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1. Introduction and results

It is plausible that at very small scales space-time coordinates are to be replaced by some

non-commutative structure. In order to realize this idea it is necessary to merge the

framework of gauge field theory with the concepts of non-commutative geometry [1, 2, 3].

The dynamics of non-abelian gauge fields involves field configurations not accessible

by perturbation theory of which instantons are the most prominent (in euclidean space-

time). In order to describe the non-perturbative structure of non-commutative gauge the-

ory, it is therefore mandatory to construct the non-commutative deformation of instanton

configurations.

The first examples of non-commutative instantons were given by Nekrasov and Schwarz

[4] who modified the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction [5] to resolve

the singularities of instanton moduli space (due to zero-size instantons). Furthermore,

they showed that on non-commutative R4 non-singular instantons exist even for the U(1)

gauge group. This exemplifies the observation that noncommutativity of the coordinates

eliminates singular behavior of field configurations. Since then, numerous papers have

been devoted to this subject [6]–[23], mostly employing the modified ADHM construction

on non-commutative euclidean space-time. Other related works have appeared in [24]–[38].

In the present paper we focus on the non-commutative generalization of ’t Hooft’s

multi-instanton configurations for the U(2) gauge group. Nekrasov and Schwarz [4] pro-

posed to keep the form of the ’t Hooft solutions of the (commutative) self-duality equations

but simply impose noncommutativity on the coordinates. This naive non-commutative

’t Hooft configuration suffers from a problem, however. As was discovered by Correa et

al. [18] for the spherically-symmetric one-instanton configuration, the Yang-Mills field fails

to be self-dual everywhere. Technically, the deficiency originates from the appearance of a
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source term in the equation for the scalar field φ in the Corrigan-Fairlie-’t Hooft-Wilczek

(CFtHW) ansatz. Here, we generalize the result of [18] to the naive non-commutative

multi -instanton configurations by deriving their source terms and discuss the singular na-

ture of the ansatz. For comparison, we outline the ADHM derivation of the field strength

in appendix A.

In the commutative case, in contrast, such source terms are absent because the singu-

larities of 2φ are cancelled by the zeros of φ−1. Yet, singularities are present in the gauge

potential. However, it is well known how to remove such singularities by a singular gauge

transformation, producing for example the Belavin-Polyakov-Schwarz-Tyupkin (BPST) in-

stanton. Therefore, one may wonder if a non-commutative analogue exists which removes

the source terms, thus yielding a completely regular non-commutative multi-instanton

whose field strength is self-dual everywhere.

In the present paper, we answer this question in the affirmative. We easily adapt the

twistor approach (which in fact underlies the ADHM scheme [5]) to the non-commutative

situation, by promoting functions to operators acting on a harmonic-oscillator Fock space.

Employing the simplest Atiyah-Ward ansatz for the matrix-valued function of the associ-

ated Riemann-Hilbert problem, we straightforwardly derive the non-commutative general-

ization of the CFtHW ansatz.

The shortcoming described above is remedied by projecting the naive non-commutative

’t Hooft multi-instanton field strength to the source-free subspace of the Fock space and

then applying to it a particular Murray-von Neumann (MvN) transformation. Such a trans-

formation is not unitary but generalizes the known commutative singular gauge transfor-

mation and removes the troublesome source term.1 The gauge potential producing the pro-

jected ’t Hooft multi-instanton gauge field cannot be obtained by the standard projection

since projecting does not commute with calculating the field strength. The projected config-

uration may be termed the non-commutative ’t Hooft instanton in a singular gauge, but its

gauge potential turns out to be given only implicitly. Nevertheless, after the MvN trans-

formation (on the projected field configuration) we obtain the correct non-commutative

’t Hooft n-instanton, which contains all known explicit solutions as special cases.

2. Instantons from the twistor approach

Definitions and notation. We consider the euclidean space R4 with the metric δµν , a

gauge potential A = Aµdx
µ and the Yang-Mills field F = dA + A ∧ A with components

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], where ∂µ := ∂/∂xµ and µ, ν, . . . = 1, 2, 3, 4. The fields Aµ

and Fµν take values in the Lie algebra u(2).

The self-dual Yang-Mills (SDYM) equations have the form:

∗ F = F =⇒ 1

2
εµνρσFρσ = Fµν , (2.1)

where ∗ denotes the Hodge star operator and εµνρσ is the completely antisymmetric ten-

sor in R4, with ε1234 = 1. Solutions of (2.1) having finite Yang-Mills action are called
1For the one-instanton configuration such a transformation was considered by Furuuchi [9] in the ADHM

approach.
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instantons. Their action

S = − 1

g2

∫

tr F ∧ ∗F (2.2)

equals 8π2/g2 times an integer which is the topological charge

Q = − 1

8π2

∫

tr F ∧ F . (2.3)

By “tr” we denote the trace over the u(2) gauge algebra and by g the Yang-Mills coupling

constant hidden in the definition of the Lie algebra components of the fields A and F .

If we introduce complex coordinates

y = x1 + ix2 , z = x3 − ix4 , ȳ = x1 − ix2 , z̄ = x3 + ix4 (2.4)

and put

Ay =
1

2
(A1 − iA2) , Az =

1

2
(A3 + iA4) ,

Aȳ =
1

2
(A1 + iA2) , Az̄ =

1

2
(A3 − iA4) , (2.5)

then the SDYM equations (2.1) will read

[Dy, Dz] = 0 , [Dȳ, Dz̄] = 0 , [Dy, Dȳ] + [Dz, Dz̄] = 0 , (2.6)

where Dµ := ∂µ + Aµ. These equations can be obtained as the compatibility condition of

the following linear system of equations:

(Dȳ − λDz)ψ(x, λ) = 0 and (Dz̄ + λDy)ψ(x, λ) = 0 , (2.7)

where the 2× 2 matrix ψ depends on (y, ȳ, z, z̄, λ) but not on λ̄. The “spectral parameter”

λ lies in the extended complex plane CP 1 = C ∪ {∞}.

