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1. Introduction

The so-called jet quenching [1]–[6] is considered an important signal of the production

of a new state of dense matter (quark-gluon plasma) in ultrarelativistic heavy ion

collisions. This is understood as the suppression of the yield of large transverse

momentum jets or particles with respect to proton-proton collisions.

In this paper we concentrate on the quenching effect in inclusive particle spectra,

due to the energy loss by medium induced gluon radiation [7]–[24].

Inclusive production of particles with large p⊥, in, say, proton-proton collisions
can be parametrized as a power

dσvacuum(p⊥)
dp2⊥

∝ 1
pn⊥
, n = n(p⊥) ≡ − d

d ln p⊥
ln
dσvacuum(p⊥)
dp2⊥

(1.1)

with n an effective exponent which slowly decreases with increase of p⊥. In reality,
for moderately large p⊥ the exponent in (1.1) is much larger than the asymptotic
value n = 4 corresponding to the limit p⊥ →∞ (s/p2⊥ = const).
The effects that add to the value of n are:
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1. x-dependence of the parton distributions which decrease with increase of parton

energies, x1, x2 ∝
√
p2⊥/s ,

2. the bias effect due to vetoing accompanying gluon radiation off the primary

large-pt parton that produces the triggered particle with p⊥ ≤ pt ,
3. running of the coupling α2s(p

2
⊥) in the parton-parton scattering cross section.

As a result, in practice n is seen to be as large as 10. In what follows we shall treat

n as a large numerical parameter neglecting relative corrections of the order of 1/n.

(Such an approximation, though unnecessary, allows us to derive a simple analytic

expression for jet quenching due to medium effects.)

In the presence of a medium the inclusive spectrum (1.1) changes. Multiple

interactions of partons with the medium lead to two competing effects. On the

one hand, multiple scattering in the initial (as well as in the final) state partially

transforms longitudinal parton motion into transverse one, thus enhancing the yield

of large-p⊥ particles (the so-called Cronin effect [25]). On the other hand, medium
induced gluon radiation accompanying multiple scattering causes parton energy loss

and therefore suppresses the particle yield.

At large transverse momenta the second effect takes over.

The standard jet fragmentation involves gluon bremsstrahlung caused by the

hard parton scattering, followed by the hadronization of the final parton (which we

suppose to take place outside the medium). It reduces the energy of the originally

produced parton pt to that of the leading particle in the jet, p⊥ < pt. These effects are
already included in the vacuum cross section.1 Since the additional medium induced

energy loss turns out to be relatively small, ε � p⊥ (see below), we may treat it
as an additive effect and thus avoid introducing the in-medium parton → hadron
fragmentation function.

The correspondence between the parton and final hadron momenta in the vacuum

(pt → p⊥)vac translates in the medium into (pt → p⊥−ε)med. Bearing this in mind, to
find the inclusive particle spectrum with a given p⊥ we have to convolute the vacuum
production cross section of the particle with energy p⊥+ ε with the distribution D(ε)
that describes specifically the additional energy loss ε due to medium induced gluon

radiation in the final state:

dσmedium(p⊥)
dp2⊥

=

∫
dεD(ε)

dσvacuum(p⊥ + ε)
dp2⊥

. (1.2)

The quenching effect is customarily modelled by the substitution

dσmedium(p⊥)
dp2⊥

=
dσvacuum(p⊥ + S)

dp2⊥
. (1.3)

1For the sake of simplicity we consider particle production at 90o and equate the transverse

momentum of the particle p⊥ with its energy.
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The shift parameter S in (1.3) is usually taken either proportional to the size of the

medium,

S = const · L , (1.4a)

or equal to the mean medium induced energy loss [11]

S = ∆E ≡
∫
dε εD(ε) ∝ αs L2 . (1.4b)

The former ansatz has no theoretical justification while the latter emerges as a result

of the Taylor expansion of (1.2) based on the ε� p⊥ approximation:∫
dεD(ε) · dσ(p⊥ + ε)

dp2⊥
=

∫
dεD(ε) · dσ(p⊥)

dp2⊥
+

∫
dε εD(ε) · d

dp⊥

dσ(p⊥)
dp2⊥

+ · · ·

' dσ
dp2⊥
+∆E · d

dp⊥

(
dσ

dp2⊥

)
' dσ(p⊥ +∆E)

dp2⊥
. (1.5)

Such an approximation misses, however, one essential point, namely that the vacuum

distribution is a sharply falling function of p⊥. This causes a strong bias which leads
to an additional suppression of real gluon radiation. As a result, the typical energy

carried by accompanying gluons turns out to be much smaller than the mean (1.4b).

