarios allow the possibility of potentially strong preferred-frame effects

arising from extra-dimensional bulk physics, and suggest these effects may be limited to

the graviton sector. Depending on their sign, the magnitude of such changes to graviton

dispersion can be comparatively large because of the graviton’s extremely weak interactions.

Motivated by this observation, we have explored how gravitational Lorentz-violation in

a brane-world picture influences the properties of observable particles. We obtain the

following results:

1. We analyze how Lorentz violation in extra dimensions arises within the low-energy

four-dimensional field theory which is obtained once the extra dimensions are inte-

grated out. We find the leading contributions to be the appearance of potentially

different metrics in the kinetic terms which govern the propagation of the various

low-energy particles. If preferred-frame effects dominate violations of translation or

rotation invariance (in the preferred frame) then in flat space the metric seen by

particle type ‘k’ may be written

Gµν = ηµν + (1− c2k)uµuν , (7.1)

where uµ is the (approximately constant) 4-velocity which defines the preferred frame.

ck may be interpreted as the maximum propagation speed of this particle type.
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2. If subleading contributions at low energies are also included, then more complicated

changes to the dispersion relation become possible. For low momenta these dispersion

relations become E2
k = p2c2k + bkp

4 + . . . in the preferred frame. The next-to-leading

coefficient bk causes dispersive propagation if it is nonzero. (Odd powers of p, like

p3, typically do not arise in the dispersion relation since they are usually forbidden

by selection rules like rotation invariance in the preferred frame.)

3. Strong observational constraints exist which preclude large differences between the

values ck and bk for photons and other particles. The strongest of these come from

the absence of a dependence on the Earth’s velocity through space in atomic spectra,

and from the absence of Čerenkov-like decays of very-high-energy cosmic rays.

4. We compute how graviton loops can bring the news of Lorentz violation in the gravi-

ton sector to other particles for which stronger constraints exist. We do so quite

generally at low energies for the purely massless 4D graviton (the lowest KK mode).

We also compute these loops for the entire KK tower of gravitons, in the approxi-

mation that the dominant contribution comes from gravitons whose wavelengths are

much shorter than are the typical curvature scales of the extra-dimensional metric.

5. We find that one-loop contributions for photons from graviton-induced Lorentz vio-

lation are small. Keeping the finite and log-divergent parts, we find gravitons do not

induce any change at all in the photon maximum propagation speed, cγ . The purely

4D graviton induces a dispersive term, bγ ∼ (cg − 1)2/M2
p . The contribution of the

rest of the KK graviton tower to the photon energy tends to be suppressed by further

powers of the photon momenta, and so is not important at low energies. Unfortu-

nately this makes the strong constraints on photon properties based on gamma-ray

bursts and dispersion in quasar signals [28] largely irrelevant to this kind of Lorentz

violation.

6. Using the same approximations, we find fermions acquire changes to their low-energy

dispersion relations with an amount which varies strongly with the fermion’s mass.

Among the three most abundant particles in everyday life — electrons, protons and

photons — this predicts by far the biggest effects for protons. Contributions to ck−1

are linear in cg − 1 (if cg is the graviton maximum speed) while those to bk are

quadratic in cg − 1.

7. The strong mass dependence makes the results very sensitive to the high-energy

spectrum of the theory, since heavy particles embedded in higher loops can produce

larger contributions to low-energy Lorentz-violating effects than do the direct graviton

loops. An estimate of this effect using the top quark orW -boson as the heavy particle

suggests that protons receive larger contributions than do photons or electrons.

8. We find that current atomic constraints on ck−1 for observable particles can provide

limits on cg−1 which are competitive with the direct bound cg−1 . 10−6 arising from

post-newtonian corrections in the solar system, but only if d = 5 or 6 and if the higher-

dimensional Planck mass,Md, is as close as possible to the TeV scale. For instance, for
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a warped d = 5 model with M5 ∼ 10 TeV, we find |cg − 1| < 3 × 10−15 (M5/TeV)3.