Twistors and transition functions. In fact, the function ψ in (2.7) is defined on the

twistor space P = R4 × CP 1 for the space R4 [39, 40]. The sphere S2, considered as the

complex projective line CP 1, can be covered by two coordinate patches U+ and U− with

CP 1 = U+ ∪ U− , U+ = CP 1 \ {∞} , U− = CP 1 \ {0} , (2.8)

and coordinates λ and λ̃ on U+ and U−, respectively. Therefore, also P can be covered by

two coordinate patches,

P = U+ ∪ U− , U+ = R4 × U+ , U− = R4 × U− , (2.9)

with complex coordinates

w1 = y − λz̄ , w2 = z + λȳ , w3 = λ , and

w̃1 = λ̃y − z̄ , w̃2 = λ̃z + ȳ , w̃3 = λ̃ (2.10)
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on U+ and U−, respectively. On the intersection U+ ∩ U− ' R4 ×C∗ these coordinates are

related by

w̃1 =
w1

w3
, w̃2 =

w2

w3
, and w̃3 =

1

w3
. (2.11)

On the open set U+ ∩ U− one may use any of them, and we will use w1, w2, and w3=λ.

There exist two matrix-valued solutions ψ+(x, λ) and ψ−(x, λ) of (2.7) which are de-

fined on U+ and U−, respectively. Finding them, one can introduce the matrix-valued

function

f+− := ψ−1+ ψ− (2.12)

defined on the open set U+ ∩ U− ⊂ P. From (2.7) it follows that f+− depends on the

complex coordinates w1, w2, and λ holomorphically,

(∂ ȳ − λ∂z)f+− = 0 , and (∂ z̄ + λ∂y)f+− = 0 =⇒ f+− = f+−(w1, w2, λ) . (2.13)

Any such function defines a holomorphic bundle over P. Namely, f+− can be identified

with a transition function in a holomorphic bundle over P, and a pair of functions ψ±
defines a smooth trivialization of this bundle.

Gauge equivalence and reality conditions. It is easy to see that gauge transforma-

tions

Aµ 7−→ Ag
µ = g−1Aµ g + g−1∂µ g (2.14)

are induced by the transformations

ψ+ 7−→ ψg+ = g−1ψ+ and ψ− 7−→ ψg− = g−1ψ− , (2.15)

where g=g(x) is an arbitrary U(2)-valued function on R4. The transition function f+− =

ψ−1+ ψ− is invariant under these transformations. On the other hand, the gauge potential

A is inert under the transformations

ψ+ 7−→ ψ+ h
−1
+ and ψ− 7−→ ψ− h

−1
− , (2.16)

where h+=h+(w1, w2, λ) and h−=h−(w̃1, w̃2, λ̃) are arbitrary matrix-valued holomorphic

functions on U+ and U−, respectively.
The reality of the gauge fields is an important issue [39, 40]. The antihermiticity

conditions A†µ = −Aµ for components of the gauge potential imply the following “reality”

conditions for the matrices ψ± and f+−:

ψ†+(x,−λ̄−1) = ψ−1− (x, λ) and f †+−(x,−λ̄−1) = f+−(x, λ) . (2.17)

Splitting of transition functions. Consider now the inverse situation. Let us have a

holomorphic matrix-valued function f+− on the open subset U+ ∩ U− of the twistor space

P. Suppose we are able to split f+−, i.e. for each fixed x ∈ R4 find matrix-valued functions

ψ±(x, λ) such that f+− = ψ−1+ ψ− on U+∩U− and the functions ψ+ and ψ− can be extended
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continuously to functions regular on U+ and U−, respectively. From the holomorphicity of

f+− it then follows that

ψ+(∂ ȳ − λ∂z)ψ−1+ = ψ−(∂ ȳ − λ∂z)ψ−1− and

ψ+(∂ z̄ + λ∂y)ψ
−1
+ = ψ−(∂ z̄ + λ∂y)ψ

−1
− . (2.18)

Recall that the matrix-valued functions ψ+ and ψ− are regular on their respective

domains, so that we may expand them into power series in λ and λ−1, respectively, ψ± =
∑

n≥0 λ
±nψ±,n(x). Upon substituting into (2.18) one easily sees that both sides of (2.18)

must be linear in λ, and one can introduce Aµ by

Aȳ − λAz = ψ±(∂ ȳ − λ∂z)ψ−1± and Az̄ + λAy = ψ±(∂ z̄ + λ∂y)ψ
−1
± . (2.19)

Hence, the gauge field components may be calculated from

Aȳ = ψ+∂ ȳψ
−1
+ |λ=0 = −A†y and Az̄ = ψ+∂ z̄ψ

−1
+ |λ=0 = −A†z . (2.20)

By construction, the components {Aµ} of the gauge potential A defined by (2.19) or (2.20)

satisfy the SDYM equations. For more detailed discussion of local solutions, their infinite-

dimensional moduli space and references see e.g. [41, 42].

For a fixed point x ∈ R4, the task to split a matrix-valued holomorphic function

f+− ≡ f+−(y−λz̄, z+λȳ, λ) defines a parametric Riemann-Hilbert problem on CP 1. The

explicit general solution of this Riemann-Hilbert problem is not known. For a large class

of special cases, however, the splitting can be achieved. In this paper we shall make

explicit use of a particular example, the so-called Atiyah-Ward ansatz [39], to be presented

momentarily in the non-commutative context.

