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noncommutative spacetime

Yi Liao
Institut fiir Theoretische Physik, Universitat Leipzig

Augustusplatz 10/11, D-04109 Leipzig, Germany
E-mail: liaoy@itp.uni-leipzig.de

ABSTRACT: We examine the renormalizability problem of spontaneously broken
non-abelian gauge theory on noncommutative spacetime. We show by an explicit
analysis of the U(2) case that ultraviolet divergences can be removed at one loop
level with the same limited number of renormalization constants as required on com-
mutative spacetime. We thus push forward the efforts towards constructing realistic
models of gauge interactions on noncommutative spacetime.
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1. Introduction

There have been intense activities in noncommutative (NC) field theory since it was
found to arise naturally as a specific limit of string theory [1]. But NC field the-
ory is also interesting in its own right both as a theory which may be relevant to
the real world and as a quantum structure on NC spacetime which is very distinct
from the one built on the ordinary commutative spacetime. Concerning this, we
may mention two issues among others, the unitarity and causality problem [2] and
the ultraviolet-infrared mixing [3]. The new interactions and Lorentz violation in-



troduced by noncommutativity also lead to novel phenomenological implications [4],
some of which are quite different from those of ordinary new physics beyond the
standard model.

Supposing the idea of NC spacetime is physically relevant, it would be desirable
to consider whether it is possible to extend the standard model of the electroweak
and strong interactions to NC spacetime. It is not completely clear at the moment
how to construct such a realistic model due to restrictions on gauge groups from
the closure of algebra [5], on possible representations that can be well defined [6]
for a product of gauge groups, and potential obstacles in anomaly cancellation that
becomes more restrictive [7], and so on [8]. But it is of no doubt that such a model
should be perturbatively renormalizable so that gauge symmetry can be maintained
order by order in the renormalized theory. Although there is no general proof on
renormalizability of gauge theory on NC spacetime for the time being, explicit anal-
yses are indeed available up to some order in some models. It has been shown that
exact U(1) [9] and U(N) [10] gauge theories are renormalizable at one loop. The
renormalizability of the real ¢* theory has even been confirmed up to two loops
[11]. But theories with spontaneous symmetry breaking are more subtle. At first
glance one might imagine that the divergence problem cannot be worse compared to
the commutative case because of oscillating factors introduced by the star product.
But actually renormalizability depends on delicate cancellation of seemingly different
sources of divergences which is governed by Ward identities. It is not self-evident
at all whether this well-weighted arrangement still persists in NC theories. This is
especially true of spontaneously broken theories. As pointed out in ref. [12], there
are already problems for spontaneously broken global symmetries; namely, the Gold-
stone theorem holds valid at one loop level for the NC U(V) linear ¢ model with
a properly ordered potential, but not for the O(/N) one (except for N = 2 which is
equivalent to U(1)). An explicit analysis for the spontaneously broken U(1) gauge
theory has been given recently in ref. [13] with the positive result that the divergences
can be consistently subtracted at one loop. It is the purpose of this work to pursue
further along this line by examining the non-abelian case. The motivation for this
should be clear from the above discussion; it is the non-abelian case, especially U(2),
that is closer to our goal of building up a model of electroweak interactions on NC
spacetime. Our positive result should be encouraging to the efforts in this direction.

The paper is organized as follows. In the next section 2 we present the setup of
the model in which we will work. In particular we do gauge-fixing and work out its
corresponding ghost terms including counterterms. Section 3 contains the explicit
result of divergences in one loop 1PI functions. The renormalization constants are
then determined in the MS scheme. We summarize in the last section 4 and state
the limitations of this work and prospects for further study. The Feynman rules are
listed in appendix A, and collected in appendix B are topologically distinct Feynman
diagrams for the 1PI functions computed in section 3.



2. The model

2.1 Brief introduction to NC field theory

Throughout this paper, by n dimensional noncommutative spacetime we mean the
one that satisfies the following canonical relation,

[i‘;“ :%V] = ieuu ’ (21)
where 0, is a real, antisymmetric, n X n constant matrix. Following Weyl we can

define a function on NC spacetime by the Fourier transform,
1

@Wﬁ/fkﬁw7w, (2.2)

where the same f(k) simultaneously defines a function on the usual commutative

f@) =

spacetime,
1

f(z) = ) /d4l<; eFntt f(E) (2.3)

This implements what is known as the Weyl-Moyal correspondence. This relationship
is preserved by the product of functions if we replace the usual product of functions
on commutative spacetime by the following Moyal-x product,

(s £00) = oo (3070502 ) o) (2.4)

y=z

Namely, using eq. (2.1) it is straightforward to show that fl f2 and f; x fo share the
same Fourier tranform. In this sense we may study a field theory on NC spacetime
by studying its counterpart on commutative spacetime with the usual product of
functions replaced by the starred one. A different formalism based on the Seiberg-
Witten map is developped in refs. [14]. While there are problems such as the UV-IR
mixing in the former approach, it is also not clear how to handle with the expansion
of # at quantum level in the latter [15]. In this paper we will work in the former
naive formalism.

For convenience we list below some useful properties of the star product of func-
tions which will be freely used in deriving Feynman rules.

(fl*f2)*f3 = fl*(fz*f:s),
(fixfo)t = f = 1,
Jix fo= fox filo——o,

/d"x Fikfo = /d"x fox fu (2.5)

where the last one holds for functions which vanish fast enough at infinite spacetime.



2.2 Classical lagrangian

Instead of considering the general U(V) gauge group, we restrict our explicit analysis
to the U(2) case. The reason is twofold. First, the U(2) group is close to the standard
model and thus physically well motivated. Second, it is algebraically easier to handle
while it has a rich enough structure so that we expect the same conclusion should
also be appropriate to the general U(N) case.

We begin with the scalar potential which triggers the spontaneous symmetry

breakdown of U(2) to U(1),
V=—gi’0lxd+ A0« D+ DT % D, u?> >0, A>0, (2.6)

where @ is in the fundamental representation of U(2). We assume its vacuum expec-
tion value is independent of x; without loss of generality we take

with v = \/u?/\. The negative potential in terms of shifted fields is

1 1
L_y = —§m§02 — )\{UO’(UQ + b 2m ) Ao mT_Ty + 1(04 + 7))+ (2.8)

1
+ 7wy (o + 7)) + olmg — 5000 + 7w, i[o, 7'('0]} ,

where m, = vv/2\ is the mass of the physical Higgs boson. We have freely ignored
terms which vanish upon spacetime integration using properties of the star product.
We also suppress the explicit x notation from now on.

