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Abstract: We investigate a recent proposal for defining a conserved mass in asymptoti-

cally de Sitter spacetimes that is based on a conjectured holographic duality between such

spacetimes and euclidean conformal field theory. We show that an algorithm for deriving

such terms in asymptotically anti de Sitter spacetimes has an asymptotically de Sitter

counterpart, and derive the explicit form for such terms up to 9 dimensions. We show that

divergences of the on-shell action for de Sitter spacetime are removed in any dimension

in inflationary coordinates, but in covering coordinates a linear divergence remains in odd

dimensions that cannot be cancelled by local terms that are polynomial in boundary cur-

vature invariants. We show that the class of Schwarzschild-de Sitter black holes up to 9

dimensions has finite action and conserved mass, and construct a definition of entropy out-

side the cosmological horizon by generalizing the Gibbs-Duhem relation in asymptotically

dS spacetimes. The entropy is agreement with that obtained from CFT methods in d = 2.

In general our results provide further supporting evidence for a dS/CFT correspondence,

although some important interpretive problems remain.
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1. Introduction

It is generally believed that the definition of a conserved charge in a gravitational spacetime

that is asymptotically de Sitter (dS) is not well defined. The reason is that such spacetimes

do not have spatial infinity the way that their asymptotically flat or asymptotically anti de

Sitter (AdS) counterparts do. Moreover one cannot define a timelike Killing vector in global

de Sitter spacetime. In fact, there is a timelike Killing vector field inside the cosmological

horizon that becomes spacelike outside the cosmological horizon. For this reason, the phys-

ical meaning of the Abbott-Deser energy outside the cosmological horizon of dS spacetime

is not clear and to construct the energy, one could use the conformal Killing vector [1].

Recently a novel prescription was proposed for computing conserved charges (and asso-

ciated boundary stress tensors) of asymptotically dS spacetimes from data at early or late

time infinity [2]. The method is analogous to the Brown-York prescription in asymptoti-

cally AdS spacetimes [3, 4, 5], and yields suggestive information about the stress tensor and

conserved charges of the hypothetical dual euclidean conformal field theory (CFT) on the

spacelike boundary of the asymptotically dS spacetime, providing intriguing evidence for a

holographic dual to dS spacetime that is similar to the AdS/CFT correspondence. Such a

similarity also is observed in the computation of the conformal anomaly of dual euclidean

conformal field theory [6]. The specific prescription in ref. [2] (which has been employed

previously by others but in more restricted contexts [7, 8]) presented the counterterms on

spatial boundaries at early and late times that yield a finite action for asymptotically dS

spacetimes in 3, 4, 5 dimensions. By carrying out a procedure analogous to that in the AdS

case [4, 5], one could get the boundary stress tensor on the spacetime boundary, and con-

sequently a conserved charge interpreted as the mass of the asymptotically dS spacetime

could be calculated. Sample calculations led the authors of [2] to the following conjecture:

Any asymptotically dS spacetime with mass greater than dS has a cosmological singularity.

Although an exact proof of this conjecture has not been attained, it has been verified for

topological dS solutions and its dilatonic variants [9].

– 1 –



J
H
E
P
0
1
(
2
0
0
2
)
0
0
5

The purpose of this paper is to investigate this prescription in greater detail. We first

demonstrate in sections 2 and 3 that the procedure for deriving boundary counterterms

from the Gauss-Codacci equation for asymptotically AdS spacetimes [10] applies also to

the asymptotically dS case. We show that these counterterms are sufficient for obtaining a

finite action for the inflationary patches (big bang and big crunch patches) of dS spacetime

in any dimensionality. However such actions are not finite when computing for the full dS

spacetime using covering coordinates: they contain a linear divergence in spacetimes of odd

dimensionality. This divergence is similar to that found in the AdS case [11]. We then move

on in section 4 to compute the action for a Schwarzschild-de Sitter (SdS) black hole with

dimensionality up to nine. We also compute the boundary stress tensor and mass of these

SdS black holes. We then define a notion of entropy outside of the horizon by generalizing

the gravitational Gibbs-Duhem relation to this situation. By appropriately identifying a

spatial coordinate outside of the horizon, infinite volume divergences due to integration

over this coordinate on the boundary are removed, and our definition of entropy agrees

with that obtained using CFT methods in 3 dimensions [2]. However the justification and

interpretation of these results and the above conjecture is less than clear. For example

masses greater than that of pure de Sitter spacetime can be obtained by reversing the sign

of the mass parameter, whilst keeping all singularities hidden from observers outside of the

cosmological horizon. We comment on this in the final section.

2. Boundary counterterms

In d+1 dimensions, the Einstein equations of motion with a positive cosmological constant

can be derived from the action

S = IB + I∂B , (2.1)

where

IB =
α

16πG

∫

M
dd+1x

√
−g (R− 2Λ + LM ) (2.2)

I∂B =
β

16πG

∫ ∂M+

∂M−
ddx
√
h±K± (2.3)

and LM refers to the matter lagrangian, which we shall not consider here.

