
Journal of High Energy Physics
     

One Loop Renormalization of Spontaneously
Broken U(2) Gauge Theory on Noncommutative
Spacetime
To cite this article: Yi Liao JHEP11(2001)067

 

View the article online for updates and enhancements.

You may also like
The effect of Hubbard-like interaction on
molecular magnetism of TM-coronene
complex (TM = Fe and Co)
Mahdi Afshar and Adeleh Darabi

-

Noncommutative Instantons via Dressing
and Splitting Approaches
Zalán Horváth, Olaf Lechtenfeld and
Martin Wolf

-

A monopole solution from noncommutative
multi-instantons
Diego H. Correa, Peter Forgács, Enrique
F. Moreno et al.

-

This content was downloaded from IP address 3.145.2.184 on 25/04/2024 at 23:50

https://doi.org/10.1088/1126-6708/2001/11/067
https://iopscience.iop.org/article/10.1088/1361-648X/ab53fa
https://iopscience.iop.org/article/10.1088/1361-648X/ab53fa
https://iopscience.iop.org/article/10.1088/1361-648X/ab53fa
https://iopscience.iop.org/article/10.1088/1126-6708/2002/12/060
https://iopscience.iop.org/article/10.1088/1126-6708/2002/12/060
https://iopscience.iop.org/article/10.1088/1126-6708/2004/07/037
https://iopscience.iop.org/article/10.1088/1126-6708/2004/07/037


J
H
E
P
1
1
(
2
0
0
1
)
0
6
7

Received: October 28, 2001, Accepted: November 30, 2001
HYPER VERSION

One loop renormalization of spontaneously

broken U(2) gauge theory on

noncommutative spacetime

Yi Liao

Institut für Theoretische Physik, Universität Leipzig

Augustusplatz 10/11, D-04109 Leipzig, Germany

E-mail: liaoy@itp.uni-leipzig.de

Abstract: We examine the renormalizability problem of spontaneously broken

non-abelian gauge theory on noncommutative spacetime. We show by an explicit

analysis of the U(2) case that ultraviolet divergences can be removed at one loop

level with the same limited number of renormalization constants as required on com-

mutative spacetime. We thus push forward the efforts towards constructing realistic

models of gauge interactions on noncommutative spacetime.

Keywords: Renormalization Regularization and Renormalons, Spontaneous

Symmetry Breaking, Gauge Symmetry, Beyond Standard Model.



J
H
E
P
1
1
(
2
0
0
1
)
0
6
7

Contents

1. Introduction 1

2. The model 3

2.1 Brief introduction to NC field theory 3

2.2 Classical lagrangian 4

2.3 Gauge fixing and ghost terms 6

2.4 Renormalization constants and counterterms 8

3. One loop divergences and renormalization constants 9

3.1 Tadpole 9

3.2 φφ self-energies and mixings 10

3.3 GG self-energies and mixings 11

3.4 Gφ mixings 12

3.5 cc̄ self-energies and mixings 13

3.6 φφφ vertices 14

3.7 Gφφ vertices 16

3.8 GGφ vertices 18

3.9 GGG vertices 21

3.10 φcc̄ vertices 24

3.11 Gcc̄ vertices 25

3.12 Renormalization constants 26

4. Summary 27

A. Feynman rules 28

B. One loop diagrams for 1PI functions 33

1. Introduction

There have been intense activities in noncommutative (NC) field theory since it was

found to arise naturally as a specific limit of string theory [1]. But NC field the-

ory is also interesting in its own right both as a theory which may be relevant to

the real world and as a quantum structure on NC spacetime which is very distinct

from the one built on the ordinary commutative spacetime. Concerning this, we

may mention two issues among others, the unitarity and causality problem [2] and

the ultraviolet-infrared mixing [3]. The new interactions and Lorentz violation in-
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troduced by noncommutativity also lead to novel phenomenological implications [4],

some of which are quite different from those of ordinary new physics beyond the

standard model.

Supposing the idea of NC spacetime is physically relevant, it would be desirable

to consider whether it is possible to extend the standard model of the electroweak

and strong interactions to NC spacetime. It is not completely clear at the moment

how to construct such a realistic model due to restrictions on gauge groups from

the closure of algebra [5], on possible representations that can be well defined [6]

for a product of gauge groups, and potential obstacles in anomaly cancellation that

becomes more restrictive [7], and so on [8]. But it is of no doubt that such a model

should be perturbatively renormalizable so that gauge symmetry can be maintained

order by order in the renormalized theory. Although there is no general proof on

renormalizability of gauge theory on NC spacetime for the time being, explicit anal-

yses are indeed available up to some order in some models. It has been shown that

exact U(1) [9] and U(N) [10] gauge theories are renormalizable at one loop. The

renormalizability of the real φ4 theory has even been confirmed up to two loops

[11]. But theories with spontaneous symmetry breaking are more subtle. At first

glance one might imagine that the divergence problem cannot be worse compared to

the commutative case because of oscillating factors introduced by the star product.

But actually renormalizability depends on delicate cancellation of seemingly different

sources of divergences which is governed by Ward identities. It is not self-evident

at all whether this well-weighted arrangement still persists in NC theories. This is

especially true of spontaneously broken theories. As pointed out in ref. [12], there

are already problems for spontaneously broken global symmetries; namely, the Gold-

stone theorem holds valid at one loop level for the NC U(N) linear σ model with

a properly ordered potential, but not for the O(N) one (except for N = 2 which is

equivalent to U(1)). An explicit analysis for the spontaneously broken U(1) gauge

theory has been given recently in ref. [13] with the positive result that the divergences

can be consistently subtracted at one loop. It is the purpose of this work to pursue

further along this line by examining the non-abelian case. The motivation for this

should be clear from the above discussion; it is the non-abelian case, especially U(2),

that is closer to our goal of building up a model of electroweak interactions on NC

spacetime. Our positive result should be encouraging to the efforts in this direction.

The paper is organized as follows. In the next section 2 we present the setup of

the model in which we will work. In particular we do gauge-fixing and work out its

corresponding ghost terms including counterterms. Section 3 contains the explicit

result of divergences in one loop 1PI functions. The renormalization constants are

then determined in the MS scheme. We summarize in the last section 4 and state

the limitations of this work and prospects for further study. The Feynman rules are

listed in appendix A, and collected in appendix B are topologically distinct Feynman

diagrams for the 1PI functions computed in section 3.
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2. The model

2.1 Brief introduction to NC field theory

Throughout this paper, by n dimensional noncommutative spacetime we mean the

one that satisfies the following canonical relation,

[x̂µ, x̂ν ] = iθµν , (2.1)

where θµν is a real, antisymmetric, n × n constant matrix. Following Weyl we can

define a function on NC spacetime by the Fourier transform,

f̂(x̂) =
1

(2π)n/2

∫

d4k eikµx̂
µ

f̃(k) , (2.2)

where the same f̃(k) simultaneously defines a function on the usual commutative

spacetime,

f(x) =
1

(2π)n/2

∫

d4k eikµx
µ

f̃(k) . (2.3)

This implements what is known as the Weyl-Moyal correspondence. This relationship

is preserved by the product of functions if we replace the usual product of functions

on commutative spacetime by the following Moyal-? product,

(f1 ? f2)(x) =

[

exp

(

i

2
θµν∂xµ∂

y
ν

)

f1(x)f2(y)

]

y=x

. (2.4)

Namely, using eq. (2.1) it is straightforward to show that f̂1f̂2 and f1 ? f2 share the

same Fourier tranform. In this sense we may study a field theory on NC spacetime

by studying its counterpart on commutative spacetime with the usual product of

functions replaced by the starred one. A different formalism based on the Seiberg-

Witten map is developped in refs. [14]. While there are problems such as the UV-IR

mixing in the former approach, it is also not clear how to handle with the expansion

of θ at quantum level in the latter [15]. In this paper we will work in the former

naive formalism.

For convenience we list below some useful properties of the star product of func-

tions which will be freely used in deriving Feynman rules.

(f1 ? f2) ? f3 = f1 ? (f2 ? f3) ,

(f1 ? f2)
† = f †2 ? f

†
1 ,

f1 ? f2 = f2 ? f1|θ→−θ ,
∫

dnx f1 ? f2 =

∫

dnx f2 ? f1 , (2.5)

where the last one holds for functions which vanish fast enough at infinite spacetime.