It is convenient to formulate the gauge part by matrix. Denoting

1
éaA for A=1,2,3

1
th = , with tr (t4P) = 548, (2.9)
1 2
—1y for A=0
2
the gauge field is
1 A, Wt
=Git=— (" ). 2.1
G =Gt ﬁ(W; Zu> (210
The Yang-Mills lagrangian is
1
Lo= —§Tr G G", Guw =0,G, — 0,G, —ig|G,,G,], (2.11)

where g is the coupling. In terms of physical fields A, Z and W¥ as to be clear later
on, we have

La = Log + Lsg + Lu, (2.12)



where

1 1
Log = _Z(auAu —0,A.)° — Z(ﬁuzv —0,2,)" -

1 2 14 -
—5(@14/”+ — QW) (O"W ™" — "W H), (2.13)
Lic =+ OuAA", A +0,2,(2, 7)) +
Zg —v v — —v v —
+EA“ (WSOW " + " W,IW, — W)W —W}o'w, ) +
+%Z“ (W, 0, + "W, Wi — 9,W, W — W, oW, +
ig v _ _ P _
+ﬁ (A (WiW, —WSW, )+ ohzv (W, W,F =W, Wih),  (2.14)
g2
L = +§ ( +1Z,,2,)] )
2
+gz (W W, W — W, W W W — WA W) +
2
+ 5 ([ AIWIW + A AWEW, = AW +
2
+ 5 (2, 2 W W+ 202 W W = 2 LW W) +
2
9 ” P .
+3 TA QWS Z W = W ZW S - WEZYW) (2.15)
The covariant kinetic lagrangian for the scalar is
Ly =(D,®)'D'®, D, ®=09,9—igG,P. (2.16)
In terms of physical fields it can be cast in the form,
Lo = Loy + LG mass + Loc + Laos + Lace + Laces (2.17)
where
1 2 1 2 ,u
Loy = 5(3“0) + é(au%) + Oy 0w, (2.18)
1
EG mass — imQZZHZM + mIQ/VW;j_W_M7 (219)
Log = —mzZ"0,mo + imw (W, 0 — W Foln_), (2.20)

Lcos = +—gA M Opmym_ — my0,m_) +

V2
+%Z“ (000 — 00,0) + (0,momo — TeOyumo)) +
+7Z“ (7900 — Oymoo + 0,0mg — 00, o) +



+%WJ(3“J7L —odtm_) + %Wg(ﬁ“mra — i 0%0) +
+gW:(7T08“7r, — OMmom_) + gW;(@”mﬂro — myotm), (2.21)
g*v

2v/2
g*v
+7<W;W+‘u + Z“Z“)O', (222)
2

Lecy = + (A (T W, + W)+ ZH (W mp + 7 W) +

Laaey = +%7T+7T, (A“A“ + W:Wiu) +

2
+ 4 (0% i, o) (2,2 + W, W) 4

2
+ Lo (r AW + Wy APz )+ (r WEZP 4 ZM W my)) +

2v/2

-2
+%m (r APWF — Wi Alr) + (r W20 — 2MW ), (2.23)

and my = gv/2 and mz = gv/+/2 are W* and Z masses respectively.
The action defined by the classical lagrangian

‘Cclass = ‘CG’ + £<I> + E—V (224)
is invariant under the generalized, starred U(2) transformation,
G, — G, =UxGuxU" +ig ' Ux9,U",

- =UxP, (2.25)

where U = exp(ign(z)), and we have restored the explicit star notation for clearness.

2.3 Gauge fixing and ghost terms

To make the theory well-defined and to quantize it, we should do gauge fixing and
include its corresponding ghost terms. Since the quadratic terms in the action remain
the same on NC spacetime, it is easy to expect how to generalize the gauge fixing
procedure; namely we replace the usual product by the starred one (again suppressing
the notation from now on),

‘Cg-f- = _%Tr(ff) )

[ = 0"G, +igt(¢'t g — ot o)t . (2.26)
To construct the ghost terms we first generalize the BRS transformation to NC
spacetime,
0G, = €(Ouc +1iglc,G,]),
0p = €iged Sl = —eigde,
dc = eigee, (2.27)



where € is an infinitesimal Grassmann constant and c is the ghost field. We have
Lohost = —2Tr(csf), (2.28)
where esf is the BRS transformation of the gauge fixing function f and thus,
sf = 0"(duc+igle, G,]) + g* (@ et ¢y + it cd)t . (2.29)

Noting that s?f = 0, the BRS invariance of the sum Lot + Lghost is then guaranteed
by requiring

§c=—Zef. (2.30)

We parametrize the ghost fields as follows,

1 1 C C
c:_<CA C+), c:—(CA C*). (2.31)
V2 \eo ¢z 2\ ¢ ¢z

Then, the explicit forms of L, ¢ and Lghost are,

Loi = 22 ((0"A,)? + (9" 2,)?) — %auwja"w; _
——§mZ7r0 Emiymim_ —
—mymod" Z,, — imy (m_ "W — m MW ) (2.32)
Eghost = ‘CCE =+ L(bcé =+ ‘CGCE ) (233)
Loz = —EAﬁch —E2(0? +&m%)ey — e (0 + Emiy ey — (0% + Emiy e, (2.34)
'Cqbcé = —ng <\/_CA7T+ + c+ o+ mo)) —
1
—Zgg vy (\/_7T ca+ (o —imp)c- ) -
1
—Zgg vy <\/§ n_cy +c_my)+{o,cz} + ez, WO]) (2.35)

i
Lo = ——Led” ([ea A + (2, — Wiel) -
—Eézﬁ“ ([Cz, Zﬂ] + (wa!j - W;C+)) —
——C_au (CAW A C+ + C+Z — W Cz) —
9 - _
—ﬁq@“ (c_A, — W, eca+czW, — Zyc_). (2.36)

Note that the G¢ mixing terms in L, s are cancelled by L4¢. The complete Feynman
rules are collected in appendix A.



2.4 Renormalization constants and counterterms

To go beyond the lowest order we introduce the following renormalization constants
for bare quantities,

(GM)B = Z(l;/QGuv (¢)B = Z¢1>/2¢7
(9)s = Z5"*Zy9, 2 (Np = Z;Z)\\, (2.37)
- O 1/2 ov
2 1,2
o=zt (1) ez,

Note that the redundant renormalization constant dv will be determined by the
additional requirement that the o tadpole be cancelled at one loop. We have chosen
the same renormalization constant for all members of a multiplet. As to be shown
below this will be sufficent for removing divergences.