3. The Atiyah-Ward ansatz

Non-commutative Yang-Mills theory. The non-commutative deformation of (classi-

cal) field theory is most easily effected by extending the function product in field space to

the star product

(f ? g)(x) = f(x) exp

{

i

2

←
∂ µθ

µν
→
∂ ν

}

g(x) , (3.1)

with a constant antisymmetric tensor θµν . In this work, we restrict ourselves to the case

of a self-dual (ε = 1) or an anti-self-dual (ε = −1) tensor θµν and choose coordinates such

that

θ12 = −θ21 = εθ34 = −εθ43 = θ > 0 . (3.2)

In star-product formulation, the SDYM equations (2.1) are formally unchanged, but the

components of the non-commutative field strength now read

Fµν = ∂µAν − ∂νAµ +Aµ ? Aν −Aν ? Aµ . (3.3)

The nonlocality of the star product renders explicit computations cumbersome. We

therefore take advantage of the Moyal-Weyl correspondence and pass to the operator

formalism, which trades the star product for operator-valued coordinates x̂µ satisfying
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[x̂µ, x̂ν ] = iθµν . This defines the non-commutative euclidean space R4
θ. In complex coordi-

nates (2.4) our choice (3.2) implies

[ ŷ , ˆ̄y ] = 2θ , [ ẑ , ˆ̄z ] = −2εθ , and other commutators = 0 . (3.4)

Clearly, coordinate derivatives are now inner derivations of this algebra, i.e.

∂̂y f̂ =
−1
2θ

[ ˆ̄y , f̂ ] and ∂̂ ȳ f̂ =
1

2θ
[ ŷ , f̂ ] (3.5)

for any function f̂ of (ŷ, ˆ̄y, ẑ, ˆ̄z). Analogous formulae hold for ∂̂z and ∂̂ z̄.

The obvious representation space for the Heisenberg algebra (3.4) is the two-oscillator

Fock space H spanned by {|n1, n2〉 with n1, n2 = 0, 1, 2, . . .}. In H one can introduce an

integer ordering of states e.g. as follows [37]:

|k〉 = |n1, n2〉 =
ˆ̄y
n1 ˆ̄zε

n2 |0, 0〉
√

n1!n2!(2θ)n1+n2
, with ẑε :=

1− ε
2

ẑ +
1 + ε

2
ˆ̄z (3.6)

and k = n1+
1
2(n1+n2)(n1+n2+1). Thus, coordinates as well as fields are to be regarded as

operators in H. The Moyal-Weyl map yields the operator equivalent of star multiplication

and integration,

f ? g 7−→ f̂ ĝ and

∫

d4x f = (2πθ)2 TrH f̂ , (3.7)

respectively, where “TrH” signifies the trace over the Fock space H.

In the operator formulation, the non-commutative generalization of the SDYM equa-

tions (2.6) again retains their familiar form,

F̂yz = 0 , F̂ȳz̄ = 0 , F̂yȳ + F̂zz̄ = 0 . (3.8)

The operator-valued field-strength components F̂µν , however, now relate to the non-com-

mutative gauge-potential components Âµ with the help of (3.5), as e.g. in

2θ F̂yz = [−ˆ̄y + θÂy, Âz]− [εˆ̄z + θÂz, Ây] . (3.9)

For the rest of the paper we shall work in the operator formalism and drop the hats over

the operators in order to avoid cluttering the notation.

Non-commutative Atiyah-Ward ansatz. Commutative instantons can be obtained

by the famous ADHM construction [5], which was derived from the twistor approach.

Almost all works on non-commutative instantons are based on the modified ADHM con-

struction [4]. At the same time, it is known that the modified ADHM construction can

be interpreted in terms of a non-commutative version of the twistor transform [33, 34].

Therefore it is reasonable to expect that an approach based on the splitting of transition

functions in a holomorphic bundle over a non-commutative twistor space [33, 34, 38] will

work as well. Here we show that this is indeed the case for the simplest Atiyah-Ward

ansatz for the transition functions.
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In the commutative situation the infinite hierarchy of Atiyah-Ward ansätze reads

f
(k)
+− =

(

λk 0

ρ λ−k

)

, (3.10)

where k = 1, 2, . . . and ρ denotes a holomorphic function on U+ ∩ U− ⊂ P.2 We are

confident that the ansätze (3.10) allow one to construct solutions of the non-commutative

SDYM equations (3.8) simply by promoting ρ to an operator acting in the Fock space H.

Specializing to k = 1, we introduce the matrix

f+− :=

(

0 +1

−1 0

)

f
(1)
+− =

(

ρ λ−1

−λ 0

)

. (3.11)

Because f+− is related to f
(1)
+− by a transformation (2.16), with h+ =

(

0 1

−1 0

)

and h− =
(

1 0

0 1

)

, it leads to the same gauge field configuration. Yet, f+− has the advantage of

satisfying the reality condition (2.17). Here ρ is a holomorphic “real” operator-valued

function, i.e.

(∂ ȳ − λ∂z)ρ = (∂ z̄ + λ∂y)ρ = 0 and ρ†(x,−λ̄−1) = ρ(x, λ) . (3.12)

It is useful to expand ρ in a Laurent series in λ,

ρ =
∞
∑

m=−∞
ρm λ

m = ρ− + φ+ ρ+ , (3.13)

where

ρ+ :=
∑

m>0

ρm λ
m , ρ− :=

∑

m<0

ρm λ
m , and φ := ρ0 . (3.14)

The reality condition (2.17) then becomes

φ†(x) = φ(x) and ρ†+(x,−λ̄−1) = ρ−(x, λ) . (3.15)

It is not difficult to see that f+− can be split as f+− = ψ−1+ ψ−, where

ψ− =
1√
φ

(

φ+ ρ− λ−1

λρ− 1

)

and ψ−1+ =

(

φ+ ρ+ −λ−1ρ+
−λ 1

)

1√
φ
. (3.16)

Consequently we have

ψ−1− =

(

1 −λ−1
−λρ− φ+ ρ−

)

1√
φ

and ψ+ =
1√
φ

(

1 λ−1ρ+
λ φ+ ρ+

)

, (3.17)

which satisfy the reality condition (2.17). Thus, the first Atiyah-Ward ansatz is easily

generalized to the non-commutative case.

2A reminder on the commutative situation: for k=1 the ansatz (3.10) leads to a parametrization of

self-dual gauge fields in terms of a scalar field φ = resλ=0(λ
−1ρ) satisfying the wave equation, while for k≥2

it produces solutions more general than the ’t Hooft n-instanton configurations [39, 43, 44, 45]. Note that

the matrices f
(k)
+− do not satisfy the reality condition (2.17).