The first term in (2.1) is the bulk action over the d+1 dimensional ManifoldM with

newtonian constant G and the second term (2.3) is the Gibbons-Hawking surface term

which is a necessary term to ensure a well defined Euler-Lagrange variation. ∂M± are

spatial euclidean boundaries at early and late times and
∫ ∂M+

∂M− ddx indicates an integral

over the late time boundary minus an integral over the early time boundary. The quantities

gµν , h
±
µν and K

± are the bulk spacetime metric, induced boundary metrics and the trace

of extrinsic curvatures of the boundaries respectively. We shall usually suppress the “±”
notation when it is obvious. For a well-defined variational principle, we must have β = −2α,
and one typically chooses α = 1 as an overall normalization.1 However, as is well known

the action (2.1) is not finite when evaluated on a solution of the equations of motion. The

reason is the infinite volume of the spacetime at early and late times.
1Our conventions are the same as in ref. [10].
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The procedure for dealing with such divergences in asymptotically flat/AdS cases

(where they are large-distance effects) was to include a reference action term [3, 4], which

corresponded to the action of embedding the boundary hypersurface ∂M (whose unit nor-

mal is spacelike) into some other manifold. The physical interpretation is that one has a

collection of observers located on the closed manifold ∂M, and that the physical quantities
they measure (energy, angular momentum, etc.) are those contained within this closed

manifold relative to those of some reference spacetime (regarded as the ground state) in

which ∂M is embedded [12]. For example in an asymptotically anti de Sitter spacetime,

it would be natural to take pure AdS as the ground state reference manifold.

However this procedure suffers from several drawbacks: the reference spacetime in

general cannot be uniquely chosen [13] nor can an arbitrary boundary ∂M always be

embedded in a given reference spacetime. Employing approximate embeddings can lead to

ambiguity, confusion and incompleteness; examples of this include the Kerr [14], Taub-NUT

and Taub-bolt spacetimes [15].

An alternative approach for asymptotically AdS spacetimes was suggested a few years

ago that has enjoyed a greater measure of success [5, 16, 17, 18]. It involves adding to the

action terms that depend only on curvature invariants that are functionals of the intrinsic

boundary geometry. Such terms cannot alter the equations of motion and, since they are di-

vergent, offer the possibility of removing divergences that arise in the action (2.1) provided

the coefficients of the allowed curvature invariants are correctly chosen. No embedding

spacetime is required, and computations of the action and conserved charges yield unam-

biguous finite values that are intrinsic to the spacetime. This has been explicitly verified

for the full range of type-D asymptotically AdS spacetimes, including Schwarzchild-AdS,

Kerr-AdS, Taub-NUT-AdS, Taub-bolt-AdS, and Taub-bolt-Kerr-AdS [11, 19, 20].

The boundary counterterm action is universal, and a straightforward algorithm has

been constructed for generating it [10]. The procedure involves rewriting the Einstein

equations in Gauss-Codacci form, and then solving them in terms of the extrinsic cur-

vature functional Πab = Kab − Khab of the boundary ∂M and its normal derivatives

to obtain the divergent parts. It succeeds because all divergent parts can be expressed

in terms of intrinsic boundary data, and do not depend on normal derivatives [21]. By

writing the divergent part Π̃ab as a power series in the inverse cosmological constant

the entire divergent structure can be covariantly isolated for any given boundary dimen-

sion d; by varying the boundary metric under a Weyl transformation, it is straightfor-

ward to show that the trace Π̃ is proportional to the divergent boundary counterterm

lagrangian.

Explicit calculations have demonstrated that finite values for the action and conserved

charges can be unambiguously computed up to d = 8 for the class of Kerr-AdS met-

rics [22]. The removal of divergences is completely analogous to that which takes place

in quantum field theory by adding counterterms which are finite polynomials in the fields.

The AdS/CFT correspondence conjecture asserts that these procedures are one and the

same. Corroborative evidence for this is given by calculations which illustrate that the

trace anomalies and Casimir energies obtained from the two different descriptions are in

agreement for known cases [16, 17, 23].

– 3 –



J
H
E
P
0
1
(
2
0
0
2
)
0
0
5

Generalizations of the counterterm action to asymptotically flat spacetimes have also

been proposed [19, 24]. They are quite robust, and allow for a full calculation of quasilocal

conserved quantities in the Kerr solution [25] that go well beyond the slow-rotating limit

that approximate embedding techniques require [14]. Although they can be inferred for

general d by considering spacetimes of special symmetry, they cannot be algorithmically

generated, and are in general dependent upon the boundary topology [10].

Turning next to the asymptotically de Sitter case, we must add to the action (2.1)

some counterterms to cancel its divergences

Ict =
1

16πG

∫

∂M+

ddx
√
hLct +

1

16πG

∫

∂M−
ddx
√
hLct (2.4)

so that

I = IB + I∂B + Ict (2.5)

is now the total action.

For the special cases d = 2, 3, 4, the counterterm lagrangian

Lct = γ

(
−d− 1

`
+
`Θ(d− 3)
2(d − 2) R̂

)
(2.6)

was proposed [2], where R̂ is the intrinsic curvature of the boundary surfaces and the step

function Θ(x) is equal to zero unless x ≥ 0 which in this case it equals unity. The parameter
γ must equal −2α to cancel divergences. The action (2.6) was shown to cancel divergences
in de Sitter spacetime

ds2 = −dτ 2 + `2 exp
(
τ2/`2

)
d~x · d~x (2.7)

and the Nariai spacetime

ds2 = −
(
dτ2

`2
− 1
)−1

dτ2 +

(
dτ2

`2
− 1
)
dt2 + `2

(
1− 2

d

)
dΩ2d−1 , (2.8)

where the metric d~x · d~x is a flat d-dimensional metric that covers an inflationary patch of
de Sitter spacetime and dΩ2d−1 is the metric of a unit (d− 1)-sphere. Here

Λ =
d (d− 1)
2`2

(2.9)

is the positive cosmological constant.