The counterterms introduced by the above substitutions are standard for the
linear and quadratic terms since no difference arises as compared to the commutative
case. These are listed explicitly in appendeix A together with the rules to obtain
counterterms for vertices in Lg.s. We focus below on deriving counterterms in the
gauge fixing sector.

Since the gauge fixing function can be chosen at will, we choose it to be given in
terms of renormalized quantities,

=€ (No=1 =G+ L (st —dipto) ', @39)

where ¢f = (0 1). We require that (D,®)g = Z;/Q((’?M —i9Z4G,)® be covariant
under the infinitesimal gauge transformation for renormalized fields,

0Gy = yOun + zig[n, Gy,
00 = 2ignd, 50T = —xigdTy. (2.39)

This determines the constants = z = Z;y. Now consider the BRS transformation
for renormalized fields,

5Gﬂ = 6(1/3“0 + Zig[q GH]) ’
0¢ = exiged, 5ot = —exigdic,
dc = euigee. (2.40)

We find,
sf = 0" (yduc + zigle, G,]) + zg*ve ] V2(PlctA by + Pt cd)t? . (2.41)

Note that ® now contains v in the form of v + dv. We hope to keep eq. (2.30) intact



so that (¢)p = ¢. The invariance of the sum L, ¢ + Lgpost under BRS transformations
for renormalized fields is again guaranteed by the nilpotency s2f = 0. This then
implies x = z = u. Now we introduce the field renormalization constant for ghosts,

(c)p = Zec. (2.42)

Since the first term in sf gives the ghost kinetic terms, it is natural to identify y = Z..
This fixes all constants in sf,

sf = Z.0"(0uc+1i9Z,)c,G,]) +
+Z.Z,(1+ 51}/1})92025/2(&50%&)0 + gzggtAcgiso)tA +
+2.2,9°0E | V2Tt o + Pt ed)tt (2.43)

The counterterms for self-energies and the rules for vertices in the gauge fixing sector
are also included in appendix A.

3. One loop divergences and renormalization constants

In this section we present our results of one loop divergences in 1PI Green’s functions.
Although we have exhausted all possibilities for each type of functions discussed
below, it is not possible and also unnecessary to list all of them. Actually, a glance
at the counterterms shows that all functions in the same type must have the same
or similar divergent structure if divergences can be removed altogether with the
renormalization constants introduced above. Instead, we demonstrate our results by
typical examples. Since we are interested in the ultraviolet (UV) divergences, only
diagrams which are apparently divergent by power counting are computed below.
The complete Feynman diagrams are shown in appendix B. We thus will not touch
upon the UV-IR mixing problem for exceptional momenta such as 60,,p" = 0, etc.
We work in the £ = 1 gauge throughout for simplicity. Then the would-be Goldstone
bosons and ghosts have the same masses as their corresponding gauge bosons.

3.1 Tadpole

The Feynman diagrams are shown in figure 1. The result is
iT =+ / [3D7 + Df + 2D} ] +

o / DY 1 D7] -

L,

_59 v/ [DZV+D§], (3.1)

d"k , 1
_ D)= — - 2
/ / (2m)n’ Poopt—m? e (32)

where




O',T('g,ﬂ'_,_ wt,z Ct,Cyz

| _ = - - = H _— = =

Figure 1: o tadpole.

We work in n = 4 — 2¢ dimensions to regularize the UV divergences. Note that there
is no 6 dependence in T since we need at least two independent momenta for this.
We obtain the divergent part as follows,

9
T =i |62+ \g> + =g*| v* A, = —. :
1 ? € |:6 + g + 8g :| v Y € (47T)2€ (3 3)

3.2 ¢¢ self-energies and mixings

We have divergent oo, mymy, mym_ self-energies and the finite omy mixing. We
compute the first and the last ones as examples. The Feynman diagrams for oo
are shown in figure 2. The result is

i%°7(p) = +A%0? / [cenp (18D7 D7, + 2D/ D, ) + 4D D | —

1
~39° [ (k20 [, DE DR+, DEDE,, + D' DY) +

n
+590? [ 2, DEDE,, + DYDY, -

1
~59"* [ (2, DEDE., + DYDY, ) +

+\ / [(1+ 2C§Ap)Dg + (2 = crap) DY +2D) | +

+3¢ [ (oY + 7], (3.4

where s}, = sin™(k A p), cf, = cos™(k Ap) and k A p = 0, k*p"/2. Using s3,, =
(1 — caenp)/2 and ¢, = (1 + caxnp)/2 to separate the planar from the nonplanar
part, and noting that the latter is finite due to the oscillating factor, we can isolate
the UV divergences and obtain,

21
%77 (p) = iA. [—292192 + 18M%0% + AgP® + gg%?] . (3.5)
A similar calculation gives,

9
iR (p) = iXT (p) = iA, [—292192 +6A%0% + Ag*v® + gg“?ﬂ} . (36)

10



7, Mo, T+ zZ W+ Cz,Ch
Ve ~ PR
o/ koo o 4
g R - - Lo
p \ /
N - AR
o, Ty, T+ Z,W+ Cz,C+
o, Mo, T+
e
/ \
' ]
\ /
- - - _ =z _ _ _
Figure 2: o self-energy.
zZ, W+ Cz,C+
__mfg o __
p \ /
N 2
0, To; T+ Cz,Ct

Figure 3: omy mixing.

Now we come to the omy mixing shown in figure 3. All of the neutral particle

loops are found to be proportional to Soxn, and thus finite. The W', loop cancels
exactly the W~n_ loop due to the sign flip in the o couplings although they are
separately divergent after cancellation of oscillating factors from the two vertices.
The same happens for the ¢y loops due to the sign flip in the 7y vertices. Thus we

finally have a finite omy mixing.

3.3 GG self-energies and mixings

We have divergent AA, ZZ and W~ self-energies and a finite AZ mixing. For
the divergent one we take as an example the A self-energy whose diagrams are shown

in figure 4. We find,

, 1 1
XN p) = +592/(2k +p)u(2k +p), DY DY, — Zg4v29w/DXVDZV+p +

1
+39° | P, [25%,DiDiL, + DYDY, ] -

11



Figure 4: A self-energy.