In this paper we study an interplay between the energy loss and the cross section

fall-off and show that it leads, in the region of transverse momenta of practical

interest, to the p⊥ dependent expression for the shift

S(p⊥) ∝ √p⊥ .

2. Medium induced energy loss

2.1 Transport coefficient

The two effects — parton transverse momentum broadening and medium induced ra-

diation are closely related and are determined by the so-called “transport coefficient”

q̂ which characterizes the “scattering power” of the medium [11]:

q̂(R) = ρ

∫
dq2 q2

dσ(R)

dq2
. (2.1)

Here ρ is the density of scattering centres, and dσ(R) is the single scattering cross

section for a projectile parton in the colour representation R, with CR the corre-

sponding colour factor (CF = (N
2
c − 1)/2Nc = 4/3, CA = Nc = 3 for quark and

gluon, respectively).

The dimensionless ratio q̂/ρ characterizes the “opacity” of the medium for an

energetic gluon. It includes the region of small momentum transfers where the pertur-

bative treatment is hardly applicable, and should be regarded as (the only) unknown

medium-dependent parameter of the problem.
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In “cold” nuclear matter q̂ can be calculated perturbatively and related to the

gluon density [xG(x,Q2)] of the nucleus at a low momentum scale Q2 ' q̂ L and
small but not too small x, where the gluon density has little dependence on x [11]:

q̂(R) ' ρ 4π
2αsCR

N2c − 1
[
xG(x, q̂(R)L)

]
. (2.2)

Hereafter we shall label q̂ the gluon transport coefficient. Taking ρ = 0.16 fm−3,
αs = 0.5 and xG(x) = 1 in (2.2) results in

q̂cold ' 0.009GeV3 ' 0.045 GeV
2

fm
. (2.3)

q̂ enters, in particular, as the proportionality factor between an accumulated parton

transverse momentum squared and the size of the medium traversed, κ2 ∝ q̂L. The
quark transport coefficients extracted from experimentally measured transverse mo-

mentum nuclear broadening of Drell-Yan lepton pairs [26] agrees with the theoretical

estimate (2.3).

In the case of heavy ion collisions, the scattered hard parton traverses a medium

that is expected to have an energy density much higher than that of nuclear matter,

and the corresponding transport coefficient q̂hot can be much larger. If hot matter

is formed in the final state, a perturbative estimate for the QGP with T = 250MeV

gives [11]

q̂hot ' 0.2GeV3 ' 1 GeV
2

fm
. (2.4)

2.2 Induced gluon radiation

To find the distribution D(ε) in the parton energy loss ε in the final state we need

to recall the basic properties of gluon radiation caused by multiple parton scattering

in the medium.

Introducing the characteristic gluon frequency

ωc =
q̂

2
L2 , (2.5)

with L the length of the medium, the inclusive energy spectrum of medium induced

soft gluon radiation (ω � p⊥) reads [12, 13]

dI(ω)

dω
=
α

ω
ln

∣∣∣∣∣cos
√
i ωc

ω

∣∣∣∣∣ = α2ω ln
[
cosh2

√
ωc

2ω
− sin2

√
ωc

2ω

]
; α ≡ 2αsCR

π
. (2.6)

This distribution peaks at small gluon energies,

ω
dI(ω)

dω
= α

{√
ωc

2ω
− ln 2

}
·
[
1 +O

(
exp

{
−
√
2ωc
ω

})]
, ω < ωc , (2.7)
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while for energies above the characteristic scale it is small and falling fast with ω:

ω
dI(ω)

dω
' α
12

(ωc
ω

)2
, ω > ωc . (2.8)

The multiplicity of gluons with energies larger than a given ω is given by the integal

of the inclusive gluon spectrum (2.6):

N (ω) ≡
∫ ∞
ω

dω′
dI(ω′)
dω′

= α

∫ √ωc/2ω
0

dz

z
ln
(
cosh2 z − sin2 z) . (2.9)

Evaluating this integral for x = ω/ωc � 1 we have (cf. (2.7))

N(ω) ' α
[√
2

x
+ ln 2 lnx− 1.44136 +O

(
exp(−

√
2/x)

)]
, (2.10)

with the constant term found by numerical integration of the exact spectrum (2.6).