These results are suggestive that an algorithm similar to that in the AdS case is

applicable here, and indeed this is the case. Following the procedure in ref. [10], we write

the Einstein equations

Rµν −
1

2
gµνR = −Λgµν (2.10)

in the Gauss-Codacci form

R̂ab −
1

2
R̂hab + uµ∇µΠab −

1

2
hab

(
Π2

d− 1 −ΠcdΠ
cd

)
+

Π

d− 1Πab =
d (d− 1)
2`2

hab (2.11)

∇bΠab = 0 (2.12)

1

2

(
Π2

d− 1 −ΠcdΠ
cd − R̂

)
=

d (d− 1)
2`2

, (2.13)
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where uµ
± is the timelike unit normal to ∂M±, whose metric is h±ab; eqs.(2.11)–(2.13) are

valid for each of these submanifolds. From the work of Mottola and Mazur [26], we know

that the divergences of asymptotically de Sitter spacetimes are independent of the boundary

normal, and so depend only on intrinsic boundary data. By writing the divergent part Π̃ab

as a power series in `

Π̃ab =

[d/2]∑

n=0

`2n−1Π̃
(n)
ab (2.14)

it is easy to show that the trace Π̃
a(n)
a appears linearly in eq. (2.13), and so can be

determined inductively in terms all Π̃
(k)
ab , k < n, if these are known. However these can be

determined from the counterterm lagrangian provided

Π̃ab =
2√
h

δ

δhab

∫
ddx
√
hLct (2.15)

so that under a Weyl rescaling δWhab = σhab we obtain after some algebra

(d− 2n)L(n)ct = Π̃
a(n)
a (2.16)

up to an irrelevant total divergence, where Lct =
∑[d/2]

n=0 `
2n−1L(n)ct .

The procedure for finding the counterterm lagrangian for any given d is identical to

the AdS case. Setting

Π̃
(0)
ab = (1− d)hab (2.17)

we obtain

L(0)ct = (1− d) (2.18)

from (2.16). Using this we insert the series (2.14) into eq. (2.13) and inductively obtain

Lct =

(
−d− 1

`
+
`Θ(d− 3)
2(d− 2) R̂

)
− `3Θ(d− 4)
2(d − 2)2(d− 4)

(
R̂abR̂ab −

d

4(d− 1) R̂
2

)
−

− `5Θ(d− 5)
(d− 2)3(d− 4)(d − 6)

(
3d+ 2

4(d− 1) R̂R̂
abR̂ab −

d(d + 2)

16(d − 1)2 R̂
3 − 2R̂abR̂cdR̂acbd −

− d

4(d− 1)∇aR̂∇aR̂+∇cR̂ab∇cR̂ab

)
(2.19)

for d ≤ 8. The associated boundary stress-energy tensor can be obtained by the variation
of the action with respect to the variation of the boundary metric, and is given by:

−8πGTab =

(
Kab −Khab

)
+

{(
d− 1
`

hab +
`Θ(d− 3)
(d− 2) Gab

)
− `3Θ(d− 4)
(d− 2)2(d− 4) ×

×
[
−1
2
hab

(
R̂cdR̂cd −

d

4(d− 1) R̂
2

)
− d

2(d− 1) R̂R̂ab −

− 1

2(d− 1)hab∇
2R̂+2R̂cdR̂cadb−

d−2
2(d−1)∇a∇bR̂+∇2R̂ab

]
−

– 5 –
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− 2`5Θ(d− 5)
(d− 2)3(d− 4)(d − 6) ×

×
{
3d+ 2

4(d− 1)

(
GabR̂

cdR̂cd −∇a∇b

(
R̂ef R̂ef

)
+ hab∇2

(
R̂ef R̂ef

))
+

+ 2R̂R̂ c
a R̂bc + hab∇c∇d

(
R̂R̂cd

)
+∇2

(
R̂R̂ab

)
−∇c∇b

(
R̂R̂ac

)
−

−∇c∇a

(
R̂R̂bc

)
− d(d+ 2)