3
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2.2 Classical lagrangian

Instead of considering the general U(N) gauge group, we restrict our explicit analysis

to the U(2) case. The reason is twofold. First, the U(2) group is close to the standard

model and thus physically well motivated. Second, it is algebraically easier to handle

while it has a rich enough structure so that we expect the same conclusion should

also be appropriate to the general U(N) case.

We begin with the scalar potential which triggers the spontaneous symmetry

breakdown of U(2) to U(1),

V = −µ2Φ† ? Φ + λΦ† ? Φ ? Φ† ? Φ , µ2 > 0 , λ > 0 , (2.6)

where Φ is in the fundamental representation of U(2). We assume its vacuum expec-

tion value is independent of x; without loss of generality we take

Φ = φ+ φ0 , φ =

(

π+
(σ + iπ0)/

√
2

)

, φ0 =
v√
2

(

0

1

)

, (2.7)

with v =
√

µ2/λ. The negative potential in terms of shifted fields is

L−V = −1

2
m2

σσ
2 − λ

{

vσ(σ2 + π2
0 + 2π−π+) + π−π+π−π+ +

1

4
(σ4 + π4

0) + (2.8)

+ π−π+(σ
2 + π2

0) + σ2π2
0 −

1

2
σπ0σπ0 + π−π+i[σ, π0]

}

,

where mσ = v
√
2λ is the mass of the physical Higgs boson. We have freely ignored

terms which vanish upon spacetime integration using properties of the star product.

We also suppress the explicit ? notation from now on.

It is convenient to formulate the gauge part by matrix. Denoting

tA =











1

2
σA for A = 1, 2, 3

1

2
12 for A = 0

, with tr (tAtB) =
1

2
δAB , (2.9)

the gauge field is

Gµ = GA
µ t

A =
1√
2

(

Aµ W+
µ

W−
µ Zµ

)

. (2.10)

The Yang-Mills lagrangian is

LG = −1

2
Tr GµνG

µν , Gµν = ∂µGν − ∂νGµ − ig[Gµ, Gν ] , (2.11)

where g is the coupling. In terms of physical fields A, Z and W± as to be clear later

on, we have

LG = L2G + L3G + L4G , (2.12)
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where

L2G = −1

4
(∂µAν − ∂νAµ)

2 − 1

4
(∂µZν − ∂νZµ)

2 −

−1

2
(∂µW

+
ν − ∂νW

+
µ )(∂µW−ν − ∂νW−µ), (2.13)

L3G = +
ig√
2
(∂µAν [A

µ, Aν ] + ∂µZν [Z
µ, Zν ]) +

+
ig√
2
Aµ
(

W+
ν ∂µW

−ν + ∂νW+
µ W

−
ν − ∂µW

+
ν W

−ν −W+
ν ∂

νW−
µ

)

+

+
ig√
2
Zµ
(

W−
ν ∂µW

+ν + ∂νW−
µ W

+
ν − ∂µW

−
ν W

+ν −W−
ν ∂

νW+
µ

)

+

+
ig√
2

(

∂µAν(W+
µ W

−
ν −W+

ν W
−
µ ) + ∂µZν(W−

µ W
+
ν −W−

ν W
+
µ )
)

, (2.14)

L4G = +
g2

8

(

[Aµ, Aν ]
2 + [Zµ, Zν]

2
)

+

+
g2

4

(

2W+
µ W

−
ν W

+µW−ν −W−
ν W

+νW−
µ W

+µ −W+
ν W

−νW+
µ W

−µ
)

+

+
g2

2

(

[Aµ, Aν ]W+
µ W

−
ν + AµAνW+

µ W
−
ν − AµAµW

+νW−
ν

)

+

+
g2

2

(

[Zµ, Zν ]W−
µ W

+
ν + ZµZνW−

µ W
+
ν − ZµZµW

−νW+
ν

)

+

+
g2

2
Aµ
(

2W+
ν ZµW

−ν −W+
ν Z

νW−
µ −W+

µ Z
νW−

ν

)

. (2.15)

The covariant kinetic lagrangian for the scalar is

LΦ = (DµΦ)
†DµΦ , DµΦ = ∂µΦ− igGµΦ . (2.16)

In terms of physical fields it can be cast in the form,

LΦ = L2φ + LG mass + LφG + LGφφ + LGGφ + LGGφφ , (2.17)

where

L2φ =
1

2
(∂µσ)

2 +
1

2
(∂µπ0)

2 + ∂µπ+∂
µπ− , (2.18)

LG mass =
1

2
m2

ZZµZ
µ +m2

WW
+
µ W

−µ , (2.19)

LφG = −mZZ
µ∂µπ0 + imW (W−

µ ∂
µπ+ −W+

µ ∂
µπ−), (2.20)

LGφφ = +
ig√
2
Aµ(∂µπ+π− − π+∂µπ−) +

+
ig

2
√
2
Zµ ((∂µσσ − σ∂µσ) + (∂µπ0π0 − π0∂µπ0)) +

+
g

2
√
2
Zµ (π0∂µσ − ∂µπ0σ + ∂µσπ0 − σ∂µπ0) +

5
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+
ig

2
W+

µ (∂µσπ− − σ∂µπ−) +
ig

2
W−

µ (∂µπ+σ − π+∂
µσ) +

+
g

2
W+

µ (π0∂
µπ− − ∂µπ0π−) +

g

2
W−

µ (∂µπ+π0 − π+∂
µπ0) , (2.21)

LGGφ = +
g2v

2
√
2

(

Aµ(π+W
−
µ +W+

µ π−) + Zµ(W−
µ π+ + π−W

+
µ )
)

+

+
g2v

2
(W−

µ W
+µ + ZµZ

µ)σ , (2.22)

LGGφφ = +
g2

2
π+π−

(

AµA
µ +W+

µ W
−µ
)

+

+
g2

4

(

σ2 + π2
0 + i[π0, σ]

) (

ZµZ
µ +W−

µ W
+µ
)

+

+
g2

2
√
2
σ
(

(π−A
µW+

µ +W−
µ A

µπ+) + (π−W
+
µ Z

µ + ZµW−
µ π+)

)

+

+
ig2

2
√
2
π0
(

(π−A
µW+

µ −W−
µ A

µπ+) + (π−W
+
µ Z

µ − ZµW−
µ π+)

)

, (2.23)

and mW = gv/2 and mZ = gv/
√
2 are W± and Z masses respectively.

The action defined by the classical lagrangian

Lclass = LG + LΦ + L−V (2.24)

is invariant under the generalized, starred U(2) transformation,

Gµ → G′µ = U ? Gµ ? U
−1 + ig−1U ? ∂µU

−1 ,

Φ → Φ′ = U ? Φ , (2.25)

where U = exp(igη(x))? and we have restored the explicit star notation for clearness.

2.3 Gauge fixing and ghost terms

To make the theory well-defined and to quantize it, we should do gauge fixing and

include its corresponding ghost terms. Since the quadratic terms in the action remain

the same on NC spacetime, it is easy to expect how to generalize the gauge fixing

procedure; namely we replace the usual product by the starred one (again suppressing

the notation from now on),

Lg.f. = −1

ξ
Tr(ff) ,

f = ∂µGµ + igξ(φ†tAφ0 − φ†0t
Aφ)tA . (2.26)

To construct the ghost terms we first generalize the BRS transformation to NC

spacetime,

δGµ = ε(∂µc+ ig[c, Gµ]) ,

δφ = εigcΦ , δφ† = −εigΦ†c ,
δc = εigcc , (2.27)

6
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where ε is an infinitesimal Grassmann constant and c is the ghost field. We have

Lghost = −2Tr(c̄sf) , (2.28)

where εsf is the BRS transformation of the gauge fixing function f and thus,

sf = ∂µ(∂µc+ ig[c, Gµ]) + g2ξ(Φ†ctAφ0 + φ†0t
AcΦ)tA . (2.29)

Noting that s2f = 0, the BRS invariance of the sum Lg.f.+Lghost is then guaranteed

by requiring

δc̄ = −1

ξ
εf . (2.30)

We parametrize the ghost fields as follows,

c =
1√
2

(

cA c+
c− cZ

)

, c̄ =
1√
2

(

c̄A c̄+
c̄− c̄Z

)

. (2.31)

Then, the explicit forms of Lg.f. and Lghost are,

Lg.f. = − 1

2ξ

(

(∂µAµ)
2 + (∂µZµ)

2
)

− 1

ξ
∂µW+

µ ∂
νW−

ν −

−1

2
ξm2

Zπ
2
0 − ξm2

Wπ+π− −
−mZπ0∂

µZµ − imW (π−∂
µW+

µ − π+∂
µW−

µ ) , (2.32)