2.3 Energy loss distribution

Since the vacuum spectrum (1.1) is falling fast with p⊥, the bias effect forces the
distribution D(ε) to the smallest energy losses possible, ε/p⊥ � 1. In these circum-
stances the “final” parton is the one that had been produced in the hard interaction:

the quark-gluon transition is additionally suppressed as ε/p⊥ and can be neglected.
Bearing this in mind, we will treat D(ε) as the distribution in energy that the hard

parton (a quark or a gluon) loses to medium induced gluon bremsstrahlung.

The spectrum of the leading particle can be characterised by the probability

D(ε) that the radiated gluons carry altogether a given energy ε. The corresponding

expression based on independent emission of soft primary gluons reads

D(ε) =

∞∑
n=0

1

n!

[
n∏
i=1

∫
dωi
dI(ωi)

dω

]
δ

(
ε−

n∑
i=1

ωi

)
· exp

[
−
∫
dω
dI

dω

]
, (2.11)

where the last factor accounts for virtual effects. In a standard way, the energy

constraint can be factorized using the Mellin representation,

δ

(
ε−

n∑
i=1

ωi

)
=

∫
C

dν

2πi
eνε ·

n∏
i=1

e−νωi , (2.12)

after which multiple gluon radiation exponentiates, and the answer can be written

as

D(ε) =

∫
C

dν

2πi
D̃(ν) eνε , (2.13a)

D̃(ν) = exp

[
−
∫ ∞
0

dω
dI(ω)

dω

(
1− e−νω)] . (2.13b)
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The contour C in (2.12) and (2.13a) runs parallel to the imaginary axis in the complex

ν-plane, Re ν = const. An equivalent expression can be written in terms of the

integrated gluon multiplicity (2.9). Integrating (2.13b) by parts, we obtain an elegant

formula

D̃(ν) = exp

[
−ν
∫ ∞
0

dω e−νωN (ω)
]

(2.14a)

= exp

[
−
∫ ∞
0

dz e−zN
(z
ν

)]
. (2.14b)

As we shall see shortly, the value of the dimensional variable νωc is linked with the

characteristic parameter of the problem nωc/p⊥ which is typically much larger than
unity. Therefore, in the essential integration region in (2.13b) we have ω ∼ 1/ν ∼
p⊥/n� ωc, and the approximate expression (2.10) can be used. This gives

D̃(ν) ' exp{−α (√2πνωc − ln 2 ln(νωc)− 1.84146)} , (2.15)

which expression allows one to evaluate the energy loss distribution D(ε) for ε� ωc
analytically in terms of the hypergeometric function.

For the purpose of illustration we present here only a rough estimate based on

the leading small-energy behaviour of the gluon distribution ωdI/dω ∝ αs
√
ωc/ω

which translates into

D̃(ν) ' exp{−α√2πνωc} . (2.16)

The Laplace integral (2.13a) then becomes gaussian and yields

εD(ε) ' α
√
ωc

2ε
exp

{
−πα

2ωc

2ε

}
. (2.17)

This approximation is fine for illustrative purposes, in particular because the distri-

bution (2.17) is properly normalized to unity due to D̃(ν = 0) = 1 in (2.16). As

expected, in the first order in αs the energy loss spectrum coincides with the prob-

ability of emission of one gluon with the energy ω = ε, see (2.7). The one-gluon

approximation spectacularly fails, however, at small ε. If the energy loss is taken as

small as ε ∼ α2ωc, the distribution reaches its maximum at
ε = πα2 ωc � ωc (2.18)

and becomes exponentially small at smaller energies, due to form factor suppression.

3. Quenching

We introduce the medium dependent quenching factor Q to represent the inclusive

particle spectrum as

dσmedium(p⊥)
dp2⊥

=
dσvacuum(p⊥)
dp2⊥

·Q(p⊥) (3.1)

6
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with

Q(p⊥) =
∫
dεD(ε) ·

(
dσvacuum(p⊥ + ε)/dp2⊥
dσvacuum(p⊥)/dp2⊥

)
. (3.2)

Using the fact that the effective exponent n in the ratio

R =
dσvacuum(p⊥ + ε)/dp2⊥
dσvacuum(p⊥)/dp2⊥

'
(
p⊥
p⊥ + ε

)n

entering the convolution (3.2) is numerically large, we can replace R by the expo-

nential form

R = exp

(
−nε
p⊥

)
·
[
1 +O

(
ln2R

2n

)]
. (3.3)

The accuracy of such a substitution is rather good all over the region of practical

interest where the quenching suppression is moderately large.