16(d − 1)2 ×

×
[
−1
2
habR̂

3 + 3R̂2R̂ab − 3∇a∇bR̂
2 + 3hab∇2R̂2

]
−

− 2
[
−1
2
habR̂

ef R̂cdR̂ecfd +
3

2
−
(
−R̂ e

a R̂
cdR̂ecbd + R̂ e

b R̂−cd R̂ecad

)
−

−∇c∇d

(
−R̂abR̂

cd

)
+∇c∇d

(
−R̂ c

a R̂
d
b

)
+

+ hab∇e∇f

(
R̂cdR̂e

cfd

)
+∇2

(
R̂cdR̂acbd

)
−∇e∇a

(
R̂cdR̂e

cbd

)
−

−∇e∇b

(
R̂cdR̂e

cad

)]
− d

4(d− 1) ×

×
[
∇aR̂∇bR̂−

1

2
hab

(
∇cR̂∇cR̂

)
− 2R̂ab∇2R̂− 2hab∇4R̂+

+ 2∇a∇b∇2R̂
]
+ 2∇cR̂ad∇cR̂ d

b +∇aR̂
cd∇bR̂cd −

− 1
2
hab∇eR̂cd∇eR̂cd − hab∇c∇d∇2R̂cd −∇4R̂ab +∇c∇a∇2R̂ c

b +

+∇c∇b∇2R̂ c
a −∇c

(
R̂bd∇aR̂

cd

)
−∇c

(
R̂ad∇bR̂

cd

)
− (2.20)

−∇c

(
R̂ad∇cR̂ d

b + R̂bd∇cR̂ d
a

)
+∇c

(
R̂cd∇aR̂

d
b

)
+∇c

(
R̂cd∇bR̂

d
a

)}}
.

If the boundary geometry has an isometry generated by a Killing vector ξµ, then it is

straightforward to show that Tabξ
b is divergenceless. We write the boundary metric in the

form

habdx̂
adx̂b = dŝ2 = N2

t dt
2 + σab (dϕ

a +Nadt)
(
dϕb +N bdt

)
, (2.21)

where ∇µt is a spacelike vector field that is the analytic continuation of a timelike vector

field and the ϕa are coordinates describing closed surfaces Σ. From this it is straightforward

to show that the quantity

Q =

∮

Σ
dd−1ϕ

√
σnaTabξ

b (2.22)

– 6 –
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is conserved between surfaces of constant t, whose unit normal is given by na. Physically

this would mean that a collection of observers on the hypersurface whose metric is hab

would all observe the same value of Q provided this surface had an isometry generated by

ξb. If ∂/∂t is itself a Killing vector, then we can define

M =

∮

Σ
dd−1ϕ

√
σNtn

anbTab (2.23)

as the conserved mass associated with the surface Σ at any given point t on the boundary.

This quantity changes with the cosmological time τ . However a collection of observers that

defined a surface Σ would find that the value of M that they would measure would not

change as they collectively relocated to a different value of t on the spacelike surface ∂M.
Since all asymptotically de Sitter spacetimes must have an asymptotic isometry generated

by ∂/∂t, there is at least the notion of a conserved total mass M for the spacetime as

computed at future/past infinity. Similarly the quantity

Ja =

∮

Σ
dd−1ϕ

√
σσabncTbc (2.24)

can be regarded as a conserved angular momentum associated with the surface Σ if the

surface has an isometry generated by ∂/∂φa.

3. Actions in de Sitter spacetime

We consider in this section an evaluation of the action using the prescription (2.19). From

equation (2.10), one gets

R = −Λ d+ 1

(1− (d+ 1) /2) = −
d (d− 1) (d+ 1)
(1− d) `2

=
d (d+ 1)

`2
(3.1)

so that

IB =
α

16πG

∫

M
dd+1x

√
−g
(
d (d+ 1)

`2
− d (d− 1)

`2

)
=

dα

8πG`2

∫

Md

ddx̂

∫
dτ
√
f
√
h ,

(3.2)

where Vd =
∫
Md

ddx̂ is the volume of the d dimensional spatial section, and τ is the

orthogonal coordinate direction.

The metric is of the form

ds2 = −f (τ) dτ 2 + dŝ2 , (3.3)

where dŝ2 is given by (2.21). Hence the timelike vector normal to the hypersurface is

uµ =
(
f−1/2 (τ) , 0, 0, . . . , 0

)
(3.4)

which yields

K = hµν∇µuν = −hµνΓλµνuλ = −
1

2
√
f
hµν (∂νhµτ + ∂µhντ − ∂τhµν)

=
1

2
√
f
hµν∂τhµν (3.5)

– 7 –
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in turn giving

I∂B =
β

32πG
√
f

∫ M+

d

M−
d

ddx̂
√
h (hµν∂τhµν) . (3.6)

So we finally get

I = IB + I∂B + Ict

=
1

16πG`2

∫ M+
d

M−
d

ddx̂

[(
2dα

∫
dτ
√
h
√
f

)
+
√
h

(
β

2
√
f
(hµν∂τhµν) + Lct

)]
(3.7)

for the generic form of the action. We turn next to its evaluation in de Sitter spacetime.

3.1 Inflationary coordinates

The dS spacetime admits a coordinate system where equal time surfaces are flat. In this

case

ds2 = −dτ 2 + e2τ/`d~x2 (3.8)

is the solution to the Einstein equations in de Sitter coordinates. τ changes from −∞ to

+∞, and this patch (called the big bang patch) covers half of the dS spacetime from a

big bang at a past horizon to the euclidean surface at future infinity. The other half (big

crunch patch) of the dS spacetime from past infinity to a future horizon could be obtained

by replacing τ by −τ in (3.8). So, comparing with (3.3), h+µν is a flat metric, and the
counterterm lagrangian reduces to its first term for any d. Hence we have

I =
1

16πG

∫

M+

d

ddx̂

[
2dα

∫ +∞

−∞

dτ

`2
edτ/` +

β

2
(2d/`) edτ/`

∣∣∣
+∞

−∞
+ γ edτ/`

∣∣∣
τ=+∞

(
1− d

`

)]

=
Vd

16πG`

[
2α+

β

2
(2d) + γ (1− d)

](
edτ/`

∣∣∣
∞

−∞

)
, (3.9)

where Vd =
∫
M+

d
ddx̂. This will diverge at τ = +∞ unless

β = γ = −2α (3.10)

in which case it vanishes. The quantity Vd will also diverge unless the boundary rendered

compact, e.g. by toroidal identifications.