– 7 –
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Parametrization of the gauge potential. From the operator version of formulae

(2.19)–(2.20) and recursion relations

∂ ȳ ρm+1 = ∂zρm and ∂ z̄ ρm+1 = −∂yρm (3.18)

implied by (3.12) for the Laurent coefficients in (3.13) we get

Aȳ =

(

φ−1/2∂ ȳφ1/2 −φ−1/2(∂zφ)φ−1/2
0 φ1/2∂ ȳφ

−1/2

)

,

Az̄ =

(

φ−1/2∂ z̄φ1/2 φ−1/2(∂yφ)φ−1/2

0 φ1/2∂ z̄φ
−1/2

)

,

Ay =

(

φ1/2∂yφ
−1/2 0

φ−1/2(∂ z̄φ)φ−1/2 φ−1/2∂yφ1/2

)

,

Az =

(

φ1/2∂zφ
−1/2 0

−φ−1/2(∂ ȳφ)φ−1/2 φ−1/2∂zφ1/2

)

. (3.19)

Rewriting these expressions in real coordinates xµ, we obtain the non-commutative gener-

alization of the CFtHW ansatz,

Aµ = η̄aµν
σa
2i

(

φ1/2∂νφ
−1/2 − φ−1/2∂νφ1/2

)

+
12

2

(

φ−1/2∂µφ
1/2 + φ1/2∂µφ

−1/2
)

, (3.20)

where

η̄aµν =







εabc , for µ = b , ν = c ,

−δaµ , for ν = 4 ,

δaν , for µ = 4

(3.21)

is the anti-self-dual ’t Hooft tensor [44], and

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

(3.22)

are the Pauli matrices.

Reduced SDYM equation. Calculating the Yang-Mills curvature for the non-commu-

tative CFtHW ansatz (3.20) results in

Fȳz̄ =

(

0 X

0 0

)

, Fyz =

(

0 0

−X 0

)

, Fyȳ + Fzz̄ =

(

X 0

0 −X

)

, (3.23)

with

X = φ−1/2(∂y∂ ȳφ+ ∂z∂ z̄φ)φ
−1/2 . (3.24)

Hence, for the ansatz (3.20) the non-commutative SDYM equations (3.8) are reduced to

φ−1/2(∂y∂ ȳφ+ ∂z∂ z̄φ)φ
−1/2 = 0 . (3.25)

It is natural to assume [4] that a solution φn of this equation looks exactly like the

standard ’t Hooft solution

φn = 1 +
n
∑

i=1

Λ2
i

(xµ − bµi )(xµ − b
µ
i )

=: 1 +
n
∑

i=1

Λ2
i

r2i
, (3.26)
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where now the xµ are operators and

1

xµxµ
:=

1

2θ

∑

n1,n2≥0

1

n1+n2+1
|n1, n2〉〈n1, n2| ,

r2i = δµν(x
µ − bµi )(xν − bνi ) = ȳiyi + ziεz̄iε = ȳiyi + z̄iεziε + 2θ ,

yi := y − byi , ziε := zε − bzi ,
bi := (bµi ) = (byi , b

z
i ) , b̄i := (b̄µi ) = (b̄yi , b̄

z
i ) . (3.27)

The real parameters bµi and Λi denote the position coordinates and the scale of the ith

instanton. In particular, as a candidate for the one-instanton solution we have (putting

bµ1=0)

φ1 = 1 +
Λ2

r2
, (3.28)

where

r2 = δµνx
µxν =

1

2
(ȳy + yȳ + z̄z + zz̄) = ȳy + zεz̄ε = ȳy + z̄εzε + 2θ . (3.29)

Sources. When checking the self-duality of the purported one-instanton configuration

one discovers a subtlety: the substitution of (3.28) into the reduced SDYM equation (3.25)

and results [46] on Green’s functions reveal that the deviation from self-duality,

X1 := φ
−1/2
1 (∂y∂ ȳφ1 + ∂z∂ z̄φ1)φ

−1/2
1 = − Λ2

2θ(Λ2 + 2θ)
P0 ,

with P0 := |0, 0〉〈0, 0| , (3.30)

is not zero if Λ2 6=0. This has led the authors of [18] to the conclusion that this configuration

is not self-dual. This is not the whole story — one can show that all φn in (3.26) fail to

satisfy (3.25). Namely, by differentiating we obtain

∂y∂ ȳφn + ∂z∂ z̄φn = − 1

4θ2

n
∑

i=1

Λ2
i |bi〉〈bi| , (3.31)

where

|bi〉 := |byi , bzi 〉 = e−
1
2
|bi|2 eb

y
i ȳ/
√
2θ eb

z
i z̄ε/
√
2θ |0, 0〉 (3.32)

denotes the “shifted ground state” centered at (bµi ) which is constructed as a coherent

state for the Heisenberg-Weyl group generated by the algebra (3.4). The vectors |bi〉, i =
1, . . . , n, span an n-dimensional subspace of H. Since they are not orthonormalized it is

useful to also introduce an orthonormal basis {|h1〉, . . . , |hn〉} of this subspace through [47]

( |h1〉, |h2〉, . . . , |hn〉 ) := T (T †T )−1/2 , with T := ( |b1〉, |b2〉, . . . , |bn〉 ) . (3.33)

This basis can be extended to an orthonormal basis of the whole Fock space H by simply

adjoining further vectors |hn+1〉, |hn+2〉, . . . . From the explicit form of the function φn it
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follows that the matrix elements 〈hi|φ−1/2n |hj〉 are nonzero only for i, j ≤ n. Therefore, the

operator φ
−1/2
n preserves the subspace of H spanned by the vectors |bi〉, i = 1, . . . , n, i.e.