The exponential approximation (3.3) results in a simple expression for the quen-

ching, as the suppression factor equals a given Mellin moment in ε of the spectrum

D(ε) (see (2.13a) and (2.14)):

Q(p⊥) '
∫ ∞
0

dεD(ε) exp

{
− n
p⊥
· ε
}

= D̃

(
n

p⊥

)
= exp

{
−
∫ ∞
0

dz e−zN
(p⊥
n
z
)}
. (3.4)

Representing the quenching factor as

Q(p⊥) = exp
{
− n
p⊥
· S(p⊥)

}
, (3.5a)

S(p⊥) ≡ −p⊥
n
ln D̃

(
n

p⊥

)
=

∫ ∞
0

dω N(ω) exp

{
−nω
p⊥

}
, (3.5b)

and using again the large-n approximation, we can cast the quenching effect as a

shift of the vacuum spectrum:

dσmedium(p⊥)
dp2⊥

' dσ
vacuum(p⊥ + S(p⊥))

dp2⊥
. (3.6)

It should be noted that the shift approximation (3.6) underestimates suppression if

the quenching factor Q becomes very small.

The general expression (3.4) actually solves the quenching problem, given the

gluon emission spectrum dI/dω. To verify the validity of the approach and the

approximations made, we need, however, to estimate the characteristic gluon energies

that determine the answer. To this end we proceed with a qualitative analysis of

QCD quenching.

Using the small-energy approximation (2.10) in (3.4) we derive

Q(p⊥) ' exp
{
−√π N

(p⊥
n

)}
' exp

{
−N

( p⊥
π n

)}
. (3.7)
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This expression has a simple physical interpretation. It is a typical exponential form

factor suppression whose exponent equals the probability of gluon radiation in the

forbidden kinematical region or, in other words, the mean multiplicity of virtual

gluons. We see that the energies of real gluons are cut from above as

ω <
ω1
π
, ω1 =

p⊥
n
, (3.8)

which (modulo a constant2 factor π) equals a small (1/n) fraction of the energy of

the registered particle, due to the bias effect. The characteristic energy parameter of

the quenching problem can be directly expressed in terms of the hard vacuum cross

section by the general relation

ω1(p⊥) ≡ −
[
d

dp⊥
ln
dσvacuum

dp2⊥

]−1
, (3.9)

which does not rely on the power approximation (1.1) with n =const.

For the “shift” function (3.5) in the approximation (2.10) we obtain

S(p⊥) '
√
2π α2 ωcp⊥
n

. (3.10)

This result namely, the p⊥ dependent shift, is very different from the models (1.4) that
were discussed in the literature and are being used to predict/describe quenching [1]–

[6]. To understand the origin of (3.10) in the rest of this section we consider and

compare the mean energy loss with a typical energy loss that characterizes quenching.

Mean energy loss. The mean medium induced energy loss of a parton with a

given energy E is determined by the integral

∆E ≡
∫ ∞
0

dε εD(ε) = − d
dν
D̃(ν)

∣∣∣∣
ν=0

=

∫ ∞
0

dω ω
dI(ω)

dω
=

∫ ∞
0

dωN(ω) , (3.11)

where we have used (2.13). Given ωdI/dω ∝ N(ω) ∝ ω−1/2, this integral is deter-
mined by the largest available gluon energies, ω . ωmax, resulting in [11]

∆E ∝ αs√ωc ωmax , ωmax = min {ωc , E} . (3.12)

The commonly used identification of the shift with the mean energy loss (1.4b) is

valid in the region of large particle energies p⊥ & nωc, corresponding to the quenching
parameter νωc . 1. Indeed, since the integrated gluon multiplicity N(ω) vanishes
fast for ω > ωc, for ν < 1/ωc we can omit the exponential factor in the integrand

of (2.14a) to derive

S(p⊥) '
∫ ∞
0

dω N(ω) ≡ ∆E . (3.13)

2dimensional, some would add,

8
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In this region, however, the quenching itself is vanishingly weak since ∆E ∝ αsωc
and

− lnQ(p⊥) = n
p⊥
·∆E ∝ αs · nωc

p⊥
< αs .