~¢* [+ )ik, [25%,DEDL, + DY DI, ] -
—QZQW/DZV +g%(1 — n)g,w/ (2570, D4 + D'

19
= erggz(ngW — Dubv) (3.7)

where P2, = Pugu(k, —k — p, )P (=k,k + p,—p) with P,g, (k1, ks, k3) given in
appendix A. Identical results are obtained for the other two self-energies, especially
there are no divergences proportional to m%M 7

The Feynman diagrams for the AZ mixing are shown in figure 5. Each diagram
is finite due to an oscillating factor exp(i2k A p). This occurs because the A and
Z couplings to the same charged particles have opposite phases which become the
same when the charges are reversed in one of the couplings.

3.4 G¢ mixings

We have divergent Zm, and W, mixings while Ao, Amg and Zo must be finite. The
diagrams for W*zr_ are shown in figure 6 where p denotes the incoming momentum

of W*. We obtain,
i) (p) = —gvA / (2K +p)u DDy,
1 o
0 o maloon, oo
1 3.8
+79°0(1=n) /(% +0)u [Dy Dicyy — DY DY) 38)

1
+97 / (k+p)u [DY Dy, + DI DY

= iAe(_QQmW)pu-

12



+ + Ct
Ay k Z,
IZEN /
~ _ - e
T4+ w+ C4+

Figure 5: AZ mixing.

g AW - c_,Cyz

- ~ LT
W;j_ ik m—

Ay F-- -- VAVAY} F--

p \ / \ /

N _ - ~ _ -~ P

Tt Ty, 0 A, €A, C4

Figure 6: W r_ mixing.

o, Z,W* Z W+ Cz,Cq+
e ~ T
Z, ! k \)_ o m
- = - = - = AVAVAV] ===
JZERN
N - / A ~N - e A L
g, o g, T+ Z + Cz,Ct

Figure 7: Zo mixing.

It is interesting to see how the Z¢ mixing shown in figure 7 becomes finite. The
situation is similar to the case of the omy mixing. All neutral particle loops are
proportional to soxn, and thus finite. The W*my loops exactly cancel themselves
because of a sign flip in their couplings to . The same is true for the c4 loops but
this time the flip occurs in the Z couplings. Finally, the W= loop is finite since it is
simply proportional to (2k + p),,.

3.5 cc self-energies and mixings

The cc self-energies are the easiest to compute. We have divergent combinations
cACa, czCz and cyCx, and the finite ones, cscz and czC4. The result for the cic_

13



g, To A Z W~
- ~

»

C+ C+ C_ C+;CA,CZ

Figure 8: c,c_ self-energy.

Figure 9: c4¢z mixing.

self-energy shown in ﬁgure 8 is,
X (p) + g v /DW Ftp D/?er]
+39° [ k- [DY (D, + DE,,) + (D + DF) DI,

2
= iA(~g"p%). (3.9)

Note that there is no divergence corresponding to the mass term. The cs¢z mixing
shown in figure 9 is finite since each diagram contains an oscillating factor exp(£i2k A

p)-

3.6 ¢pp¢ vertices

Now we start our computation of vertices with the trilinear scalar couplings. We
have ocoo, omymy and o m_ vertices which may be divergent, and ocomy, mymemy and
momm_ vertices which must be finite. We illustrate the computation with the last
one of each type whose diagrams are shown in figures 10 and 11 respectively. The
arrow inside the loop indicates the charge flow. p and p4 are the incoming momenta
of o or my, and 4.

Let us first consider the o 7_ vertex. Figure (a) contains the phase factor of
exp(+i2p A k) and is thus finite. The same is true for figures (¢) and (g) which have
a phase of exp(i2p A k) respectively. The other diagrams are divergent. For the o
loop in figure (b), we have

3
O = =g [ Ok 2p.) - (b= 2DV D, DE, . (310)

14



Figure 11: mgm m_ vertex.

Using

Ok = Cpa(ktps) €xP(ik A p)
=1/2 exp(ipy Ap_)+--- (3.11)

15



to isolate the non-k oscillating part, we obtain the divergence,
3
(b)y = _Z)\g% exp(ipy A p_ )il . (3.12)

The other two are similarly computed with the sum,

3 1

(b) = [_Z Vi 1] Ag*vexp(ipy A p_ )il . (3.13)

The same trick applies to figure (d). Here the charge conjugated loops contribute
the same. Using obvious notations, we have

1 1 1

(d)=2- {_1_6 “16 é} g*vexp(ipy Ap_)iA.. (3.14)

Figures (e), (f) and (h) are easier to compute with the result,
(e)

(f)
(h)

The divergence in the om,7m_ vertex is then

+(3+ 1+ 4 vexp(ipy Ap_)il,,
+2 - 2 %v exp(ipy A p_)iA.,
+2-(1/2 + 1/2)g*vexp(ips A p_)iA.. (3.15)

3
VT (ppysp) = iAcexp(ipy Ap-) | 59" = 229" +120° | v, (3.16)

Let us compare the contributions to the mym, m_ vertex shown in figure 11 with
the above one. First, the analogs of figures 10(c) and (g) are missing due to lack
of the mgW W™ vertex. Second, (a) is similarly finite. (e) is also finite because of
the factor soxpnp. Third, the others always come in a charge conjugated pair whose
divergences cancel each other. We take (b) as an example. The product of the two
G oo vertices in the WT loop is

%92(/IC +2py) - (k—2p-), (3.17)

while remaining factors are essentially the same for the consideration of divergence
so that the divergences are cancelled between the W loops.

3.7 G¢o vertices

We have vertices Am,m_, Zoo, Zomy, Zmme, WErzo and WEremy which may
be divergent, and vertices Aoo, Aomy, Amgmg and Zm,m_ which must be finite.
For illustration we compute the first one of each type whose diagrams are given in
figures 12 and 13.

Figure 12(a) has a phase exp(i2k A p) and is finite. (d) is also finite: while the
A loop involves sognp, the W loop is proportional to (k + 2p), and thus vanishes.
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Figure 13: A 00 vertex.