φ−1/2n |bi〉 =
n
∑

j=1

Mij |bj〉 and 〈bi|φ−1/2n =

n
∑

k=1

〈bk|Mki , (3.34)

where Mij =Mij(θ,Λ
2
1, . . . ,Λ

2
n) are some constants. Using this fact we arrive at

Xn := φ−1/2n (∂y∂ ȳφn + ∂z∂ z̄φn)φ
−1/2
n = − 1

4θ2

n
∑

i,j,k=1

|bj〉M ki Λ
2
i Mij 〈bk| , (3.35)

which is not zero if at least one Λ2
i does not vanish. Appendix A derives the same expression

via the ADHM approach.

4. Non-commutative instantons

Projected field configurations. The twistor approach has given us a systematic way

of producing a non-commutative generalization (3.20) of the CFtHW ansatz. However, it

has been shown above that the non-commutative ’t Hooft type ansatz (3.26) does not solve

the SDYM equations since Xn 6= 0 produce sources in the r.h.s. of (3.23). These sources

are localized on a finite-dimensional subspace of the Fock space.

Let us look at the situation in more detail. Recall that in the non-commutative case

the components Aµ and Fµν are operators acting (on the left) in the space H⊗C2 = H⊕H
which carries a fundamental representation of the group U(2). It is easy to see that for the

ansatz (3.28) each term of the operators Aµ in (3.20) annihilates the state |0, 0〉 ⊗ C2 or

C2 ⊗ 〈0, 0| (when acting on the right), thus 〈0, 0|Aµ|0, 0〉 = 0. This shows that the Aµ are

well defined only on the subspace (1−P0)H⊗C2 of the Fock space. Moreover, from (3.30)

we see that the gauge fields are self-dual only on the same subspace since X1(1−P0) = 0.

Analogously, one can easily see that Xn given by (3.35) is annihilated by the projector

1− Pn−1 := 1−
n
∑

i,j=1

|bi〉
1

〈bi|bj〉
〈bj | = 1−

n
∑

i=1

|hi〉〈hi| (4.1)

onto the orthogonal complement of the subspace spanned by {|bi〉, i = 1, . . . , n} but not

outside it. Therefore, the solutions based on (3.26) are self-dual on the reduced Fock

space (1−Pn−1)H ⊗ C2 (projective Fock module). The same phenomenon occurs in the

modified ADHM construction of the non-commutative one- and two-instanton solutions

and was discussed intensively by Ho [7] and especially by Furuuchi [8]–[11]. The ADHM

construction of non-commutative ’t Hooft n-instantons including the appearance of a source

term for any n is described in appendix A. Note that the deletion of a subspace generated

by n states |bi〉, i = 1, . . . , n, from the Fock space corresponds to the exclusion of n points

bi, i = 1, . . . , n, (in which the gauge potential is singular) from the commutative space R4.

Hence, the sources in the r.h.s. of (3.23), being localized on the subspace Pn−1H ⊗ C2,

imply that the ansatz (3.26) produces a singular solution.
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Quite generally, consider any finite-rank projector P . If the deviation from self-duality

is localized on the subspace PH ⊗ C2 of the Fock space then obviously we can produce

a self-dual field strength F p
µν by projecting the gauge field onto the reduced Fock space

(1−P )H⊗ C2,

Fµν 7−→ F p
µν = (1−P )Fµν (1−P ) . (4.2)

Unfortunately, the corresponding gauge potential Ap
µ generating this F p

µν cannot be ob-

tained by naively projecting Aµ, since projecting does not commute with calculating the

field strength:

A
δ−−−→ F

?





y





y
1−P

Ap δp−−−→ F p ,

where ↓ 1−P denotes the standard projection onto (1−P )H⊗C2 and δ and δp compute the

curvature in the full and the reduced Fock space, respectively. More explicitly, it reads

Fµν = ∂[µAν] + [Aµ , Aν ] ,

F p
µν = (1−P ) ∂ [µA

p
ν] (1−P ) + [Ap

µ , A
p
ν ] + (1−P ) ∂ [µP ∂ν]P . (4.3)

Although Ap is a projected gauge potential, i.e. it fulfils

Ap
µ = (1−P )Ap

µ (1−P ) , (4.4)

a short calculation reveals that it differs from the standard projection of A.3 To avoid

confusion, we call Ap
µ the “projected” gauge potential. As the question mark in the above

diagram indicates, it is given only implicitly as a function of Aµ through

(1−P )
(

∂[µAν] + [Aµ , Aν ]
)

(1−P ) = (1−P )
(

∂[µA
p
ν] + [Ap

µ , A
p
ν ] + ∂[µP ∂ν]P

)

(1−P ) . (4.5)

Similarly to the question of deriving some gauge potential A from a given field strength F

in ordinary Yang-Mills theory, it seems difficult to assert the existence of Ap solving (4.5)

for a given A. Our analogue of the Bianchi identity are the necessary conditions4

(1−P ) ∂ [µF
p
νρ]P = −F p

[µν∂ρ]P and (1−P ) ∂ [µF
p
νρ](1−P ) = [F p

[µν , A
p
ρ]] , (4.6)

of which the first one is solved by (4.2) but the second one is nontrivial. Nevertheless, from

the existence of the canonical solution Ap=A for θ=0 and the smoothness of all expressions

in the deformation parameter θ we derive some confidence that Ap should exist at least for

sufficiently small values of θ.

3In a previous version of the paper we erroneously identified Ap with (1−P )A(1−P ). We thank Diego

Correa and Fidel Schaposnik for questions which exposed this confusion to us.
4O.L. thanks Martin Roček for a discussion on this point.
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Murray-von Neumann transformations. After projecting our gauge field F 7→ F p

via (4.2) and finding a solution Ap of (4.5) we obtain a self-dual configuration (Ap, F p) which

may be termed the non-commutative ’t Hooft multi-instanton (Ap, F p) in a singular gauge.

As is well known in the commutative situation (see e.g. [48]), the singularity in the gauge

potential can be removed by a singular gauge transformation, leading for instance to the

BPST form of the one-instanton solution. The non-commutative analogues of such singular

gauge transformations are so-called Murray-von Neumann (MvN) transformations. Indeed,

such transformations were proposed in a different context — the modified ADHM approach

— to remove the singularity of the non-commutative one-instanton solution for the U(1) [7]

and U(2) [9] gauge groups. Here we will show that also for the non-commutative ’t Hooft

solutions there exist MvN transformations which, in combination with suitable projections,

repair the deficiency in (3.35) and produce regular solutions for any finite n.