Lghost = Lcc̄ + Lφcc̄ + LGcc̄ , (2.33)

Lcc̄ = −c̄A∂2cA − c̄Z(∂
2 + ξm2

Z)cZ − c̄−(∂
2 + ξm2

W )c+ − c̄+(∂
2 + ξm2

W )c− , (2.34)

Lφcc̄ = −1

4
ξg2vc̄−

(√
2cAπ+ + c+(σ + iπ0)

)

−

−1

4
ξg2vc̄+

(√
2π−cA + (σ − iπ0)c−

)

−

−1

4
ξg2vc̄Z

(√
2(π−c+ + c−π+) + {σ, cZ}+ i[cZ , π0]

)

, (2.35)

LGcc̄ = − ig√
2
c̄A∂

µ
(

[cA, Aµ] + (c+W
−
µ −W+

µ c−)
)

−

− ig√
2
c̄Z∂

µ
(

[cZ , Zµ] + (c−W
+
µ −W−

µ c+)
)

−

− ig√
2
c̄−∂

µ
(

cAW
+
µ − Aµc+ + c+Zµ −W+

µ cZ
)

−

− ig√
2
c̄+∂

µ
(

c−Aµ −W−
µ cA + cZW

−
µ − Zµc−

)

. (2.36)

Note that the Gφ mixing terms in Lg.f. are cancelled by LφG. The complete Feynman

rules are collected in appendix A.
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2.4 Renormalization constants and counterterms

To go beyond the lowest order we introduce the following renormalization constants

for bare quantities,

(Gµ)B = Z
1/2
G Gµ , (φ)B = Z

1/2
φ φ ,

(g)B = Z
−1/2
G Zgg , (λ)B = Z−2φ Zλλ ,

(µ2)B = Z−1φ µ2

(

1 +
δµ2

µ2

)

, (v)B = Z
1/2
φ v

(

1 +
δv

v

)

.

(2.37)

Note that the redundant renormalization constant δv will be determined by the

additional requirement that the σ tadpole be cancelled at one loop. We have chosen

the same renormalization constant for all members of a multiplet. As to be shown

below this will be sufficent for removing divergences.

The counterterms introduced by the above substitutions are standard for the

linear and quadratic terms since no difference arises as compared to the commutative

case. These are listed explicitly in appendeix A together with the rules to obtain

counterterms for vertices in Lclass. We focus below on deriving counterterms in the

gauge fixing sector.

Since the gauge fixing function can be chosen at will, we choose it to be given in

terms of renormalized quantities,

(ξ)B = ξ , (f)B = f = ∂µGµ +
igvξ√

2

(

φ†tAφ̂0 − φ̂†0t
Aφ
)

tA , (2.38)

where φ̂†0 = (0 1). We require that (DµΦ)B = Z
1/2
φ (∂µ − igZgGµ)Φ be covariant

under the infinitesimal gauge transformation for renormalized fields,

δGµ = y∂µη + zig[η,Gµ] ,

δΦ = xigηΦ , δΦ† = −xigΦ†η . (2.39)

This determines the constants x = z = Zgy. Now consider the BRS transformation

for renormalized fields,

δGµ = ε(y∂µc + zig[c, Gµ]) ,

δφ = εxigcΦ , δφ† = −εxigΦ†c ,
δc = εuigcc . (2.40)

We find,

sf = ∂µ(y∂µc+ zig[c, Gµ]) + xg2vξ/
√
2(Φ†ctAφ̂0 + φ̂†0t

AcΦ)tA . (2.41)

Note that Φ now contains v in the form of v+ δv. We hope to keep eq. (2.30) intact

8
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so that (c̄)B = c̄. The invariance of the sum Lg.f.+Lghost under BRS transformations

for renormalized fields is again guaranteed by the nilpotency s2f = 0. This then

implies x = z = u. Now we introduce the field renormalization constant for ghosts,

(c)B = Zcc . (2.42)

Since the first term in sf gives the ghost kinetic terms, it is natural to identify y = Zc.

This fixes all constants in sf ,

sf = Zc∂
µ(∂µc+ igZg[c, Gµ]) +

+ZcZg(1 + δv/v)g2v2ξ/2(φ̂†0ct
Aφ̂0 + φ̂†0t

Acφ̂0)t
A +

+ZcZgg
2vξ/

√
2(φ†ctAφ̂0 + φ̂†0t

Acφ)tA . (2.43)

The counterterms for self-energies and the rules for vertices in the gauge fixing sector

are also included in appendix A.

3. One loop divergences and renormalization constants

In this section we present our results of one loop divergences in 1PI Green’s functions.

Although we have exhausted all possibilities for each type of functions discussed

below, it is not possible and also unnecessary to list all of them. Actually, a glance

at the counterterms shows that all functions in the same type must have the same

or similar divergent structure if divergences can be removed altogether with the

renormalization constants introduced above. Instead, we demonstrate our results by

typical examples. Since we are interested in the ultraviolet (UV) divergences, only

diagrams which are apparently divergent by power counting are computed below.

The complete Feynman diagrams are shown in appendix B. We thus will not touch

upon the UV-IR mixing problem for exceptional momenta such as θµνp
ν = 0, etc.

We work in the ξ = 1 gauge throughout for simplicity. Then the would-be Goldstone

bosons and ghosts have the same masses as their corresponding gauge bosons.

3.1 Tadpole

The Feynman diagrams are shown in figure 1. The result is

iT = +λv

∫

[

3Dσ
k +DZ

k + 2DW
k

]

+

+
n

2
g2v

∫

[

DW
k +DZ

k

]

−

−1

2
g2v

∫

[

DW
k +DZ

k

]

, (3.1)

where
∫

=

∫

dnk

(2π)n
, Dj

p =
1

p2 −m2
j + iε

. (3.2)

9
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σ, π0, π+

σ

W+, Z c±, cZ

Figure 1: σ tadpole.

We work in n = 4− 2ε dimensions to regularize the UV divergences. Note that there

is no θ dependence in iT since we need at least two independent momenta for this.

We obtain the divergent part as follows,

iT = i∆ε

[

6λ2 + λg2 +
9

8
g4
]

v3 , ∆ε =
1

(4π)2
1

ε
. (3.3)

3.2 φφ self-energies and mixings

We have divergent σσ, π0π0, π+π− self-energies and the finite σπ0 mixing. We

compute the first and the last ones as examples. The Feynman diagrams for σσ

are shown in figure 2. The result is

iΣσσ(p) = +λ2v2
∫

[

c2k∧p
(

18Dσ
kD

σ
k+p + 2DZ

kD
Z
k+p

)

+ 4DW
k DW

k+p

]

−

−1

2
g2
∫

(k + 2p)2
[

s2k∧pD
Z
kD

σ
k+p + c2k∧pD

Z
kD

Z
k+p +DW

k DW
k+p

]

+

+
n

4
g4v2

∫

[

2c2k∧pD
Z
kD

Z
k+p +DW

k DW
k+p

]

−

−1

8
g4v2

∫

[

2c2k∧pD
Z
kD

Z
k+p +DW

k DW
k+p

]

+

+λ

∫

[

(1 + 2c2k∧p)D
σ
k + (2− ck∧p)D

Z
k + 2DW

k

]

+

+
n

2
g2
∫

[

DW
k +DZ

k

]

, (3.4)

where smk∧p = sinm(k ∧ p), cmk∧p = cosm(k ∧ p) and k ∧ p = θµνk
µpν/2. Using s2k∧p =

(1 − c2k∧p)/2 and c2k∧p = (1 + c2k∧p)/2 to separate the planar from the nonplanar

part, and noting that the latter is finite due to the oscillating factor, we can isolate

the UV divergences and obtain,

iΣσσ(p) = i∆ε

[

−2g2p2 + 18λ2v2 + λg2v2 +
21

8
g4v2

]

. (3.5)

A similar calculation gives,

iΣπ0π0(p) = iΣπ+π−(p) = i∆ε

[

−2g2p2 + 6λ2v2 + λg2v2 +
9

8
g4v2

]

. (3.6)
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σ, π0, π+

σ, π0, π+

kσ
p

σ

Z;W±

σ, π0; π±

Z,W+

Z,W+

cZ , c±

cZ , c±

σ, π0, π+ Z,W+

Figure 2: σ self-energy.

Z;W±

σ, π0; π±

kσ
p

π0

cZ, c±

cZ, c±

Figure 3: σπ0 mixing.