So, for every dS spacetime in big bang coordinates the counterterm lagrangian (2.19)

removes all the divergences of the action (2.5) in any dimension. A similar calculation

shows that in the big crunch coordinates with choosing (3.10) the divergences of the action

are removed.

3.2 Covering coordinates

Now we use global coordinates of the dS spacetime for which equal time hypersurfaces are

d-spheres Sd

ds2 = −dτ 2 + `2 cosh2 (τ/`) dΩ̂2d . (3.11)

– 8 –
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These hypersurfaces have an infinitely large radius at τ = −∞, which decrease to a mini-

mum value ` as τ → 0, increasing again to infinity for τ = +∞. Here hµν is the metric of

the d-sphere, so we have

R̂acbd = (habhcd − hadhbc) R̂ab = (d− 1) hab R̂ = d (d− 1)
R̂abR̂

ab = (d− 1)2 d R̂abR̂cdR̂acbd = d (d− 1)3 . (3.12)

This in turn yields the following counterterm lagrangian (2.19)

Lct = γ

[(
−d− 1

`
+
Θ(d− 3) d (d− 1)
2`(d− 2) cosh2 (τ/`)

)
+

Θ(d− 4) d(d − 1)
8`(d− 4) cosh4 (τ/`)

+

+
Θ(d− 5) (d− 1) d
16`(d − 6) cosh6 (τ/`)

]
(3.13)

and so the total action is

I =
`d−1Vd

16πG
×

×
[
2dα

∫ T

−T
d (τ/`) coshd (τ/`) + 2

β

2
(2d) coshd−1 (T/`) sinh (T/`) +

+ 2γ

{
coshd (T/`)

(
1− d+

Θ(d− 3) d (d− 1)
2(d− 2) cosh2 (T/`)

)
+ (3.14)

+
Θ (d− 4) d(d− 1) coshd−4 (T/`)

8(d − 4) +
Θ (d− 5) (d− 1) d coshd−6 (T/`)

16(d − 6)

}]

up to d = 8. Using (3.10), and setting α = 1, we obtain

Id=2 =
(4T/` + 2)

16πG
`V2

Id=3 = 0

Id=4 =
(6T/` − 3/2)
16πG

`3V4

Id=5 = 0

Id=6 =
(15T/2` − 25/8)

16πG
`5V6

Id=7 = 0

Id=8 =
(35T/4` − 413/96)

16πG
`7V8 (3.15)

for the action (3.14) in the different dimensionalities.

We see that the action is finite up to a term that diverges linearly with T for even d as

T →∞. This divergence cannot be removed by a judicious choice of counterterms that are
polynomials in boundary curvature invariants because such invariants are all independent

of τ , as illustrated in eq. (3.12). Clearly there are limitations to the counterterm

prescription. We shall comment on the implications of this in terms of a possible dS/CFT

correspondence in the concluding section 5.

– 9 –



J
H
E
P
0
1
(
2
0
0
2
)
0
0
5

4. Schwarzchild-dS spacetimes

In this section, we consider the d+ 1 dimensional SdS spacetime. The metric is

ds2 = −N(r)dt2 + dr2

N(r)
+ r2dΩ̂2d−1 , (4.1)

where

N(r) = 1− 2m

rd−2
− r2

`2
(4.2)

and dΩ̂2d−1 denotes the metric on the unit sphere S
d−1. For mass parameters m with

0 < m < mN , where

mN =
`d−2

d

(
d− 2
d

) d−2

2

(4.3)

we have a black hole in dS spacetime with event horizon at r = rH and cosmological horizon

at r = rC > rH . The event and cosmological horizons locate in N(rH) = N(rC) = 0.When

m = mN , the event horizon coincides with the cosmological horizon and one gets the Nariai

solution. For m > mN , the metric (4.1) describes a naked singularity in an asymptotically

dS spacetime. So demanding the absence of naked singularities yields an upper limit to the

mass of the SdS black hole. We want to work outside of the cosmological horizon, where

N(r) < 0, so we set r = τ and rewrite the metric as

ds2 = −f(τ)dτ 2 + dt2

f(τ)
+ τ2dΩ̃2d−1 , (4.4)

where

f(τ) =

(
τ2

`2
+
2m

τd−2
− 1
)−1

. (4.5)

The bulk action is now

IB =
d

8πG`2

∫
ddx

∫ τ

τ+

dτ
√
f
√
h =

d

8πG`2

∫
dtdd−1x̂

√
σ

∫ τ

τ+

dττd−1

=
V t
d−1

8πG`2

(
τd − τd+

)
, (4.6)

where V t
d−1 =

∫
dtdd−1x̂

√
σ, where σab is the metric on the unit (d − 1)-sphere. Here

τ+ is the location of cosmological horizon which defined so that τ+ is the largest root of