Given our finite-rank projector P , we consider a special kind of MvN transformations

(partial isometry [49]),

Ap
µ 7−→ A′µ = V †Ap

µV + V †∂µV and F p
µν 7−→ F ′µν = V †F p

µνV , (4.7)

where the intertwining operators

V : H⊗ C2 −→ (1−P )H⊗ C2 and V † : (1−P )H⊗ C2 −→ H⊗C2 (4.8)

satisfy the relation

V † V = 1 , while V V † = 1− P (4.9)

upon extension to H⊗C2. The configuration (Ap, F p) lives on the projective Fock module

(1−P )H ⊗ C2, but (A′, F ′) exists on the free Fock module H ⊗ C2. Therefore, the gauge

fields are related to their potentials by (4.3) and

F ′µν = ∂[µA
′
ν] + [A′µ , A

′
ν ] . (4.10)

Via the natural embedding of the reduced Fock space into the full Fock space, we may

extend V and V † to endomorphisms of H⊗C2 by declaring V †P = 0 = V P . Although the

extended V is not unitary, the transformations (4.7) can be regarded as a non-commutative

version of singular gauge transformations. Furthermore, we may actually bypass the pro-

jection as far as the field strength is concerned and directly compute

F ′µν = V †FµνV . (4.11)

In the following subsections we will demonstrate that to the singular configuration

(3.20) with φ from (3.26) one should apply firstly a projection onto the reduced Fock space

(1−Pn−1)H ⊗ C2 to obtain the non-commutative ’t Hooft multi-instanton in a singular

gauge, and secondly an MvN transformation to arrive at the non-singular non-commutative

’t Hooft n-instanton solution. In short,

(Aµ, Fµν)
1−Pn−17−→ (Ap

µ, F
p
µν)

Vn7−→ (A′µ, F
′
µν) (4.12)

will bring us to a satisfactory instanton configuration. However, we will not be able to

present explicit expressions for Ap or A′.
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One-instanton solution. Let us consider first the one-instanton configuration (3.28)

in (3.20), project it onto (1−P0)H ⊗ C2, and construct its MvN transformation ma-

trix V≡V1. Due to the relation (1−P0)X1(1−P0) = 0, the projected field strength

F p
µν = (1−P0)Fµν (1−P0) (4.13)

is obviously self-dual, but it is singular because ill-defined on |0, 0〉 ⊗ C2. As already

mentioned, we cannot rigorously prove the existence of the “projected” gauge potential Ap

via (4.5) but we shall assume it henceforth.

As will be justified below, the subsequent MvN transformation applied to (Ap, F p) is

conveniently factorized as V1 = Š1 U1, with

Š1 =

(

1 0

0 S1

)

and U1 =

(

z̄ε ȳ

y −zε

)

i

r
, (4.14)

where

S†1 S1 = 1 , while S1 S
†
1 = 1− P0 . (4.15)

These relations are satisfied by the shift operator

S1 =
∑

k≥0
|k+1〉〈k| , (4.16)

constructed from the integer ordered states (3.6). Another possible realization of S1 is [11]

S1 = 1 +
∑

n2≥0
(|0, n2+1〉〈0, n2| − |0, n2〉〈0, n2|) . (4.17)

A third possible choice (which we shall use) is a “mixture” of (4.16) and (4.17). Namely,

recall that the index k in (3.6) introduces an integer ordering of states in the two-oscillator

Fock space H:

{|k〉} = {|0, 0〉, |0, 1〉, |1, 0〉, |0, 2〉, . . .} . (4.18)

For fixed instanton number n>1 let us move the states |0, i〉 with 0 < i ≤ n−1 in the

sequence (4.18) to the left and enumerate this new order by k̂,

{|k̂〉} = {|0, 0〉, |0, 1〉, . . . , |0, n−1〉, |1, 0〉, . . .} . (4.19)

Then, the shift operator

S1 =
∑

k≥0
|k̂+1〉〈k̂| (4.20)

with the new ordering of states will also satisfy (4.15).

We will now confirm our claim that

A′µ = V †1 A
p
µV1 + V †1 ∂µV1 , and F ′µν = V †1 F

p
µνV1 ≡ V †1 FµνV (4.21)

brings us to the non-singular non-commutative one-instanton solution.5 With the help of

5It is interesting to note that Š†1A
pŠ1 + Š

†
1dŠ1 corresponds to the (singular) U(2) one-instanton config-

uration produced by the modified ADHM construction [9]. It still fails to be self-dual on P0H.
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the definitions (cf. [9])

r0 := (r2 − 2θ)1/2 = (ȳy + z̄εzε)
1/2 , and

r−10 := (1−P0)(ȳy + z̄εzε)
−1/2(1−P0) =

1√
2θ

∑

n1,n2 6=0

|n1n2〉〈n1n2|√
n1+n2

(4.22)

it is readily checked that

V †1 V1 = 1⊗ 12 but V1 V
†
1 =

(

1−P0 0

0 1−P0

)

= (1− P0)⊗ 12 . (4.23)

Furthermore, one finds that

X1 V1 = − Λ2

2θ(Λ2 + 2θ)
P0 V1 = 0 , (4.24)

which assures that the anti-self-dual part of F ′µν , being proportional to η̄aµνV
†
1 σaX1V1, van-

ishes. We emphasize that the projection F 7→ F p is not used explicitly in this computation

but nevertheless required if we want F ′ to come from a gauge potential A′ which derives

from Ap by an MvN transformation.