Now we come to the σπ0 mixing shown in figure 3. All of the neutral particle

loops are found to be proportional to s2k∧p and thus finite. The W+π+ loop cancels

exactly the W−π− loop due to the sign flip in the σ couplings although they are

separately divergent after cancellation of oscillating factors from the two vertices.

The same happens for the c± loops due to the sign flip in the π0 vertices. Thus we

finally have a finite σπ0 mixing.

3.3 GG self-energies and mixings

We have divergent AA, ZZ and W+W− self-energies and a finite AZ mixing. For

the divergent one we take as an example the A self-energy whose diagrams are shown

in figure 4. We find,

iΣAA
µν (p) = +

1

2
g2
∫

(2k + p)µ(2k + p)νD
W
k DW

k+p −
1

4
g4v2gµν

∫

DW
k DW

k+p +

+
1

2
g2
∫

P 2
µν

[

2s2k∧pD
A
kD

A
k+p +DW

k DW
k+p

]

−
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π+

π+

kAµ

p

Aν

W±

π±

W±

π±

A,W+

A,W+

cA, c±

cA, c±

π+ A,W+

Figure 4: A self-energy.

−g2
∫

(k + p)µkν
[

2s2k∧pD
A
kD

A
k+p +DW

k DW
k+p

]

−

−g2gµν
∫

DW
k + g2(1− n)gµν

∫

[

2s2k∧pD
A
k +DW

k

]

= i∆ε
19

6
g2(p2gµν − pµpν) , (3.7)

where P 2
µν = Pαβµ(k,−k − p, p)P αβ

ν(−k, k + p,−p) with Pαβγ(k1, k2, k3) given in

appendix A. Identical results are obtained for the other two self-energies, especially

there are no divergences proportional to m2
W,Z .

The Feynman diagrams for the AZ mixing are shown in figure 5. Each diagram

is finite due to an oscillating factor exp(i2k ∧ p). This occurs because the A and

Z couplings to the same charged particles have opposite phases which become the

same when the charges are reversed in one of the couplings.

3.4 Gφ mixings

We have divergent Zπ0 andW
±π∓ mixings while Aσ, Aπ0 and Zσ must be finite. The

diagrams for W+π− are shown in figure 6 where p denotes the incoming momentum

of W+. We obtain,

iΣW+π−
µ (p) = −gvλ

∫

(2k + p)µD
σ
kD

W
k+p

−1

4
g3v

∫

(k + 2p)µ
[

DA
kD

W
k+p +DW

k Dσ
k+p

]

+
1

4
g3v(1− n)

∫

(2k + p)µ
[

DW
k DA

k+p −DW
k DZ

k+p

]

+
1

4
g3v

∫

(k + p)µ
[

DW
k DA

k+p +DZ
kD

W
k+p

]

= i∆ε(−g2mW )pµ.

(3.8)
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W±

π±

kAµ

p

Zν

W+

W+

c±

c±

W+

Figure 5: AZ mixing.

σ

π+

kW+
µ

p

π−

A,W−

π+, σ

W−

A,Z

c−, cZ

cA, c+

Figure 6: W+π− mixing.

σ, π0

σ, π0

kZµ

p
σ

Z,W±

σ, π±

Z,W+

Z,W+

cZ , c±

cZ , c±

Figure 7: Zσ mixing.

It is interesting to see how the Zσ mixing shown in figure 7 becomes finite. The

situation is similar to the case of the σπ0 mixing. All neutral particle loops are

proportional to s2k∧p and thus finite. The W±π± loops exactly cancel themselves

because of a sign flip in their couplings to σ. The same is true for the c± loops but

this time the flip occurs in the Z couplings. Finally, the W± loop is finite since it is

simply proportional to (2k + p)µ.

3.5 cc̄ self-energies and mixings

The cc̄ self-energies are the easiest to compute. We have divergent combinations

cAc̄A, cZ c̄Z and c±c̄∓, and the finite ones, cAc̄Z and cZ c̄A. The result for the c+c̄−
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σ, π0

c+
−k

c+
p

c̄−

A,Z;W−

c+; cA, cZ

Figure 8: c+c̄− self-energy.

π±

c±
−k

cA

p
c̄Z

W±

c±

Figure 9: cAc̄Z mixing.

self-energy shown in figure 8 is,

iΣc+c̄−(p) = +
1

16
g4v2

∫

DW
k

[

Dσ
k+p −DZ

k+p

]

+

+
1

2
g2
∫

k · p
[

DW
k

(

DA
k+p +DZ

k+p

)

+
(

DA
k +DZ

k

)

DW
k+p

]

= i∆ε(−g2p2) . (3.9)

Note that there is no divergence corresponding to the mass term. The cAc̄Z mixing

shown in figure 9 is finite since each diagram contains an oscillating factor exp(±i2k∧
p).

3.6 φφφ vertices

Now we start our computation of vertices with the trilinear scalar couplings. We

have σσσ, σπ0π0 and σπ+π− vertices which may be divergent, and σσπ0, π0π0π0 and

π0π+π− vertices which must be finite. We illustrate the computation with the last

one of each type whose diagrams are shown in figures 10 and 11 respectively. The

arrow inside the loop indicates the charge flow. p and p± are the incoming momenta

of σ or π0, and π±.

Let us first consider the σπ+π− vertex. Figure (a) contains the phase factor of

exp(±i2p∧ k) and is thus finite. The same is true for figures (c) and (g) which have

a phase of exp(i2p ∧ k) respectively. The other diagrams are divergent. For the σ

loop in figure (b), we have

(b)σ = −3

2
λg2v

∫

Ok(k + 2p+) · (k − 2p−)D
W
k Dσ

k+p+
Dσ
k−p−

. (3.10)
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σ
k

W± π±

π± π∓

σ

p± p∓

p

(a)

W−;A

σ, π0;
π+

σ, π0;
π+

π+ π−
(b)

π0, σ

W+ W+

π+ π−
(c)

W∓;A

Z;

W±

σ, π0;
π±

π± π∓
(d)

k
σ σ
π0 π0
π+ π+

π+ π−

σ

(e)

σ π±

σ π∓

π±

(f)

W+ W+

π+ π−

σ

(g)

W∓ Z,A

σ π∓

π±

(h)

Figure 10: σπ+π− vertex.

σ
k

W± π±

π± π∓

π0

p± p∓

p

(a)

W∓

σ π0

π± π∓
(b)

W∓;A

Z;

W±

σ, π0;
π±

π± π∓
(d)

k
σ π0

π+ π−

π0

(e)

σ π±

π0 π∓

π±

(f)

W∓ Z,A

π0 π∓

π±

(h)

Figure 11: π0π+π− vertex.

Using

Ok = cp∧(k+p+) exp(ik ∧ p)
= 1/2 exp(ip+ ∧ p−) + · · · (3.11)
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to isolate the non-k oscillating part, we obtain the divergence,

(b)σ = −3

4
λg2v exp(ip+ ∧ p−)i∆ε . (3.12)

The other two are similarly computed with the sum,

(b) =

[

−3

4
− 1

4
− 1

]

λg2v exp(ip+ ∧ p−)i∆ε . (3.13)

The same trick applies to figure (d). Here the charge conjugated loops contribute

the same. Using obvious notations, we have

(d) = 2 ·
[

− 1

16
− 1

16
− 1

8

]

g4v exp(ip+ ∧ p−)i∆ε . (3.14)

Figures (e), (f) and (h) are easier to compute with the result,

(e) = +(3 + 1 + 4)λ2v exp(ip+ ∧ p−)i∆ε ,

(f) = +2 · 2λ2v exp(ip+ ∧ p−)i∆ε ,

(h) = +2 · (1/2 + 1/2)g4v exp(ip+ ∧ p−)i∆ε . (3.15)

The divergence in the σπ+π− vertex is then

iV σπ+π−(p, p+, p−) = i∆ε exp(ip+ ∧ p−)
[

3

2
g4 − 2λg2 + 12λ2

]

v . (3.16)

Let us compare the contributions to the π0π+π− vertex shown in figure 11 with

the above one. First, the analogs of figures 10(c) and (g) are missing due to lack

of the π0W
+W− vertex. Second, (a) is similarly finite. (e) is also finite because of

the factor s2k∧p. Third, the others always come in a charge conjugated pair whose

divergences cancel each other. We take (b) as an example. The product of the two

Gφφ vertices in the W∓ loop is

∓ i

4
g2(k + 2p+) · (k − 2p−) , (3.17)

while remaining factors are essentially the same for the consideration of divergence

so that the divergences are cancelled between the W∓ loops.