[f(τ+)]
−1 = 0; the integration is from the cosmological horizon out to some fixed τ that

will be sent to infinity. We shall work in this “upper patch” outside of the cosmological

horizon in SdS spacetime; results for the lower patch are obtained in a similar manner by

setting r = −τ and considering −∞ < τ < −τ+ .
The trace of the extrinsic curvature is

K =
1

2
√
f
hµν∂τhµν =

√
f

2
∂τ

(
1

f

)
+
(d− 1) τ−2
2
√
f

∂τ τ
2

=
1

2
√
f

(
−f
′

f
+
2 (d− 1)

τ

)
(4.7)
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and so the boundary action becomes

I∂B = −
1

16πGf

∫
dtdd−1x̂

√
στd−1

(
−f
′

f
+
2 (d− 1)

τ

)

= −
V t
d−1

16πGf
τd−1

(
−f
′

f
+
2 (d− 1)

τ

)
, (4.8)

where (3.10) with α = 1, has been employed.

Here hµν is the product metric of the (d− 1)-sphere σab with dt, so we have

R̂acbd = (σabσcd − σadσbc) R̂ab = (d− 2) σab R̂ = (d− 2) (d− 1)
R̂abR̂

ab = (d− 2)2 (d− 1) R̂abR̂cdR̂acbd = (d− 1) (d− 2)3

∇cR̂ab = ∇cR̂ = 0 , (4.9)

where all t-components in any quantity in (4.9) vanish. Consequently

Lct =

(
−d− 1

`
+
`Θ(d− 3)
2τ2

(d− 1)
)
− `3Θ(d− 4)
2(d − 4)τ 4 (d− 1)

(
1− d

4

)
−

− `5Θ(d− 5)
(d− 4)(d − 6)τ 6 (d− 1)

[
3d+ 2

4
− d(d+ 2)

16
− 2
]

=

(
1− d

`
+
`Θ(d− 3)
2τ2

(d− 1)
)
+
`3Θ(d− 4)
8τ4

(d− 1) + `5Θ(d− 5)
16τ6

(d− 1) .(4.10)

So using (3.10) the action becomes

I =
V t
d−1

8πG`2

(
τd − τd+

)
−

V t
d−1

16πGf
τd−1

(
−f
′

f
+
2 (d− 1)

τ

)
−

−
(d− 1) V t

d−1τ
d−1

8πG
√
f

[(
−1
`
+
`Θ(d− 3)
2τ2

)
+
`3Θ(d− 4)
8τ4

+
`5Θ(d− 5)
16τ6

]

=
V t
d−1τ

d−1

8πG

[
1

`2
(τ − τd+

τd−1
)− 1

2f

(
−f
′

f
+
2 (d− 1)

τ

)
− (d− 1)√

f
×

×
[(
−1
`
+
`Θ(d− 3)
2τ2

)
+
`3Θ(d− 4)

8τ4
+
`5Θ(d− 5)
16τ6

]]
(4.11)

and we obtain the following form of the actions in different dimensions

Id=2 = −
(
m− 1/2 + τ 2+/2`

2
)
V t
1

4πG

Id=3 = −
(
m+ τ3+/2`

2
)
V t
2

4πG

Id=4 = −
(
m− 3`2/8 + τ 4+/2`

2
)
V t
3

4πG

Id=5 = −
(
m+ τ5+/2`

2
)
V t
4

4πG

Id=6 = −
(
m− 5`4/16 + τ 6+/2`

2
)
V t
5

4πG
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Id=7 = −
(
m+ τ7+/2`

2
)
V t
6

4πG

Id=8 = −
(
m− 35`6/128 + τ 8+/2`

2
)
V t
7

4πG
(4.12)

in the limit τ → +∞. We note that all actions are finite. Note that the τ+-independent
terms for even d are consistently positive.

From (2.23) the mass is

M =

∫
dd−1x̂

√
στd−1Ntn

anbTab =
√
f

∫
dd−1x̂

√
στd−1Ttt , (4.13)

where

na = (0,
√
f,~0) (4.14)

is the unit normal in the t-direction and Nt =
1√
f
. The extrinsic curvature Kab = hµa∇µub

is

Ktt = hµt∇µut = hµt

(
∂µut − Γλµtuλ

)
= − 1

2
√
f
(2∂thtτ − ∂τhtt)

=
1

2
√
f
∂τhtt = −

f ′

2f2
√
f
, (4.15)

where the prime refers to the derivative with respect to τ .