Obviously, the MvN transformation (4.21) extends the self-duality of F p
µν to the whole

Fock space H ⊗ C2 . This is exactly what was desired to cure the incompleteness of the

configuration (3.20) with φ from (3.28). In combined form, our complete one-instanton

gauge field reads

F ′µν =
1

r

(

zε ȳS†1
y −z̄εS†1

)

(

∂µAν − ∂νAµ + [Aµ, Aν ]
)

(

z̄ε ȳ

S1y −S1zε

)

1

r
(4.25)

with abbreviations from (3.28), (3.29), and (4.16). Here, Aµ = Aµ(φ1) is obtained by

substituting (3.28) into (3.20).

In the commutative limit, our configuration (A′, F ′) clearly reduces to the BPST in-

stanton because Š1 = diag(1, S1) becomes a unitary matrix and the remaining part of the

MvN transformation (mediated by U1) turns exactly into the singular gauge transforma-

tion from the ’t Hooft to the BPST gauge (see [48]). For illustration, the operator S1

from (4.17) can be rewritten as (cf. [7])

S1 = ȳ (ȳy + 2θ)−1y + (1− ȳ (ȳy + 2θ)−1y) z̄ε (z̄εzε + 2θ)−1/2 , (4.26)

from which one easily sees that in the commutative limit it approaches the identity.

Multi-instanton solutions. Again, a projection (by 1−Pn−1) plus a Murray-von Neu-

mann transformation (by Vn) will enable us to extend the projected self-dual solution to

the complete Fock space. We decompose Vn = Šn Un and propose

Šn =

(

1 0

0 Sn

)

and Un = U Un
1 U† , (4.27)

where

U :=
∑

i≥0
|hi+1〉〈̂i| (4.28)
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is the unitary transformation from the basis {|î〉} to the basis {|hi+1〉} in H, and Sn : H →
(1−Pn−1)H is to satisfy the relations

S†n Sn = 1 and Sn S
†
n = 1− Pn−1 = 1−

n
∑

i=1

|hi〉〈hi| . (4.29)

In the orthonormal basis one can choose Sn and S†n in the form

Sn =
∑

i≥1
|hi+n〉〈hi| and S†n =

∑

i≥1
|hi〉〈hi+n| . (4.30)

Since this basis was constructed from the states |b1〉, . . . , |bn〉, the operator Sn contains all

the information about the position parameters b1, . . . , bn. It is easy to see that

Sn = U Sn1 U† (4.31)

with S1 from (4.20).

Let us justify our proposal (4.27). Employing the relations

Un
1 = 1 −

n−1
∑

i=0

( |̂i〉〈̂i| 0

0 0

)

(4.32)

with

U
(

n−1
∑

i=0

|̂i〉〈̂i|
)

U† =
n−1
∑

i=0

|hi+1〉〈hi+1| = Pn−1 (4.33)

one can show that

U †n Un = 1⊗ 12 but Un U
†
n =

(

1−Pn−1 0

0 1

)

. (4.34)

Together with (4.29) one gets

V †n Vn = 1⊗ 12 but Vn V
†
n =

(

1−Pn−1 0

0 1−Pn−1

)

= (1− Pn−1)⊗ 12 . (4.35)

Finally, substituting (3.26) into (3.20), computing its field strength Fµν and performing the

(extended) MvN transformation (4.11) by the matrices (4.27) we learn that the anti-self-

dual part of F ′µν indeed vanishes everywhere in H⊗ C2, again due to XnVn = 0 = V †nXn.

Hence, our final result

A′µ = V †n A
p
µ Vn + V †n ∂µ Vn and F ′µν = V †n F

p
µν Vn ≡ V †n Fµν Vn (4.36)

constitutes a proper non-commutative generalization of the ’t Hooft n-instanton solution.

It has topological charge Q = n since in the θ → 0 limit our solution coincides with the

standard ’t Hooft solution, and the topological charge does not depend on θ. This may

also be shown by reducing the action integral to the trace of the projector Pn−1, following
Furuuchi [11].
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5. Concluding remarks

Proper non-commutative instantons are constructed by not only replacing the coordinates

in the commutative configuration with their operator analogues but also applying a pro-

jection and an appropriate MvN transformation. We have demonstrated this beyond the

(previously considered) case of the one-instanton solution, providing explicit formulae for

the field strength (but not the gauge potential) of regular non-commutative ’t Hooft multi-

instantons in U(2). Our results are easily generalized to U(N). We have pointed out that

the MvN transformation is needed to remove the source singularities in the reduced SDYM

equation, which hamper self-duality on some subspace. In order to take advantage of the

MvN transformation, however, we had to pass from the original gauge potential to a “pro-

jected” gauge potential in an implicit manner, thereby foregoing an explicit solution for it.

We found it easy to work with the twistor approach because it and the Atiyah-Ward

ansätze directly generalize to the non-commutative realm, providing us with a systematic

and straightforward strategy for the construction of self-dual gauge-field configurations. In

this method, the main task is to find two holomorphic (in λ and λ̃, respectively) regular

matrix-valued operators ψ+ and ψ− such that their “ratio” ψ−1+ ψ− defines a holomorphic

bundle over non-commutative twistor space with appropriate global properties. In fact,

finding solutions to the splitting problem is not made any harder by noncommutativity.

Multi-instantons can also be obtained by employing the dressing approach [50, 51]. In

its non-commutative variant, one is to find a meromorphic (in λ) matrix-valued operator ψ

(having finite-order poles in the spectral parameter λ) which obeys some linear differential

equations. The non-commutative dressing method was successfully applied to the study of

non-commutative solitons in a 2 + 1-dimensional integrable field theory [52, 53]. It would

be illuminating to also exercise it on the subject of non-commutative instantons and to

compare the results with those obtained in the twistor approach.

Finally, non-commutative instantons are interpreted as Dp-branes within coincident

D(p+4)-branes carrying a constant two-form B-field background [3]. Thus, they have

immediate bearing on the issue of non-perturbative string backgrounds.
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A. Non-commutative ’t Hooft instantons from the ADHM approach

ADHM construction. Here we restrict ourselves to the case of self-dual non-commuta-

tive euclidean space R4
θ with the tensor (3.2) given by

θµν = θ η3µν , (A.1)
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where

ηaµν =







εabc , for µ = b , ν = c ,

δaµ , for ν = 4 ,

−δaν , for µ = 4

(A.2)

is the self-dual ’t Hooft tensor.