3.7 Gφφ vertices

We have vertices Aπ+π−, Zσσ, Zσπ0, Zπ0π0, W
±π∓σ and W±π∓π0 which may

be divergent, and vertices Aσσ, Aσπ0, Aπ0π0 and Zπ+π− which must be finite.

For illustration we compute the first one of each type whose diagrams are given in

figures 12 and 13.

Figure 12(a) has a phase exp(i2k ∧ p) and is finite. (d) is also finite: while the

A loop involves s2k∧p, the W loop is proportional to (k + 2p)µ and thus vanishes.
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A

k

π+ π+

π+ π−

Aµ

p+ p−

p

(a)

π−; π0, σ

A;W+ A;W+

π+ π−
(b)

k
π+ π+

(c)

A A

W+ W+

(d)

A; π∓;
W± π0, σ

π∓

π±
(e)

Figure 12: Aµπ+π− vertex.

W±

k

π± π±

σ σ

Aµ

p1 p2

p

(a)

π±

W± W±

(b)

k
π+ π+

(c)

W+ W+

(d)

W± π±

(e)

Figure 13: Aµσσ vertex.

For similar reasons (c) is finite too. So we only need to calculate (b) and (e). For
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example,

(b)π− = − i√
2
g3
∫

OkPµ(k)D
W
k DA

k+p+
DA
k−p−

,

Ok = sin(p+ ∧ p− + p ∧ k) exp(ip ∧ k)
= i/2 exp(−ip+ ∧ p−) + · · · ,

Pµ(k) = Pµαβ(p, k + p+, p− − k)(k − p+)
α(k + p−)

β

= 2[k2(p+ − p−)µ − kµk · (p+ − p−)] + · · · , (3.18)

where we have ignored terms which will be finite. The divergence is

(b)π− = i∆ε
3

4
√
2
g3 exp(−ip+ ∧ p−)(p+ − p−)µ . (3.19)

Together with π0 and σ loops, we have

(b) = i∆ε
3

4
√
2
g3
[

1 +
1

2
+

1

2

]

exp(−ip+ ∧ p−)(p+ − p−)µ . (3.20)

Figure (e) comes in conjugated pairs and is simpler to compute. For example,

(e)π− = +
1√
2
g3
∫

Ok(k + 2p−)µD
A
kD

W
k+p−

= +i∆ε
3

4
√
2
g3 exp(−ip+ ∧ p−)p−µ , (3.21)

where

Ok = cp∧k exp(ip ∧ k − ip+ ∧ p−)
= 1/2 exp(−ip+ ∧ p−) + · · · . (3.22)

The conjugated π+ loop is then obtained by p−µ → −p+µ. Including the other two

pairs of loops, we have

(e) = −i∆ε
3

4
√
2
g3
[

1 +
1

2
+

1

2

]

exp(−ip+ ∧ p−)(p+ − p−)µ , (3.23)

which cancels figure (b) exactly so that the one loop contribution to the Aµπ+π−
vertex is finite.

In contrast, the one loop contribution to the Aµσσ vertex is finite because each

individual diagram involves the same oscillatory phase exp(i2k ∧ p).

3.8 GGφ vertices

We have possibly divergent vertices of W±Aπ∓, W
±Zπ∓, ZZσ and W+W−σ while

the vertices AAσ, AAπ0, ZZπ0, AZσ, AZπ0 and W
+W−π0 must be finite. We show

our calculation by the last one of each type.
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π−; σ, π0
k

σ, π0;
π+

σ, π0;
π+

W+
µ W−

ν

σ

p+ p−

p

(a)

π∓; σ

Z;

W±

σ, π0;
π±

W± W∓

(b)

W∓;Z,A

Z;W± σ; π±

W± W∓

(c)

W−;Z,A

Z;W+ Z;W+

(d)

c∓; cZ, cA

cZ ; c± cZ; c±

W± W∓

(e)

k
σ σ
π0 π0
π+ π+

(f)

Z Z

W+ W+

(g)

W±; σ;
Z,A π∓

W±

W∓

(h)

Figure 14: W+
µ W

−
ν σ vertex.

π∓
k

σ π0

W±
µ W∓

ν

π0

p± p∓

p

(a)

π∓; σ

Z;

W±

σ, π0;
π±

W± W∓

(b)

W∓;Z,A

Z;W± σ; π±

W± W∓

(c)

c∓; cZ, cA

cZ ; c± cZ; c±

W± W∓

(e)

kσ π0

(f)

W±; σ;
A,Z π∓

W±

W∓

(h)

Figure 15: W+
µ W

−
ν π0 vertex.

The one loop diagrams for the W+
µ W

−
ν σ vertex are shown in figure 14. Now

it should be relatively easy to compute figure (a), so we write down its divergence
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directly,

(a) = i∆ελg
2vgµν exp(ip+ ∧ p−)

[

3

4
+

1

4
+ 0 + 0

]

. (3.24)

The W± loops in (b) are made finite by the phase exp(i2p∧ k) while the divergences

in the Zσπ∓ loops are cancelled by those of the Zπ0π∓ loops due to a sign flip in the

relevant part of products of the Gφφ vertices. The σW− loop of (c) is,

(c)σW− = +
i

4
g4v

∫

OkPµνD
W
k DZ

k+p+
Dσ
k−p−

= i∆ε
3

32
g4vgµν exp(ip+ ∧ p−) + · · · , (3.25)

where

Ok = sin(p ∧ (p− − k)) exp(ik ∧ p)
= i/2 exp(ip+ ∧ p−) + · · · ,

Pµν = (p− p− + k)βPβµν(−k − p+, p+, k)

= (−k2gµν + kµkν) + · · · . (3.26)

The remaining π± loops are similarly computed. Including charge conjugated loops,

we obtain,

(c) = +i∆εg
4vgµν exp(ip+ ∧ p−) 2 ·

[

3

32
+ 0 +

3

32

]

. (3.27)

Figure (d) is slightly more complicated. We take the ZZW− loop as an example,

(d)ZZW− = +
1

2
g4v

∫

OkPµνD
W
k DZ

k+p+D
Z
k−p−

= +i∆ε
9

8
g4vgµν exp(ip+ ∧ p−) + · · · , (3.28)

where

Ok = cos(p+ ∧ p− + p ∧ k) exp(ik ∧ p)
= 1/2 exp(ip+ ∧ p−) + · · · ,

Pµν = P β
αµ (−k − p+, p+, k)P

α
βν(k − p−,−k, p−)

= (2k2gµν + 10kµkν) + · · · . (3.29)

Including the other two contributions, we have

(d) = +i∆εg
4vgµν exp(ip+ ∧ p−)

[

9

8
+ 0 +

9

8

]

. (3.30)

The calculation of figure (e) is similar to (a), and figures (f)–(h) are the easiest of

all, with the results,

(e) = −i∆εg
4vgµν exp(ip+ ∧ p−) 2 ·

[

1

32
+ 0 +

1

32

]

,
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π+
k

π+ π+

Aβ Aγ

Aα

p2 p3

p1

(a)

A,W+

A,W+ A,W+

(b)

cA, c±

cA, c± cA, c±

(c)

k
π+ π+

Aβ Aγ

Aα

(d)

A A

W+ W+

(e)

Figure 16: AαAβAγ vertex.

(f) = −i∆ελg
2vgµν exp(ip+ ∧ p−)

[

3

4
+

1

4
+ 0

]

,

(g) = −i∆εg
4vgµν exp(ip+ ∧ p−)

[

3

4
+

3

4

]

,

(h) = −i∆εg
4vgµν exp(ip+ ∧ p−) 2 ·

[

1

8
+ 0 +

1

8

]

. (3.31)

In total,

iV W+W−σ
µν (p+, p−, p) = +i∆ε

1

2
g4vgµν exp(ip+ ∧ p−) . (3.32)

For the one loop W+
µ W

−
ν π0 vertex shown in figure 15 we briefly indicate how

a finite result is achived. The following diagrams are separately finite due to an

oscillatory factor exp(i2p ∧ k) or s2p∧k: W± loops in (b), ZW±π± in (c), cZc±c±
in (e), Zπ∓ in (h) and figure (f). The others cancel their divergences between

conjugated diagrams.