For similar reasons (c) is finite too. So we only need to calculate (b) and (e). For
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example,

(b)r_ = _égs Okpu(@Dl?/D?erD/?fp—’
Oy = sin(py Ap— +p ANk)exp(ip A k)
=i/2 exp(—ipy Ap_)+---,
Py(k) = Puap(p k + py,p- — k) (k= py)*(k +p_)°
= 2(k*(p+ = p-)p = Kk - (0 —p-)]+ -, (3.18)

where we have ignored terms which will be finite. The divergence is

(0)r_ = in g exp(—ipy Ap-)(P+ — P-)p- (3.19)

42

Together with my and o loops, we have

(b) = iAe%g?’ {1 + % + %} exp(—ipy Ap-)(P+ — P-)p- (3.20)

Figure (e) comes in conjugated pairs and is simpler to compute. For example,
1 AW
(@ =+750° [ Oulk+20.),DLDY,.
3
= +iIA ——g>exp(—ip. Ap_)p_,. 3.21
Vol p(—ip+ A p-)p—p (3.21)
where
O = cpreexp(ip Ak —ipy Ap_)

=1/2 exp(—ipy Ap_)+---. (3.22)

The conjugated 7 loop is then obtained by p_,, — —p4,. Including the other two
pairs of loops, we have

(e) = —Z’Agﬁgg [1 + % + %} exp(—ip+ Ap-)(p+ — P-)u, (3.23)

which cancels figure (b) exactly so that the one loop contribution to the A, m m_
vertex is finite.

In contrast, the one loop contribution to the A, 00 vertex is finite because each
individual diagram involves the same oscillatory phase exp(i2k A p).

3.8 GG¢ vertices

We have possibly divergent vertices of W*An, W*Zr+, ZZo and WTW o while
the vertices AAo, AAmy, ZZny, AZo, AZny and WTW ~m, must be finite. We show
our calculation by the last one of each type.

18
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Figure 14: W, W o vertex.
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Figure 15: W W, 7 vertex.

The one loop diagrams for the WJ W o vertex are shown in figure 14. Now
it should be relatively easy to compute figure (a), so we write down its divergence

19



directly,

. 3 1
(a) = iAE)\gzngV 6Xp(2p+ A\ p_) |:Z + Z + O + 0:| . (324)

The W= loops in (b) are made finite by the phase exp(i2p A k) while the divergences
in the Zomy loops are cancelled by those of the Zmym+ loops due to a sign flip in the
relevant part of products of the Gg¢ vertices. The oW~ loop of (c) is,

7
<C>0W_ = +ZQ4U/ORPHVDE/DI€Z+I7+DZP_

3
= iDezs g v explipy Ap-) + -+, (3.25)
where
Oy = sin(p A (p— — k)) exp(ik A p)

= i/2exp(ipy Ap-) +--,
P;w = (p —p- + k)ﬁpﬁuu(_k — P+, D+, k)

— (_ngMV+k:MkV)+... . (326)
The remaining 74 loops are similarly computed. Including charge conjugated loops,
we obtain,
3 3
(© = +iBugogu expliv np) 2+ [ w0+ 2] (327

Figure (d) is slightly more complicated. We take the ZZW ~ loop as an example,

1
(d)ZZW— = +§g4v/0kPMVDZ/DkZ+p+DkZp_

Y .
= +@Asgg4vg,w exp(ipy Ap_) +---, (3.28)
where
Oy = cos(py Ap_ + p A k)exp(ik A p)

= 1/2exp(ip+ Ap-) + -+,
P,uu = Pauﬁ<_k — P+, P+, k>Paﬁy<k - DP— —k,p,)

= (2k*g + 10k, k,) + - - - . (3.29)
Including the other two contributions, we have
9 9
(@) = +id\gt g expliv Ap-) |3 40+ 3. (3.30)

The calculation of figure (e) is similar to (a), and figures (f)—(h) are the easiest of
all, with the results,

1 1
(e) = —iAg vg,, exp(ipy Ap_) 2 - lﬁ +0+ @] ;

20



Figure 16: A,AgA, vertex.

3 1
(f) = —iANG* Vg, exp(ips A p_) {— + =+ 0} :

44

o , 3 3
(9) = —iAcg*vg,, exp(ipy Ap-) 1 + 1l

. , 1 1
(h) = —iAcg vguw exp(ipy Ap-) 2- |2+ 0+ 2. (3.31)

In total,

, . 1 .
iV, "7 (pr. 0, p) = +iDe5 9" vgu explipy Ap-). (3.32)

For the one loop W; W m vertex shown in figure 15 we briefly indicate how
a finite result is achived. The following diagrams are separately finite due to an
oscillatory factor exp(i2p A k) or sgpap: W* loops in (b), ZW*ry in (c), czesca
in (e), Znx in (h) and figure (f). The others cancel their divergences between
conjugated diagrams.

3.9 GGG vertices

This is the most complicated part of the calculation performed in this section because
of the involvement of GGG and GGGG types of vertices. The one loop contributions
to the vertices AAA, ZZZ, AWTW = and ZW W™ are generally divergent while
those of AZZ and AAZ must be finite. Again we present our calculation using the
first one of each type as examples.
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Note that except for the A loop in figure 16(b) there is an additional permutated
contribution for each case in (a)—(c) and there are two additional ones for (d)—(e). We
first note that (d) vanishes identically. This is because the only difference from the
analog in ordinary scalar QED is the appearance of the factor cp,,,,. For figure (a)
we have,

(a)'?® = 2\/_ exp(ips /\pQ)/DWD,Z[meD/ZI/p3 X

X (2k + p2 — p3)a(2k + p2)s(2k — p3)
3

= AT exp(ips A o) P (01 paaps) + -+ 3.33
o3 p(ips A p2) Pagy (D1, D2, D3) (3.33)

Summing with the permutated one gives

(@) = (@)% + (@)
3
g .
= _Aeﬁ sin(pe A p3) Pogy(p1,p2,03) + - . (3.34)

The A loop in (b) is

(b)a = —i2v/2¢° / OwPLs, DiiDit, Dt

1343
= —A.——sin(p; A p2)P, . P2, 4o 3.35
1 \/5 (p1 A p2) /J'v(pl P2, P3) ( )

where

Ok = sin(py A (k + p2)) sin(ps A k) sin(k A p3)
=1/4 sin(py Apy) + -+,
Prgy = P (p1, k4 pa, 03 — k) Pagp(p2, ky —k — pa) X
xP.7 (p3, —k,k — p3). (3.36)

The W loop is similarly computed. Including its permutation, we have the diver-
gence

(b)w = O’ + ()

- 13¢3 , .
= —erﬁ lexp(ips A p2) — exp(ipe A p3)| Pagy(P1, P2, P3)
AT G A ) P ) (3.37)
= — sin - , D2, . .
4\/§ P2 /\ P3 8y\P1, P2, P3

Figure (c) is essentially similar to (a) but we must be careful with the tensor
P,3,(p1,p2, ps). Using its properties given in appendix A, we have

(€)a = (0)x” + () 5"
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3
qg .
= —A,———=sin(py A P, , D2, — Ps, , D3,
12\/5 (pz p3)[ ~ ﬁ(pl D2 p3) [¢] ’y(pl Ps3 p2)]

3
g .