Since there is constant curvature in the (d− 2)-dimensional subspace and all t-compo-
nents vanish from the curvatures in (4.9), we have

Ttt =
1

4πG

[
(Ktt −Khtt) +

(
d− 1
`

htt −
`Θ(d− 3)
2(d− 2) httR̂

)
−

− `3Θ(d−4)
(d−2)2(d−4)

{
−1
2
htt

(
R̂cdR̂cd−

d

4(d−1) R̂
2

)}
− 2`5Θ(d−5)
(d− 2)3(d− 4)(d− 6) ×

×
{
3d+ 2

4(d− 1)

(
−1
2
httR̂R̂

cdR̂cd

)
− d(d+ 2)

16(d − 1)2

[
−1
2
httR̂

3

]
− 2−

− 1
2
httR̂

ef R̂cdR̂ecfd ++htt∇e∇f
(
R̂cdR̂e

cfd

)
+∇2

(
R̂cdR̂tctd

)
−

− 2∇e∇t

(
R̂cdR̂e

ctd

)}]
(4.16)

or

Ttt =
1

4πG

[
− 1

2f
√
f

(
2 (d− 1)

τ

)
+

(
d− 1
f`

− `Θ(d− 3)
2fτ2

(d− 1)
)
−

− `3Θ(d− 4)
8fτ4

(d− 1)− 2`
5Θ(d− 5)
32fτ 6

(d− 1)
]
. (4.17)

From this component of stress tensor, using (4.13), we obtain

Md=2 = − V1
8πG

(2m− 1)
{
1 +

1

4τ2
`2(2m− 1) +O

(
1

τ4

)}
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Md=3 = − V2
8πG

(
4m− `2

2τ
+O

(
1

τ3

))

Md=4 = − V3
8πG

(
6m− 3

4
`2 +

3`2

64τ4
(8m− `2)2 +O

(
1

τ6

))

Md=5 = − V4
8πG

(
8m− `4

2τ
+O

(
1

τ3

))

Md=6 = − V5
8πG

(
10m− 5

8
`4 − 5`6

64τ2
+O

(
1

τ6

))

Md=7 = − V6
8πG

(
12m− 15

32

`6

τ
+O

(
1

τ3

))

Md=8 = − V7
8πG

(
14m− 35

64
`6 − 7

64

`8

τ2
+O

(
1

τ4

))
, (4.18)

where we have retained the leading terms in τ in the large-τ limit. For odd values of d, M

is an increasingly negative function of τ , approaching a constant negative value as τ →∞.
For even values of d the situation is reversed: M is an increasingly positive function of τ ,

approaching a constant positive value as τ →∞. As the mass parameter m increases, this
constant positive value decreases, approaching its minimum at the Nariai limit. Setting

m = 0 gives the mass of dS spacetime in different dimensionalities. We note that dS

spacetime with even dimensions has zero mass and the others with even dimensions have

positive mass. Our results in the special case of d = 4 agrees with the known Casimir

energy of the dual CFT living on the boundary of dS5 [7] (up to a sign, because our signs

are the same as [2]). Also, we note that our mass formula in the special case of d = 2 agrees

with the result of [8]. Furthermore, we observe that if the dual CFT theory exists [27, 28]

(like the CFT dual to AdS spacetime), then the dual of the calculated massMd (4.18) is the

energy of a boundary euclidean CFTd. Since our mass Md decreases with increasing black

hole mass parameter m, so the entropy of the dual boundary theory which is proportional

to the energy of the boundary CFT, decreases relative to its de Sitter maximum.

The volumes V t
d−1 are in general divergent, since the t-coordinate is of infinite range.

However since ∂/∂t is a Killing vector, it is tempting to periodically identify it. Indeed, if we

analytically continue t→ it, we obtain a metric of signature (−2, d− 1). The submanifold
of signature (−,−) described by the (t, τ) coordinates will have a conical singularity at
τ = τ+ unless the t-coordinate is periodically identified with period

βH =

∣∣∣∣
4π

(−N ′(r))

∣∣∣∣
r=τ+

=

∣∣∣∣
−4πf ′(τ)

f2

∣∣∣∣
τ=τ+

. (4.19)

This is the analogue of the Hawking temperature outside of the cosmological horizon.

Proceeding further, we can provisionally define an ‘entropy’ by analytically continuing

the gravitational Gibbs-Duhem relation [15]:

S = βHMτ→∞ − I , (4.20)

where βH =
∮
dt is the euclideanized integral over t.This gives

Sd =

(
τd+ − 2(d− 2)m`2

)
βHVd−1

8πG`2
(4.21)
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up to d = 8. It is straightforward to show that these entropies are always positive, since

τd+ > 2(d − 2)m`2 so long as m < mN .

For example, for d = 2, we have

τ2+
`2
+ 2m− 1 = 0 ⇒ τ+ = `

√
1− 2m

⇒ Sd=2 =
(1− 2m) βHV1

8πG
(4.22)

and from (4.19) we have βH = 2π`
2/τ+, so

Sd=2 =
τ+V1
4G

=
π`
√
1− 2m
2G

(4.23)

in agreement with ref. [2] and [8], provided we set 1 − 2m → M , which is the metric

for a conical deficit. Moreover, from expressions (4.21), we see that in any dimension up

to nine, the entropy of SdS black hole is monotonically decreasing function of the mass

parameter. Hence the entropy of a massive SdS black hole is less than the entropy of empty

dS spacetime. So, the D-bound [29] on the entropy of asymptotically dS spacetimes with

positive cosmological constant is satisfied.

5. Discussion

We have shown in this paper that the counterterm generating algorithm in asymptotically

AdS spacetimes [10] can be generalized to the asymptotically de Sitter case. We have

explicitly computed the counterterm lagrangian and associated boundary stress-energy up

to d = 8. The results are a straightforward analytic continuation of the anti de Sitter case.