For cg > 1 this is an improvement over the direct bound cg − 1 < 10−6 provided

M5 < 700 TeV.

9. We find that stronger constraints on cg−1 arise from limits on bk− bγ , depending on

the dimension of the extra-dimensional spacetime, and on how low the d-dimensional

Planck scale, Md, is. Lower values of Md lead to better bounds, which can go up

to values of order Md ∼ 107 TeV (for d = 5), provided that bp > bγ . The sign

of this quantity is important, because the bounds which are most constraining are

those which are based on the absence of too-efficient energy-loss mechanisms for the

highest energy cosmic rays (which we take to be protons), and the decay channel

p → pγ is only open if bp > bγ . Strikingly, purely 4-dimensional graviton loops can

give contributions with the right sign, and which are large enough to produce bounds

which are of order ε < 7 × 10−4. This makes them comparable with those from

obtained from terrestrial experiments and the binary pulsar.

Perhaps our most surprising result is that, in some regimes, graviton loops are already

being constrained by observational data. This is yet another striking way in which the

brane-world picture can run against pre-brane-world intuition.
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A. Graviton-photon vertex

In this appendix we record the expressions for the Feynman rule for the photon-graviton

vertex, as obtained from the Einstein-Maxwell action, eq. (4.2). One finds:

V αβ:µν(P,Q) = (P µQν + P νQµ)ηαβ+(P βQα − P ·Qηαβ)ηµν−(P µQα−P ·Qηµα)ηνβ−
−(P βQµ − P ·Qηµβ)ηνα − P νQαηµβ − P βQνηµα , (A.1)

which has the required symmetry properties:

V αβ:µν(P,Q) = V αβ:νµ(P,Q) = V βα:µν(Q,P ) . (A.2)

B. Fermion self-energy results

We here record in more detail the results of the fermion self-energy calculation, using a

graviton loop in d dimensions.
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B.1 d = 5

For five spacetime dimensions evaluation of the graviton loop gives

A5 = −m4λ5

(

25

9
+

74

9
ε+

85

9
ε2 + · · ·

)

,

B5 = −m3λ5

(

35

18
ε+

839

180
ε2 + · · ·

)

,

C5 = −m2λ5

(

25

6
ε+

517

60
ε2 + · · ·

)

,

D5 = −mλ5
(

101

30
ε2 + · · ·

)

,

E5 = −λ5
(

29

30
ε2 + · · ·

)

, (B.1)

where λ5 = (κ5/8π)
2. The result is finite in dimensional regularization because one-

loop results in odd dimensions always are with this regularization scheme. This result

agrees with the finite part as computed by directly cutting off the momentum integrals

and ignoring the divergent terms (none of which are logarithmically divergent).

These lead to the dispersion relation of eq. (3.9):

c2f − 1 = m3
fλ5

[

110

9
ε+

239

9
ε2 + · · ·

]

,

bf = mf λ5

[

26

3
ε2 + · · ·

]

. (B.2)

Notice that both of these results are positive (provided ε > 0).

B.2 d = 6

For six spacetime dimensions the graviton loop gives

A6 = −m5λ6

(

9

4
+

25

4
ε+

53

8
ε2 + · · ·

)

,

B6 = −m4λ6

(

6

5
ε+

83

30
ε2 + · · ·

)

,

C6 = −m3λ6

(

18

5
ε+

107

15
ε2 + · · ·

)

,

D6 = −m2λ6

(

34

15
ε2 + · · ·

)

,

E6 = −mλ6
(

4

3
ε2 + · · ·

)

, (B.3)

where λ6 = 2κ26/(8π)
3 L. As before L = log(Λ2/µ2) = 2/(6 − n), when evaluated with an

ultraviolet cutoff, Λ, and in dimensional regularization.
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These lead to the d = 6 results:

c2f − 1 = m4
f λ6

[

48

5
ε+

99

5
ε2 + · · ·

]

,

bf = m2
f λ6

[

36

5
ε2 + · · ·

]

. (B.4)

Again both results are positive for ε > 0.