= +A.———=sin(ps A p3) P, D2, P3) - 3.38
12\/§ (pz ps) Bw(pl D2 ps) ( )

The separate contribution of ¢4 does not have the same structure as the counterterm,

(0)x = (0) + ()"

3
g— [eilpgAPQP’ya/B(plap%p?)) + eiZPQAp3P5a7<plap37p2)] 3 (339)

= FiA,
+ 24+/2

but their sum has,

(¢) = (e)4 + (¢)-

3
= +Aeg— sin(pa A ps) Pagy (D1, D2, P3) - (3.40)

12¢/2

Now we compute the A loop in figure (e),

(6)114 = _iﬁQB/Taﬁw(kapi)D]?D]?erl , (341)
where

Topy(k,pi) = P! (p1, by =k — p1)spone X
X[(9u89vy = Gur9vB) SpanpsSprak +
F(9ur9v8 = Guv98y) SpankSpsntietpr) +
(9987 = Gus9u) Sknps Spantapr) ] - (3.42)

+

Isolating the non-k oscillatory part as follows,

Sp1AkSpanps Spink = +1/2 Spanps T,
Sp1AkSpankSpsn(k+p1) = _1/4 SpsAp1 + ey

Sp1nkSkApsSpan(k+p1) — _1/4 Spiape T (3'43)

and doing loop integration by using the explicit form of P *", we arrive at

9 .
(€)= +Aeﬁg3 sin(pz A ps) (P1rgas — P1agra) + - - (3.44)
Including all permutations, we recover the correct structure,

(e)a = (e)a + (e)4 + (e)i

9
= +A,.——¢®sin(py A p3) P, D2, P3) 4+ - . 3.45
5 \/ﬁg (P2 A p3) Py (P15 P2, P3) (3.45)
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Za

Figure 17: A,Z,Zg vertex.

The W loop is simpler and turns out to have the same divergence as the A loop.

In summary, the divergence in the vertex is,
. 7 .
ZV;}B;‘A(PMPQ,P?,) = +Ae3—\/§93 sin(pa A p3) Papy (D1, D2, p3) - (3.46)

For the A,Z,Zs vertex shown in figure 17 we just comment that there are no
analogs of figures 16(a) and (d) and that the remaining diagrams are made finite by
the phase exp(i2k A p;).

3.10 ¢cc vertices

We have the following list of possibly divergent vertices oczcz, ocicy, moczCz,
ToC+Cx, T4CxCz and micacy, and the following one which must be finite, ocaca,
OCACz, O0CzCA, ToCACA, TQCACZ, ToCZCA, T4+CxCA and M4CzCx.

Let us take a sample calculation of the oczcy vertex shown in figure 18. The o
loop is

1
() = +5g" / Ok - (k = p+ @) D7D}, Di g
1
= —iAegg% cos(GNq)+ -+, (3.47)
where we have used

Ok =sin(p A (G+ k))sin(g A k) cos(q A k)
= —1/4 cos(gNq)+---. (3.48)

The 7y loop contributes the same, and the sum of the 74 loops is
1
(m4) + (7)) = =iz g"vlexp(ig A g) + explig A g)] + - (3.49)
The total divergence is then,

_ 1
iVo7%(p,q,q) = —iA€§g4v cos(q N q) . (3.50)
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Figure 18: ocycy vertex.

As for the finite vertices, there are no apparently
divergent diagrams at all for the vertices ocaca, 0czCa,
TOCACA, ToCzCa and mirceCy. Figure 19 is an example
of the remaining ones which however is finite due to
the appearance of the phase exp(i2q A k).

3.11 Gce vertices

This is the last group of vertices computed in this
section. We have generally divergent vertices Acaca,
Acyy, Zcgey, Zepey, Whegea, Whepey, WEeacs

and WicZEJF, and finite ones Acycy, Acacy, Aczca, Figure 19: 7 czé_ vertex.

ZcaCa, Zcacy and Zcycy. We illustrate our calcula-
tion by the examples shown in figures 20 and 21.
The ¢4 loop in figure 20(a) is

(@), = g’ OkPuDl?D/?JrqDl?iq

1
V2
3
= —iA——g exp(ig N Q)@ + - -,
573" p(iq A q)qu
where we have used the following
O = sin(q A k) exp(ig A k) exp(ip A (k — q))
= —i/2 exp(ig A g) + -+,
P,u = Pauﬁ’(k + q_upv q— k‘)gakﬁ
= (Kqu — k- qky) + -+,

(3.51)

(3.52)

(3.53)

to single out the divergence. The A exchange in the c¢_ loop is finite while the Z

exchange contributes the same as the ¢4 loop. Figure (b) is simpler, so we write

down the result directly,

1
(b) = —@'Ae—g?’ exp(ig N q)q,(0+1+1).

8v/2
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Figure 21: A,czca vertex.

The final result is,
_ 1
iV P 0,0) = —iB—g" exp(ig A 0)d, (3.55)

One sentence suffices for the vertex shown in figure 21: all loops are driven finite by
a phase of exp(%i2k A p) or exp(£i2q A k).

3.12 Renormalization constants

We have finished computing divergences in one loop 1PI functions in previous sub-
sections. Using the counterterms described in appendix A, we determine the renor-
malization constants in the MS scheme as follows,

19
5ZG’ = Asggz > 5Z¢ - A62927 5Zc = Aegza
0
5Zg = —Aeng, _U - A5927
v
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lmZM:Aekv—z&f+Z¢]

dp? 3
A= =AM+ =gt 3.56
2 9+ g9 (3.56)
These will be sufficient to remove all of UV divergences in Green’s functions at one
loop level. For example, the simple mass relation m% = 2mj;, is preserved by the
divergent parts of their respective counterterms which provides a reassuring check of
the consistency of the model at one loop level.