However their interpretation is somewhat less clear. While the conserved charges (2.22)

can be associated with the closed surface Σ, this surface does not itself enclose anything,

since the topology of the hypersurface is R×Sd−1. Consequently one cannot really consider

the conserved charges as being contained within Σ. However this is not as dissimilar to

the asymptotically flat and anti de Sitter cases (where ∂/∂t is timelike) as it may first

appear. In those situations, the conserved quantities are defined on a given spatial slice

which evolves in time. Although it is natural to think of these quantities as being contained

within the hypersurface this need not be so, since anything that the observers measure are

contingent only upon their choice of closed spatial surface on a given spacelike slice, and

not on anything that takes place within the surface [12]. Indeed, they need not even be

aware than an interior exists!

Notwithstanding such interpretive subtleties, the results are tantalizingly similar to

those obtained in the AdS case, and provide further evidence for a possible dS/CFT corre-

spondence. The terms proportional to `d−2 in the action and in the conserved masses for

even d are presumably the analogues of the Casimir energy of the dual euclidean CFT, and

have been shown to be such in restrictive cases [7]. The masses are consistently negative in

any dimension, and the additional contributions in even d are consistently positive. Their

AdS counterparts could be obtained by a Wick rotation ` → i`; indeed the dS procedure

is in some sense a “Wick rotation” of the AdS procedure [30].

– 14 –
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However note that the mass parameter m can be negative; although the spacetime has

singularities, these are always hidden from observers outside of the cosmological horizon.

For observers located in the “lower patch” of the Penrose diagram these singularities are

hidden behind a future horizon, whereas they are in behind the past horizon for observers

in the “upper patch”. If negative values of m are permitted then the conserved mass M

is always positive and greater than its value in de Sitter spacetime; moreover observers

outside the cosmological horizon will never encounter the singularities. Whether or not

this violates the conjecture of ref. [2] will depend upon a clarification of the notion of a

cosmological singularity in this context.

We also found that the counterterm lagrangian cannot always cancel divergences in the

action. Specifically, for de Sitter spacetime there are divergences in the action for even val-

ues of d when the boundary geometry is Sd. These divergences are the de Sitter analogues

of those found in the AdS case [11] for compact boundary geometries of the form S d or Hd,

where the latter is a compact hyperbolic space of non-trivial topology. For reasons similar

to the AdS case, this need not be fatal to a putative dS/CFT correspondence conjecture

— the linear divergence could be reflective of a UV divergence in the euclidean CFT.

Finally, we constructed a provisional definition of entropy by generalizing the Gibbs-

Duhem relation in asymptotically flat and AdS spacetimes. By analytically continuing

the t-coordinate to imaginary values outside of the cosmological horizon, we find that the

resultant metric will have conical singularities unless the imaginary t-coordinate is appro-

priately periodically identified. Although the choice of periodicity needs to be more fully

justified, it yields finite and well-defined values for the provisional entropy (4.20) which

are in agreement with those obtained from CFT methods in d = 2 and which satisfy the

D-bound on the entropy of asymptotically dS spacetimes. This suggests that a well-defined

notion of gravitational entropy outside of a cosmological horizon can be meaningfully con-

structed. Its full meaning within the context of gravitational thermodynamics remains a

subject for future investigation.
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Erratum

Several typographical errors are present in some of the formulae. The relations (4.12)

should read

Id=2 = −
(
m− 1/2 + τ 2+/`

2
)
V t
1

8πG

Id=3 = −
(
m+ τ3+/`

2
)
V t
2

8πG

Id=4 = −
(
m− 3`2/8 + τ 4+/`

2
)
V t
3

8πG

Id=5 = −
(
m+ τ5+/`

2
)
V t
4

8πG

Id=6 = −
(
m− 5`4/16 + τ 6+/`

2
)
V t
5

8πG

Id=7 = −
(
m+ τ7+/`

2
)
V t
6

8πG

Id=8 = −
(
m− 35`6/128 + τ 8+/`

2
)
V t
7

8πG
.

In the formulae (4.18), the factor 8πG must be replaced by 16πG; these should therefore

read

Md=2 = − V1
16πG

(2m− 1)
{
1 +

1

4τ2
`2(2m− 1) +O

(
1

τ4

)}

Md=3 = − V2
16πG

(
4m− `2

2τ
+O

(
1

τ3

))

Md=4 = − V3
16πG

(
6m− 3

4
`2 +

3`2

64τ4
(8m− `2)2 +O

(
1

τ6

))

Md=5 = − V4
16πG

(
8m− `4

2τ
+O

(
1

τ3

))

Md=6 = − V5
16πG

(
10m− 5

8
`4 − 5`6

64τ2
+O

(
1

τ6

))

Md=7 = − V6
16πG

(
12m− 15

32

`6

τ
+O

(
1

τ3

))

Md=8 = − V7
16πG

(
14m− 35

64
`6 − 7

64

`8

τ2
+O

(
1

τ4

))
.

There is a typo in formula (4.19), so it must read as

βH =

∣∣∣∣
4π

(−N ′(r))

∣∣∣∣
r=τ+

=

∣∣∣∣
−f ′(τ)
4πf2(τ)

∣∣∣∣
−1

τ=τ+

.

Finally relation (4.21) should read

Sd =

(
τd+ − (d− 2)m`2

)
βHVd−1

8πG`2
.
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