B.3 d = 7

Next, seven spacetime dimensions:

A7 = m6λ7

(

49

25
+

26

5
ε+

129

25
ε2 + · · ·

)

,

B7 = m5λ7

(

21

25
ε+

131

70
ε2 + · · ·

)

,

C7 = m4λ7

(

49

15
ε+

263

42
ε2 + · · ·

)

,

D7 = m3λ7

(

59

35
ε2 + · · ·

)

,

E7 = m2λ7

(

53

35
ε2 + · · ·

)

, (B.5)

where λ7 = κ27/[6(4π)
3], and is finite when evaluated in dimensional regularization.

These lead to the d = 7 results:

c2f − 1 = −m5
f λ7

[

616

75
ε+

244

15
ε2 + · · ·

]

,

bf = −m3
f λ7

[

32

5
ε2 + · · ·

]

. (B.6)

Here both results are negative for ε > 0.

B.4 d = 8

For eight spacetime dimensions we have

A8 = m7λ8

(

16

9
+

41

9
ε+

77

18
ε2 + · · ·

)

,

B8 = m6λ8

(

40

63
ε+

173

126
ε2 + · · ·

)

,

C8 = m5λ8

(

64

21
ε+

239

42
ε2 + · · ·

)

,

D8 = m4λ8

(

4

3
ε2 + · · ·

)

,

E8 = m3λ8

(

34

21
ε2 + · · ·

)

, (B.7)
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where λ8 = 2κ28/(8π)
4 L. As before L = log(Λ2/µ2) = 2/(8 − n), when evaluated with an

ultraviolet cutoff, Λ, and in dimensional regularization.

These lead to the d = 8 results:

c2f − 1 = −m6
f λ8

[

464

63
ε+

890

63
ε2 + · · ·

]

,

bf = −m4
f λ8

[

124

21
ε2 + · · ·

]

. (B.8)

Here both results are negative for ε > 0.

B.5 d = 9

For d = 9 we have

A9 = −m8λ9

(

81

49
+

202

49
ε+

181

49
ε2 + · · ·

)

,

B9 = −m7λ9

(

99

196
ε+

3755

3528
ε2 + · · ·

)

,

C9 = −m6λ9

(

81

28
ε+

2665

504
ε2 + · · ·

)

,

D9 = −m5λ9

(

277

252
ε2 + · · ·

)

,

E9 = −m4λ9

(

425

252
ε2 + · · ·

)

, (B.9)

where λ9 = κ29/[15(4π)
4].

These lead to the results:

c2f − 1 = m7
f λ9

[

333

49
ε+

1245

98
ε2 + · · ·

]

,

bf = m5
f λ9

[

39

7
ε2 + · · ·

]

. (B.10)

Here both results are positive for ε > 0.

B.6 d = 10

Finally, for ten spacetime dimensions:

A10 = −m9λ10

(

25

16
+

61

16
ε+

105

32
ε2 + · · ·

)

,

B10 = −m8λ10

(

5

12
ε+

103

120
ε2 + · · ·

)

,

C10 = −m7λ10

(

25

9
ε+

449

90
ε2 + · · ·

)

,

D10 = −m6λ10

(

14

15
ε2 + · · ·

)

,

E10 = −m5λ10

(

26

15
ε2 + · · ·

)

, (B.11)
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where λ10 = 4κ210/[3(8π)
5]L, and L = log(Λ2/µ2) = 2/(10 − n), when evaluated with an

ultraviolet cutoff, Λ, and in dimensional regularization.

These lead to the d = 10 results:

c2f − 1 = m8
f λ10

[

115

18
ε+

421

36
ε2 + · · ·

]

,

bf = m6
f λ10

[

16

3
ε2 + · · ·

]

(B.12)

ε > 0 ensures that both results in this case are positive.
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