4. Summary

A potential obstacle in attemps to construct consistent models of gauge interactions
on NC spacetime is whether the renormalizability property can be still maintained
or the concept of renormalization itself has to be modified. While there is no gen-
eral proof of this so far, we can still get some feeling and confidence from explicit
analyses. It has been checked that the exact U(1) and U(N) gauge theories and
the spontaneously broken U(1) gauge theory can be consistently renormalized at one
loop order. In this work we tried to fill the gap by including the spontaneously
broken U(N) case. We emphasize that this latter case is distinct from the former
ones. Since the gauge symmetry is partly broken we simultaneously have massive
and massless gauge bosons which also makes the model closer to the standard model
of electroweak interactions. The interactions and masses of these particels are simply
related because they are in the same multiplet before symmetry breaking occurs. It
is not clear from previous studies whether these relations can still be accommodated
at the quantum level on NC spacetime. This is a nontrivial problem, considering
the difficulties already met with spontaneous breaking of global symmetries. Our
explicit analysis shows however that this is indeed possible; just as we see in the
usual gauge theories, with the same limited number of renormalization constants we
can remove the UV divergences for both exact and spontaneously broken non-abelian
gauge theories on NC spacetime however complicated the latter case could be. This
positive result supports the points of view that it is worthwhile to pursue further in
this direction.

Although our explicit analysis is confined to the U(2) case for both physical
and technical reasons, it seems reasonable to expect that our affirmative result also
applies to the general case since the most important feature has already appeared in
the U(2) case as discussed above, namely, the relations in interactions and masses
among massless and massive gauge bosons as dictated by the group structure.

We have not discussed in this work the four point 1PI functions due to technical
reasons. A glimpse at Feynman rules makes it clear that the model considered here
is already much more complicated than the complete standard model of electroweak
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interactions. This happens in two related ways; we have more types (almost all
imaginable types) of interactions and the interactions themselves become complicated
due to the involvement of momentum-dependent phase factors. It is amazing to see
in the previous section how different sectors of the model conspire to bring about a
consistent result of UV divergences so that the above complications would not spoil
the renormalizability of the model. It would not be surprising that the same magic
also occurs in four point functions since they are in a sense related to the lower ones
by the group structure and the same noncommutative relations. We also have not
included fermions. We should expect no problems with vector-like fermions, but it
will be rather delicate if chiral fermions are involved due to the danger of anomalies.
All this deserves a separate work to which we hope to return soon.
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A. Feynman rules

We list below the complete Feynman rules for the model. All momenta are incoming
and shown in the parentheses of the corresponding particles.
Propagators (momentum p):

A, A —q
v Pubv
NNV = — {gw, (1-¢) ;2]
W— — [g —(1-¢) Duby }
N p*—mg [ p* = &m3
W— — [g (1-2¢) Pubv }
p*—myy [ p* — Emiy
o o _ 1
_pz m2
T mo_ 0
p? —&my,
T _____ T i
p* —Emyy,
CAL AEA . 1
i D
Cz _ Cg B 2
p? —Em
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Ct Cx l

>
»

p? — Emyy,
G oo vertices:
) )
Auri (p)m_(p-) = %(m — ) exp(—ipy Ap-)
Zuo(p1)o(ps) = %m — pa)sin(pr A pe)
Z,umo(p1)mo(p) = %m — pa)sin(pr A pe)
Z,0(p)mo(po) = %(p — Do) cos(p A po)
7 )
Wao(p)me(ps) = igg(p — px)p exp(Fip A px)
Wimo(po)ms(p) = 5 (0 — po)uoxp(Fipo A ps). (A1)
GG vertices:
- 2
1g°v )
W, (p) Ay (p)ms = N exp(£ips A p)

> 2
ig*v .
Wi (p+) 2y (p)ms = Wik exp(Fip+ A p)
n _ ig?v ,
W ()W, (p-)o = =g exp(ip+ A p-)

Zu<p1)Zu(p2)U = ig2vguu COS(pl /\p2> . <A2>

GGoo vertices:

( ) y(ko)my (pi)m—(p-) = i1g° Gy cos(ky A ko) exp(—ipy Ap-)
(p2) = ig”guv cos(ky A ks) cos(py A ps)
Z ( ) Z,(ka)mo(p1)mo(p2) = g% g cos(ky A ks) cos(py A ps)
(Po) = —ig” g cos(ki A kz) sin(p A po)
- 2
g . .
=) = -G exp(—iky A k-) exp(—ips Ap-)

2
;2
_ ig :
Wi (ko )W, (k=)o (p1)o(p2) = PR exp(iky A k-) cos(p1 A p2)
;2
i :
W, (ke )Wy () mo(py) o (p2) = -9 exp(iks A k) cos(py A po)
;2
_ ig : .
W:(h)Wu (k_)o(p)mo(po) = _7g;w exp(iky Ak_)sin(p A po)

W (k) A, (K)o (p)m+(ps) = =9, exp(Fiks A k) exp(Eips A p)

2f

7 2

W (k) Z,(k)o(p)m+(ps) = QQWgW exp(Fiky A k) exp(xips A p)
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2
W (k) A, (k)mo(p)7s (ps) = jFQQWg;w exp(iks A k) exp(Eips A p)

g2

W*(ky) Z, (k)mo(p)m(ps) = W exp(Fiks A k) exp(ipx Ap). (A.3)
GGG vertices:
An(k1)Ag(ko) A, (k) = —V2gsin(ki A ka) Pagy (k1. ko, ks)
Zo(k1) Z5(ka) Z, (k3) = —V/2gsin(ky A ka) Pagy (K1, ko, ks3)

AW (k)W (ko) —% exp(—iky A k) Puas(k, by, k)

Zu(R)Wi (k)W (k) = +% exp(+iky A k)Pl by ko), (A4)

where

Paﬂ'y<k17 ks, ks) = (/ﬁ - k2)ygaﬁ + (/f2 - k3)agﬁ'y + (k?3 - kl)ﬁgm-

Some simple properties of it are useful:

Popy(kiy ko, k3) = —Paqp(ki, k3, k2) = —Ppay (K2, k1, k3) = —Pyga(ks, ko, k1)
Pas (K1, ki, k) + Poos (ki o, k) = Pao (k1 kg, o) (A.5)
GGG vertices:
Aa(k1)Ag(k2)Apu(ks) Ay (ka) =
= Zo(k1)Zg(k2) Z,(k3) Z, (ka)
= —120*{(Guafvp — Gusva) sin(ky A ko) sin(ks A ky) +
+ (9usGva — Guw9ap) sin(ks A ki) sin(ka A ky) +
+ (9w9as — GuaGvp) sin(kr A ka) sin(ka A ks) } (A.6)
W (k)W (ko)W (ks)W,f (k) =
= 19° (290908 — GuaGvp — GupGva) cO8(ky A kg + ko A k)
W (b )Wy (k=) Au(k1) Ay (ko) =