3.9 GGG vertices

This is the most complicated part of the calculation performed in this section because

of the involvement of GGG and GGGG types of vertices. The one loop contributions

to the vertices AAA, ZZZ, AW+W− and ZW+W− are generally divergent while

those of AZZ and AAZ must be finite. Again we present our calculation using the

first one of each type as examples.
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Note that except for the A loop in figure 16(b) there is an additional permutated

contribution for each case in (a)–(c) and there are two additional ones for (d)–(e). We

first note that (d) vanishes identically. This is because the only difference from the

analog in ordinary scalar QED is the appearance of the factor cp2∧p3 . For figure (a)

we have,

(a)123 = − g3

2
√
2
exp(ip3 ∧ p2)

∫

DW
k DW

k+p2
DW
k−p3

×

×(2k + p2 − p3)α(2k + p2)β(2k − p3)γ

= −i∆ε
g3

6
√
2
exp(ip3 ∧ p2)Pαβγ(p1, p2, p3) + · · · . (3.33)

Summing with the permutated one gives

(a) = (a)123 + (a)132

= −∆ε
g3

3
√
2
sin(p2 ∧ p3)Pαβγ(p1, p2, p3) + · · · . (3.34)

The A loop in (b) is

(b)A = −i2
√
2g3

∫

OkP
t
αβγD

A
kD

A
k+p2D

A
k−p3

= −∆ε
13g3

4
√
2
sin(p1 ∧ p2)Pαβγ(p1, p2, p3) + · · · , (3.35)

where

Ok = sin(p1 ∧ (k + p2)) sin(p2 ∧ k) sin(k ∧ p3)
= 1/4 sin(p1 ∧ p2) + · · · ,

P t
αβγ = P ρτ

α (p1, k + p2, p3 − k)Pβσρ(p2, k,−k − p2)×
×P σ

γ τ(p3,−k, k − p3) . (3.36)

The W+ loop is similarly computed. Including its permutation, we have the diver-

gence

(b)W = (b)123W + (b)132W

= −i∆ε
13g3

8
√
2
[exp(ip3 ∧ p2)− exp(ip2 ∧ p3)]Pαβγ(p1, p2, p3)

= −∆ε
13g3

4
√
2
sin(p2 ∧ p3)Pαβγ(p1, p2, p3) . (3.37)

Figure (c) is essentially similar to (a) but we must be careful with the tensor

Pαβγ(p1, p2, p3). Using its properties given in appendix A, we have

(c)A = (c)123A + (c)132A
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= −∆ε
g3

12
√
2
sin(p2 ∧ p3) [Pγαβ(p1, p2, p3)− Pβαγ(p1, p3, p2)]

= +∆ε
g3

12
√
2
sin(p2 ∧ p3)Pαβγ(p1, p2, p3) . (3.38)

The separate contribution of c± does not have the same structure as the counterterm,

(c)± = (c)123± + (c)132±

= ∓i∆ε
g3

24
√
2

[

e±ip3∧p2Pγαβ(p1, p2, p3) + e±ip2∧p3Pβαγ(p1, p3, p2)
]

, (3.39)

but their sum has,

(c) = (c)+ + (c)−

= +∆ε
g3

12
√
2
sin(p2 ∧ p3)Pαβγ(p1, p2, p3) . (3.40)

Now we compute the A loop in figure (e),

(e)1A = −i
√
2g3

∫

Tαβγ(k, pi)D
A
kD

A
k+p1 , (3.41)

where

Tαβγ(k, pi) = P µν
α (p1, k,−k − p1)sp1∧k ×
×[(gµβgνγ − gµγgνβ)sp2∧p3sp1∧k +

+(gµγgνβ − gµνgβγ)sp2∧ksp3∧(k+p1) +

+(gµνgβγ − gµβgνγ)sk∧p3sp2∧(k+p1)] . (3.42)

Isolating the non-k oscillatory part as follows,

sp1∧ksp2∧p3sp1∧k = +1/2 sp2∧p3 + · · · ,
sp1∧ksp2∧ksp3∧(k+p1) = −1/4 sp3∧p1 + · · · ,
sp1∧ksk∧p3sp2∧(k+p1) = −1/4 sp1∧p2 + · · · , (3.43)

and doing loop integration by using the explicit form of P µν
α , we arrive at

(e)1A = +∆ε
9

2
√
2
g3 sin(p2 ∧ p3)(p1γgαβ − p1βgγα) + · · · . (3.44)

Including all permutations, we recover the correct structure,

(e)A = (e)1A + (e)2A + (e)3A

= +∆ε
9

2
√
2
g3 sin(p2 ∧ p3)Pαβγ(p1, p2, p3) + · · · . (3.45)
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W+

k

W+ W+

Zβ Zγ

Aµ

p2 p3

p1

(b)

c±

c± c±

(c)

kW+ W+

Zβ Zγ

Aµ

(e)A

W+ W+

Aµ Zγ

Zα

(e)Z

Figure 17: AµZαZβ vertex.

The W+ loop is simpler and turns out to have the same divergence as the A loop.

In summary, the divergence in the vertex is,

iV AAA
αβγ (p1, p2, p3) = +∆ε

7

3
√
2
g3 sin(p2 ∧ p3)Pαβγ(p1, p2, p3) . (3.46)

For the AµZαZβ vertex shown in figure 17 we just comment that there are no

analogs of figures 16(a) and (d) and that the remaining diagrams are made finite by

the phase exp(i2k ∧ pi).

3.10 φcc̄ vertices

We have the following list of possibly divergent vertices σcZ c̄Z , σc±c̄∓, π0cZ c̄Z ,

π0c±c̄∓, π±c∓c̄Z and π±cAc̄∓, and the following one which must be finite, σcAc̄A,

σcAc̄Z , σcZ c̄A, π0cAc̄A, π0cAc̄Z , π0cZ c̄A, π±c∓c̄A and π±cZ c̄∓.

Let us take a sample calculation of the σcZ c̄Z vertex shown in figure 18. The σ

loop is

(σ) = +
1

2
g4v

∫

Okk · (k − p+ q̄)DZ
kD

Z
k−qD

σ
k+q̄

= −i∆ε
1

8
g4v cos(q̄ ∧ q) + · · · , (3.47)

where we have used

Ok = sin(p ∧ (q̄ + k)) sin(q ∧ k) cos(q̄ ∧ k)
= −1/4 cos(q̄ ∧ q) + · · · . (3.48)

The π0 loop contributes the same, and the sum of the π± loops is

(π+) + (π−) = −i∆ε
1

8
g4v [exp(iq̄ ∧ q) + exp(iq ∧ q̄)] + · · · . (3.49)

The total divergence is then,

iV σcZ c̄Z(p, q, q̄) = −i∆ε
1

2
g4v cos(q̄ ∧ q) . (3.50)
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cZ; c±
k

Z;W± σ, π0; π±

cZ c̄Z

σ

q q̄

p

Figure 18: σcZ c̄Z vertex.

As for the finite vertices, there are no apparently

c+
k

W+ σ, π0

cZ c̄−

π+

q q̄

p

Figure 19: π+cZ c̄− vertex.

divergent diagrams at all for the vertices σcAc̄A, σcZ c̄A,

π0cAc̄A, π0cZ c̄A and π±c∓c̄A. Figure 19 is an example

of the remaining ones which however is finite due to

the appearance of the phase exp(i2q ∧ k).

3.11 Gcc̄ vertices

This is the last group of vertices computed in this

section. We have generally divergent vertices AcAc̄A,

Ac±c̄∓, ZcZ c̄Z , Zc±c̄∓, W
±c∓c̄A, W

±c∓c̄Z , W
±cAc̄∓

and W±cZ c̄∓, and finite ones AcZ c̄Z, AcAc̄Z, AcZ c̄A,

ZcAc̄A, ZcAc̄Z and ZcZ c̄A. We illustrate our calcula-

tion by the examples shown in figures 20 and 21.

The cA loop in figure 20(a) is

(a)cA = − i√
2
g3
∫

OkPµD
A
kD

A
k+q̄D

W
k−q (3.51)

= −i∆ε
3

8
√
2
g3 exp(iq̄ ∧ q)q̄µ + · · · , (3.52)

where we have used the following

Ok = sin(q̄ ∧ k) exp(iq ∧ k) exp(ip ∧ (k − q))

= −i/2 exp(iq̄ ∧ q) + · · · ,
Pµ = Pαµβ(k + q̄, p, q − k)q̄αkβ

= (k2q̄µ − k · q̄kµ) + · · · , (3.53)

to single out the divergence. The A exchange in the c− loop is finite while the Z

exchange contributes the same as the cA loop. Figure (b) is simpler, so we write

down the result directly,

(b) = −i∆ε
1

8
√
2
g3 exp(iq̄ ∧ q)q̄µ(0 + 1 + 1) . (3.54)
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cA; c−
k

W+; A;
A,Z W−

c− c̄A

W+
µ

q q̄

p

(a)

W+;A

k

cA, cZ ; c+;
c− cA

(b)

Figure 20: W+
µ c−c̄A vertex.

c±
k

W± W±

cZ c̄A

Aµ

q q̄

p

(a)

W±

k

c± c±

(b)

Figure 21: AµcZ c̄A vertex.