Let us introduce the matrices

(eµ) = (−iσa , 1) and (e†µ) = (iσa , 1) (A.3)

which enjoy the properties

e†µ eν = δµν + ηaµν iσa =: δµν + ηµν ,

eµ e
†
ν = δµν + η̄aµν iσa =: δµν + η̄µν . (A.4)

Using these matrices one can introduce x := xµe†µ with {xµ} ∈ R4
θ.

The (modified) ADHM construction (see [4, 7, 9, 15, 20]) of an n-instanton solution is

based on a (2n+2)×2 matrix Ψ and a (2n+2)×2n matrix ∆ = a+ b(x⊗1n) where a and b

are constant (2n+2)× 2n matrices. These matrices must satisfy the following conditions:

∆†∆ is invertible , (A.5)

[∆†∆ , eµ ⊗ 1n ] = 0 ∀x , (A.6)

∆†Ψ = 0 , (A.7)

Ψ†Ψ = 12 . (A.8)

It is not difficult to see that conditions (A.5) and (A.6) are met if

∆†∆ = 12 ⊗ f−1n×n . (A.9)

For (∆,Ψ) satisfying (A.5)–(A.8) the gauge potential is chosen in the form

A = Ψ† dΨ . (A.10)

The resulting gauge field F will be self-dual if ∆ and Ψ obey the completeness relation

ΨΨ† +∆(∆†∆)−1∆† = 12n+2 . (A.11)

Ansatz. For constructing non-commutative ’t Hooft n-instantons let us take (cf. [54, 55])

Ψ =











Ψ0

Ψ1
...

Ψn











, a =











Λ112 . . . Λn12

−b1 02
. . .

02 −bn











, and b =











02 . . . 02

12 02
. . .

02 12











(A.12)

with bi = bµi e
†
µ. It follows that

∆†∆ = 12 ⊗ (δijr
2
j +ΛiΛj) =: 12 ⊗ (R+ΛΛT ) , (A.13)
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where

R =







r21 0
. . .

0 r2n






, Λ = (Λ1, . . . ,Λn) , r2j = δµν (x

µ−bµj )(xν−bνj ) , (A.14)

and the Λi are constants parametrizing the scale of the ith instanton. From (A.13) we

see that the condition (A.9) (and thus also (A.5) and (A.6)) is satisfied. Indeed, by direct

calculation one finds

12 ⊗ fn×n = (∆†∆)−1 = 12 ⊗ (R−1 −R−1Λφ−1n ΛTR−1) (A.15)

with

φn = 1 +

n
∑

i=1

Λ2
i

r2i
. (A.16)

For the given ∆ = a+ b(x⊗1n) and xi := (xµ−bµi )e
†
µ, the condition (A.7) becomes

ΛiΨ0 + x†iΨi = 02 , for i = 1, . . . , n . (A.17)

These equations are solved by

Ψ0 = φ−1/2n 12 and Ψi = −xi
Λi

r2i
φ−1/2n (A.18)

where the factor φ
−1/2
n was introduced to achieve the normalization

Ψ†Ψ = φ−1/2n

(

1 +
n
∑

i=1

Λ2
i

r2i

)

12 φ
−1/2
n = 12 . (A.19)

Hence, our (∆,Ψ) satisfies all conditions (A.5)–(A.9), and we can present the gauge po-

tential (A.10).

Completeness relation. Being convinced that they have constructed self-dual field con-

figurations, many authors stop at this point and ignore the completeness relation (A.11).

However, the latter may be violated, in which case one obtains a singular field configura-

tion (cf. the discussion in [20]). Indeed, our example solution (A.18) indicates just that.

Namely, after (lengthy) computations we arrive at

ΨΨ† +∆(∆†∆)−1∆† = 12n+2 −Π , (A.20)

where Π is a projector,

Π :=











02 02

12 − x1 1
r21
x†1

. . .

02 12 − xn 1
r2n
x†n











,

and 12 − xi
1

r2i
x†i =

( |bi〉〈bi| 0

0 0

)

. (A.21)

Here, the |bi〉 are the coherent states defined in (3.32). Notice that in the commutative

limit Π→ 0, and the completeness relation will be saturated.
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Field strength. We finally evaluate the field strength. Substituting (A.18) into (A.10)

and using (A.20) we find

Fµν = ∂µ(Ψ
†∂νΨ)− ∂ν(Ψ†∂µΨ) + [Ψ†∂µΨ , Ψ†∂νΨ ]

= (∂µΨ
†)(1−ΨΨ†) ∂νΨ− (µ↔ ν)

= (∂µΨ)†(∆ (∆†∆)−1∆† +Π) ∂νΨ− (µ↔ ν)

= Ψ†(∂µ∆) (∆†∆)−1(∂ν∆
†)Ψ + (∂µΨ)†Π ∂νΨ − (µ↔ ν)

= Ψ† b e†µ(∆
†∆)−1eν b

†Ψ+ φ−1/2n eµ

(

0,−Λ1

r21
, . . . ,−Λn

r2n

)

Π











0

−Λ1

r21
...

−Λn
r2n











e†ν φ
−1/2
n −

− (µ↔ ν)

= 2Ψ†b (∆†∆)−1ηµν b
†Ψ+ φ−1/2n

(

n
∑

i=1

Λ2
i

4θ2
|bi〉〈bi|

)

φ−1/2n 2 η̄µν

= 2Ψ†b (∆†∆)−1ηµν b
†Ψ−Xn 2 η̄µν , (A.22)

where Xn is precisely the source term (3.35) derived earlier in the twistor approach. We

conclude that the anti-self-dual part of Fµν is nonzero and, in complex coordinates, coin-

cides with the r.h.s. of (3.23). Hence, the ADHM approach encounters exactly the same

obstacle as the twistor method. As shown in section 4 the remedy of this deficiency con-

sists in a particular projection of the gauge potential followed by a suitable Murray-von

Neumann transformation.
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