- 2
tg
= 7{(_2guugaﬁ + Gua9vp + guﬁgua) COS(]Cl A k2) +

-+ (guﬁgua - guaguﬁ)?)i sin(k:l AN /{ZQ)} exp(—z’kur AN k,) (A?)
W;(k+)WB_(k_)Zu(k1)Zy(k2) =

s 2
tg
= _{(_QQMVgQ’ﬁ + 9pa9vs + guﬁgua) COS(kEl A k2) +

2
+ (guagyg — gmggya)?)i sin(ky A ko) }exp(iky A k) (A.8)
Wk W5 (k=) Zu(k1) A (k2) =
- 2
7 . .
= %(2g,wgaﬁ — Gualvs — 9upGva) €Xp(iky A ko) exp(ik_ Aky). (A.9)
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oo vertices:

oo(p

1)0(p2) = —i6Av cos(py A p2)
omo(p1)mo(p2) = —i2Av cos(p1 A p2)
ome(p)m(p) = —i2\wexplips Ap.). (A.10)
PP vertices:
o(p1)o(p2)o(ps)o(ps) =

= mo(p1)mo(p2)mo(ps)mo(pa)
= —i2\[cos(p1 A pa) cos(ps A ps) + cos(pr A ps) cos(pa A ps) +
+ cos(p1 A pa) cos(pa A p3)] (A.11)

o (p1)o(p2)mo(k1)mo(ke) =

= —i2\{2 cos(p1 A pa) cos(ky A ka) — cos(pr A k1 + pa A ka)}
Ty (pr) g (p2) - (ky)m— (ko) =

= —idAcos(pr A k1 + pa A ko) (A.13)
o(p1)o(p2)m(ki)m-(k-) =

— mo(pa)mo(pa) s (ki) (k)

= —i2X cos(p1 A po) exp(iky A k) (A.14)
o (p)mo(ko)my (ky)m—(k-) =
= —i2)sin(p A ko) exp(iky A k) (A.15)
¢cc vertices:
ocz(p)ez(p) = —i€g*v/2 cos(p Ap)
ocs(p)e+(p) = —i€g*v/4 exp(Fip A p)
mocz(p)ez(p) = —i€g*v/2 sin(p A p)
moc+(p)e(p) = £Eg°v/4 exp(Fip A p)
mrcx(p)ez(p) = —ifg*vV/2/4 exp(Fip A p)
mrca(p)es(p) = —i€g*vV/2/4 exp(Fip Ap) . (A.16)
Gce vertices:
Auea(p)ea(p) = V2gp,sin(p A p)
Aycs (p)ex(p) = :Fig/\/5 Dy exp(&ip A p)
Zuez(p)ez(P) = V2gpusin(p A p)
Zucx(p)es(p) = %ig/V2 puexp(Fip A p)
)¢a(p)
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WEea(p)ex(p) = +ig/ V2 puexp(Fip A p)
WiEee(p)ez(p) = +ig/ V2 puexp(Fip A p)
Wkez(p)ex(p) = Fig/ V2 pyexp(£ip Ap). (A17)

Counterterms for self-energies and mixings are listed below. Note the momentum

p is the incoming momentum of the gauge boson in the G¢ mixing.

2
g - X =i \? %—5Z>\—@:|
12

v
ou? 3 30
—U———X———— —zp25Z¢—z'mi —2—,u2+§5Z)\+—,U:|
7] v
ou? 1 )
7—T———><———7—T0:zp 024y —im —2—'u2+§5 ,\+—U}
U v
_ S 1 0
[ ip25Z¢ —im2 —2—M2 + 5(5% —U}
7]
A, v ,
NN = i(pupy — D G )0 26
Zu v . 20v
NANNNNN = i(pupy — P gﬂ,,)ézg + zgm,mz 2024+ —+02Z4
Wi w, ) o, 25v
NN = i(pupy — P20 )0 26 + igumiy |20Z, + - + 0274
2y o Jv
NN, = - == =mygp, (5Zg+7+5Z¢
Wi T . dv
NN - - == = dimyp, |02, +— + 02,
v
€A > <CA :ipz(sZc
¢ )
Z.» . ip*6 2, — iEm?% {529 + 24 5Zc}
v
C ov
e <F = ip?Z, —iem?, [52 +—+6Z,

The counterterms for vertices are obtained by attaching the following factors to
the corresponding Feynman rules.

Gop . (ZyZy—1) =025+ 02,
GG : [Z4Z3(1 4 bvfv) — 1] = 5Z¢ +20Z,+ dv/v,
GG : (ZyZ; — 1) = 0Zy+ 262,
GGG : (ZgZy—1)=00Zg +6Z,
GGGG : (ZgZ} —1) =62+ 25
oo - [Z\(1 +5v/v) —1] = 5Z,\ + 51)/1;
6060 - (
6ct : (Z.Zy— 1) = 62, + 067,
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Gee: (ZZy—1)=6Z.+62Z,. (A.18)

B. One loop diagrams for 1PI functions

We show below topologically different diagrams in which the wavy, dashed and dotted
lines represent the gauge, scalar and ghost fields respectively. For a concrete vertex
all possible assignments of fields must be included. Diagrams with an “ f” are finite
by power counting.

¢ self-energy:

o \%—— __m" B B _“ ___

G self-energy:

PR ........
\ / \ /

/ \
! )
\ /
~ —
AVAVAVAVAVAVAVAVAVAV]
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opo vertex:

| | | | |
| | | | |
A 1
/N \
/ \ \ g N
/ f \ \ f
/ \ \
F--=--- A F----- 3 freseeesss e 1
| | | | | | | | | |
| | | | | | | | | |
| |
| |
1
7 ~
/ \
|
\ /
~ P
>~
e N e N
7 N 7 N
7 N 7 N

// f \\
F----- 3
| |
| |
| |
| |

GG vertex:
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GGG vertex:

/

S
£
S

2

\

¢cc vertex:
| | | | |
| | | | |
A s s
PR RN AN f f f
——————— ANNANNAN,
Gee vertex:
/ S \ f \ f
/ \ \
——————— ANNANNAN,
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