The final result is,

iV W+c−c̄A(p, q, q̄) = −i∆ε
1√
2
g3 exp(iq̄ ∧ q)q̄µ . (3.55)

One sentence suffices for the vertex shown in figure 21: all loops are driven finite by

a phase of exp(±i2k ∧ p) or exp(±i2q ∧ k).

3.12 Renormalization constants

We have finished computing divergences in one loop 1PI functions in previous sub-

sections. Using the counterterms described in appendix A, we determine the renor-

malization constants in the MS scheme as follows,

δZG = ∆ε
19

6
g2 , δZφ = ∆ε2g

2 , δZc = ∆εg
2 ,

δZg = −∆ε2g
2 ,

δv

v
= ∆εg

2 ,
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λδZλ = ∆ε

[

6λ2 − 2λg2 +
3

4
g4
]

,

λ
δµ2

µ2
= −∆ε

[

λg2 +
3

8
g4
]

. (3.56)

These will be sufficient to remove all of UV divergences in Green’s functions at one

loop level. For example, the simple mass relation m2
Z = 2m2

W is preserved by the

divergent parts of their respective counterterms which provides a reassuring check of

the consistency of the model at one loop level.

4. Summary

A potential obstacle in attemps to construct consistent models of gauge interactions

on NC spacetime is whether the renormalizability property can be still maintained

or the concept of renormalization itself has to be modified. While there is no gen-

eral proof of this so far, we can still get some feeling and confidence from explicit

analyses. It has been checked that the exact U(1) and U(N) gauge theories and

the spontaneously broken U(1) gauge theory can be consistently renormalized at one

loop order. In this work we tried to fill the gap by including the spontaneously

broken U(N) case. We emphasize that this latter case is distinct from the former

ones. Since the gauge symmetry is partly broken we simultaneously have massive

and massless gauge bosons which also makes the model closer to the standard model

of electroweak interactions. The interactions and masses of these particels are simply

related because they are in the same multiplet before symmetry breaking occurs. It

is not clear from previous studies whether these relations can still be accommodated

at the quantum level on NC spacetime. This is a nontrivial problem, considering

the difficulties already met with spontaneous breaking of global symmetries. Our

explicit analysis shows however that this is indeed possible; just as we see in the

usual gauge theories, with the same limited number of renormalization constants we

can remove the UV divergences for both exact and spontaneously broken non-abelian

gauge theories on NC spacetime however complicated the latter case could be. This

positive result supports the points of view that it is worthwhile to pursue further in

this direction.

Although our explicit analysis is confined to the U(2) case for both physical

and technical reasons, it seems reasonable to expect that our affirmative result also

applies to the general case since the most important feature has already appeared in

the U(2) case as discussed above, namely, the relations in interactions and masses

among massless and massive gauge bosons as dictated by the group structure.

We have not discussed in this work the four point 1PI functions due to technical

reasons. A glimpse at Feynman rules makes it clear that the model considered here

is already much more complicated than the complete standard model of electroweak
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interactions. This happens in two related ways; we have more types (almost all

imaginable types) of interactions and the interactions themselves become complicated

due to the involvement of momentum-dependent phase factors. It is amazing to see

in the previous section how different sectors of the model conspire to bring about a

consistent result of UV divergences so that the above complications would not spoil

the renormalizability of the model. It would not be surprising that the same magic

also occurs in four point functions since they are in a sense related to the lower ones

by the group structure and the same noncommutative relations. We also have not

included fermions. We should expect no problems with vector-like fermions, but it

will be rather delicate if chiral fermions are involved due to the danger of anomalies.

All this deserves a separate work to which we hope to return soon.
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A. Feynman rules

We list below the complete Feynman rules for the model. All momenta are incoming

and shown in the parentheses of the corresponding particles.

Propagators (momentum p):

Aµ Aν
=
−i
p2

[

gµν − (1− ξ)
pµpν
p2

]

Zµ Zν
=

−i
p2 −m2

Z

[

gµν − (1− ξ)
pµpν

p2 − ξm2
Z

]

W+
µ W−

ν
=

−i
p2 −m2

W

[

gµν − (1− ξ)
pµpν

p2 − ξm2
W

]

σ σ
=

i

p2 −m2
σ

π0 π0
=

i

p2 − ξm2
Z

π+ π−
=

i

p2 − ξm2
W

cA c̄A =
i

p2

cZ c̄Z =
i

p2 − ξm2
Z
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c± c̄∓
=

i

p2 − ξm2
W

Gφφ vertices:

Aµπ+(p+)π−(p−) =
ig√
2
(p+ − p−)µ exp(−ip+ ∧ p−)

Zµσ(p1)σ(p2) =
g√
2
(p1 − p2)µ sin(p1 ∧ p2)

Zµπ0(p1)π0(p2) =
g√
2
(p1 − p2)µ sin(p1 ∧ p2)

Zµσ(p)π0(p0) =
g√
2
(p− p0)µ cos(p ∧ p0)

W±
µ σ(p)π∓(p∓) = ±ig

2
(p− p∓)µ exp(∓ip ∧ p∓)

W±
µ π0(p0)π∓(p∓) =

g

2
(p∓ − p0)µ exp(∓ip0 ∧ p∓) . (A.1)

GGφ vertices:

W±
µ (p±)Aν(p)π∓ =

ig2v

2
√
2
gµν exp(±ip± ∧ p)

W±
µ (p±)Zν(p)π∓ =

ig2v

2
√
2
gµν exp(∓ip± ∧ p)

W+
µ (p+)W

−
ν (p−)σ =

ig2v

2
gµν exp(ip+ ∧ p−)

Zµ(p1)Zν(p2)σ = ig2vgµν cos(p1 ∧ p2) . (A.2)

GGφφ vertices:

Aµ(k1)Aν(k2)π+(p+)π−(p−) = ig2gµν cos(k1 ∧ k2) exp(−ip+ ∧ p−)
Zµ(k1)Zν(k2)σ(p1)σ(p2) = ig2gµν cos(k1 ∧ k2) cos(p1 ∧ p2)

Zµ(k1)Zν(k2)π0(p1)π0(p2) = ig2gµν cos(k1 ∧ k2) cos(p1 ∧ p2)
Zµ(k1)Zν(k2)σ(p)π0(p0) = −ig2gµν cos(k1 ∧ k2) sin(p ∧ p0)

W+
µ (k+)W

−
ν (k−)π+(p+)π−(p−) =

ig2

2
gµν exp(−ik+ ∧ k−) exp(−ip+ ∧ p−)

W+
µ (k+)W

−
ν (k−)σ(p1)σ(p2) =

ig2

2
gµν exp(ik+ ∧ k−) cos(p1 ∧ p2)

W+
µ (k+)W

−
ν (k−)π0(p1)π0(p2) =

ig2

2
gµν exp(ik+ ∧ k−) cos(p1 ∧ p2)

W+
µ (k+)W

−
ν (k−)σ(p)π0(p0) = −ig

2

2
gµν exp(ik+ ∧ k−) sin(p ∧ p0)

W±(k±)Aν(k)σ(p)π∓(p∓) =
ig2

2
√
2
gµν exp(±ik± ∧ k) exp(±ip∓ ∧ p)

W±(k±)Zν(k)σ(p)π∓(p∓) =
ig2

2
√
2
gµν exp(∓ik± ∧ k) exp(±ip∓ ∧ p)
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W±(k±)Aν(k)π0(p)π∓(p∓) = ∓ g2

2
√
2
gµν exp(±ik± ∧ k) exp(±ip∓ ∧ p)

W±(k±)Zν(k)π0(p)π∓(p∓) = ∓ g2

2
√
2
gµν exp(∓ik± ∧ k) exp(±ip∓ ∧ p) . (A.3)

GGG vertices:

Aα(k1)Aβ(k2)Aγ(k3) = −
√
2g sin(k1 ∧ k2)Pαβγ(k1, k2, k3)

Zα(k1)Zβ(k2)Zγ(k3) = −
√
2g sin(k1 ∧ k2)Pαβγ(k1, k2, k3)

Aµ(k)W
+
α (k+)W

−
β (k−) = − ig√

2
exp(−ik+ ∧ k−)Pµαβ(k, k+, k−)

Zµ(k)W
+
α (k+)W

−
β (k−) = +

ig√
2
exp(+ik+ ∧ k−)Pµαβ(k, k+, k−) , (A.4)

where

Pαβγ(k1, k2, k3) = (k1 − k2)γgαβ + (k2 − k3)αgβγ + (k3 − k1)βgγα .

Some simple properties of it are useful:

Pαβγ(k1, k2, k3) = −Pαγβ(k1, k3, k2) = −Pβαγ(k2, k1, k3) = −Pγβα(k3, k2, k1) ,
Pαβγ(k1, k2, k3) + Pγαβ(k1, k2, k3) = Pβαγ(k1, k3, k2) . (A.5)

GGGG vertices:

Aα(k1)Aβ(k2)Aµ(k3)Aν(k4) =

= Zα(k1)Zβ(k2)Zµ(k3)Zν(k4)

= −i2g2{(gµαgνβ − gµβgνα) sin(k1 ∧ k2) sin(k3 ∧ k4) +
+ (gµβgνα − gµνgαβ) sin(k3 ∧ k1) sin(k2 ∧ k4) +
+ (gµνgαβ − gµαgνβ) sin(k1 ∧ k4) sin(k2 ∧ k3)} (A.6)

W−
α (k1)W

−
β (k2)W

+
µ (k3)W

+
ν (k4) =

= ig2(2gµνgαβ − gµαgνβ − gµβgνα) cos(k1 ∧ k3 + k2 ∧ k4)
W+

α (k+)W
−
β (k−)Aµ(k1)Aν(k2) =

=
ig2

2
{(−2gµνgαβ + gµαgνβ + gµβgνα) cos(k1 ∧ k2) +
+ (gµβgνα − gµαgνβ)3i sin(k1 ∧ k2)} exp(−ik+ ∧ k−) (A.7)

W+
α (k+)W

−
β (k−)Zµ(k1)Zν(k2) =

=
ig2

2
{(−2gµνgαβ + gµαgνβ + gµβgνα) cos(k1 ∧ k2) +
+ (gµαgνβ − gµβgνα)3i sin(k1 ∧ k2)} exp(ik+ ∧ k−) (A.8)

W+
α (k+)W

−
β (k−)Zµ(k1)Aν(k2) =

=
ig2

2
(2gµνgαβ − gµαgνβ − gµβgνα) exp(ik+ ∧ k2) exp(ik− ∧ k1) . (A.9)
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φφφ vertices:

σσ(p1)σ(p2) = −i6λv cos(p1 ∧ p2)
σπ0(p1)π0(p2) = −i2λv cos(p1 ∧ p2)

σπ+(p+)π−(p−) = −i2λv exp(ip+ ∧ p−) . (A.10)

φφφφ vertices:

σ(p1)σ(p2)σ(p3)σ(p4) =

= π0(p1)π0(p2)π0(p3)π0(p4)

= −i2λ[cos(p1 ∧ p2) cos(p3 ∧ p4) + cos(p1 ∧ p3) cos(p2 ∧ p4) +
+ cos(p1 ∧ p4) cos(p2 ∧ p3)] (A.11)

(A.12)

σ(p1)σ(p2)π0(k1)π0(k2) =

= −i2λ{2 cos(p1 ∧ p2) cos(k1 ∧ k2)− cos(p1 ∧ k1 + p2 ∧ k2)}
π+(p1)π+(p2)π−(k1)π−(k2) =

= −i4λ cos(p1 ∧ k1 + p2 ∧ k2) (A.13)

σ(p1)σ(p2)π+(k+)π−(k−) =

= π0(p1)π0(p2)π+(k+)π−(k−)

= −i2λ cos(p1 ∧ p2) exp(ik+ ∧ k−) (A.14)

σ(p)π0(k0)π+(k+)π−(k−) =

= −i2λ sin(p ∧ k0) exp(ik+ ∧ k−) (A.15)

φcc̄ vertices:

σcZ(p)c̄Z(p̄) = −iξg2v/2 cos(p̄ ∧ p)
σc±(p)c̄∓(p̄) = −iξg2v/4 exp(∓ip̄ ∧ p)
π0cZ(p)c̄Z(p̄) = −iξg2v/2 sin(p̄ ∧ p)
π0c±(p)c̄∓(p̄) = ±ξg2v/4 exp(∓ip̄ ∧ p)
π±c∓(p)c̄Z(p̄) = −iξg2v

√
2/4 exp(∓ip̄ ∧ p)

π±cA(p)c̄∓(p̄) = −iξg2v
√
2/4 exp(∓ip̄ ∧ p) . (A.16)

Gcc̄ vertices:

AµcA(p)c̄A(p̄) =
√
2gp̄µ sin(p̄ ∧ p)

Aµc±(p)c̄∓(p̄) = ∓ig/
√
2 p̄µ exp(±ip̄ ∧ p)

ZµcZ(p)c̄Z(p̄) =
√
2gp̄µ sin(p̄ ∧ p)

Zµc±(p)c̄∓(p̄) = ±ig/
√
2 p̄µ exp(∓ip̄ ∧ p)

W±
µ c∓(p)c̄A(p̄) = ∓ig/

√
2 p̄µ exp(±ip̄ ∧ p)
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W±
µ cA(p)c̄∓(p̄) = ±ig/

√
2 p̄µ exp(∓ip̄ ∧ p)

W±
µ c∓(p)c̄Z(p̄) = ±ig/

√
2 p̄µ exp(∓ip̄ ∧ p)

W±
µ cZ(p)c̄∓(p̄) = ∓ig/

√
2 p̄µ exp(±ip̄ ∧ p) . (A.17)

Counterterms for self-energies and mixings are listed below. Note the momentum

p is the incoming momentum of the gauge boson in the Gφ mixing.

σ × = iλv3
[

δµ2

µ2
− δZλ −

2δv

v

]

σ σ× = ip2δZφ − im2
σ

[

−δµ
2

2µ2
+

3

2
δZλ +

3δv

v

]

π0 π0× = ip2δZφ − im2
σ

[

−δµ
2

2µ2
+

1

2
δZλ +

δv

v

]

π+ π−× = ip2δZφ − im2
σ

[

−δµ
2

2µ2
+

1

2
δZλ +

δv

v

]

Aµ Aν× = i(pµpν − p2gµν)δZG
Zµ Zν× = i(pµpν − p2gµν)δZG + igµνm

2
Z

[

2δZg +
2δv

v
+ δZφ

]

W+
µ W−

ν× = i(pµpν − p2gµν)δZG + igµνm
2
W

[

2δZg +
2δv

v
+ δZφ

]

Zµ π0
× = mZpµ

[

δZg +
δv

v
+ δZφ

]

W±
µ π∓

× = ±imW pµ

[

δZg +
δv

v
+ δZφ

]

cA c̄A× = ip2δZc
cZ c̄Z× = ip2δZc − iξm2

Z

[

δZg +
δv

v
+ δZc

]

c± c̄∓× = ip2δZc − iξm2
W

[

δZg +
δv

v
+ δZc

]

The counterterms for vertices are obtained by attaching the following factors to

the corresponding Feynman rules.

Gφφ : (ZφZg − 1) = δZφ + δZg ,

GGφ : [ZφZ
2
g (1 + δv/v)− 1] = δZφ + 2δZg + δv/v ,

GGφφ : (ZφZ
2
g − 1) = δZφ + 2δZg ,

GGG : (ZGZg − 1) = δZG + δZg ,

GGGG : (ZGZ
2
g − 1) = δZG + 2δZg ,

φφφ : [Zλ(1 + δv/v)− 1] = δZλ + δv/v ,

φφφφ : (Zλ − 1) = δZλ ,

φcc̄ : (ZcZg − 1) = δZc + δZg ,
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Gcc̄ : (ZcZg − 1) = δZc + δZg . (A.18)

B. One loop diagrams for 1PI functions

We show below topologically different diagrams in which the wavy, dashed and dotted

lines represent the gauge, scalar and ghost fields respectively. For a concrete vertex

all possible assignments of fields must be included. Diagrams with an “ f ” are finite

by power counting.

φ self-energy:

G self-energy:

Gφ mixing:

c self-energy:
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φφφ vertex:

f f f

Gφφ vertex:

f f f

f f

GGφ vertex:

f f
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GGG vertex:

f f

φcc̄ vertex:

f f f f

Gcc̄ vertex:

f f f
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