Gluons responsible for the mean energy loss are rare, O (αs). Strictly speaking, rare
fluctuations with energetic gluons (ω & ωc) in dI/dω do contribute to quenching via
the virtual suppression factor in (2.13a):

δ lnQ = −
∫ ∞
ωc

dω
dI(ω)

dω
.

This contribution, however, is bound to be small (negligible) as long as the mean

multiplicity (not mean energy !) of such gluons is of the order αs.

This argument applies both to the “canonical” ∆E [12, 13] and to the additional

contribution to ∆E originating from emission of energetic gluons when there is only

a single scattering in the medium, found in a series of recent papers initiated by

Gyulassy, Lévai and Vitev [20]–[23]. The GLV energy spectrum has an enhanced

high-energy tail,

ω dI(GLV)(ω)

dω
∝ α ωc

ω
, ω > ωc

[
cf.

ω dI(BDMPS)(ω)

dω
∝ α

(ωc
ω

)2]
,

thus inducing a potentially large contribution to ∆E from the region ω � ωc. Such
fluctuations, however, do not affect quenching since∫ ∞

ωc

dω
dI(GLV)(ω)

dω
= O (αs) .

Typical energy loss. To have a significant quenching, − lnQ(p⊥) = O (1), we
have to have N(p⊥/n) ∼ 1, according to (3.4), which translates into p⊥ . α2nωc �
nωc.

The value of the convolution integral (1.2) that determines quenching results in

an interplay of the steep fall-off of the parton cross section with ε and the form factor

suppression of small losses. To estimate the characteristic energy loss for a given p⊥
we invoke the approximate expression (2.17) for the distribution D(ε) to write

Q(p⊥) ' α√
2

∫ ∞
0

dx

x
3
2

exp

{
−πα

2

2 x
− nωc
p⊥
x

}
= exp

{
−2
√
πα2nωc
2 p⊥

}
, x ≡ ε

ωc
.

(3.14a)

In the region where the quenching is strong, Q� 1, the steepest descent evaluation
applies, provided the exponent on the r.h.s. of (3.14a) is large.

With p⊥ increasing, quenching becomes weak, 1−Q(p⊥)� 1. In this kinemat-
ical region we use the fact that D(ε) is normalized to unity to write an equivalent

9
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representation

1−Q(p⊥) '
√
α2nωc
2 p⊥

∫ ∞
0

dy

y

1− e−y√
y
· exp

{
−πα

2nωc
2p⊥ y

}
, y =

n ε

p⊥
. (3.14b)

Now, if the exponent in the last factor is small it can be dropped, and the integral

over y is determined by y = O (1).
Combining the two estimates we arrive at

〈ε〉 '
√
πα2ωc p⊥
2n

for p⊥ <
π

2
α2 nωc , (3.15a)

〈ε〉 ' p⊥
n

for p⊥ >
π

2
α2 nωc , (3.15b)

where 〈ε〉 is the typical energy value dominating the integrals (3.14). The two ex-
pressions (3.15) match at the border value.

Typical energy loss and the shift. In the first regime (3.15a) gluon radiation

is omnipresent. Invoking (3.5) we observe that the characteristic energy loss 〈ε〉
in (3.15a) equals half of the shift function S(p⊥). The factor 12 may look anti-
intuitive at a first glance. To appreciate it we need to recall that the substitution

dσmedium(p⊥)
dp2⊥

=⇒ dσvacuum(p⊥ + 〈ε〉)
dp2⊥

accounts only for a part of quenching: the second ingredient of the convolution (1.2)

— the energy loss distribution D (〈ε〉) — also supplies an (equal) exponential sup-
pression factor, giving

S(p⊥) = 2 〈ε〉 = 2 ·
√
πα2ωc p⊥
2n

.

In the complementary region of larger p⊥, the situation changes. Here gluon radiation
is rare and can be treated as a correction. In the one-gluon approximation the loss

is equal the gluon energy, 〈ε〉 = ω1 in (3.15b). It has to be multiplied by the (small)
gluon probability (multiplicity) ∆M(ω1),

∆M(ω) = const ·
[
ω
dI(ω)

dω

]
(3.16a)

to obtain the shift (3.10),

S(p⊥) = ω1 ·∆M(ω1) . (3.16b)

Characteristic single gluon energy. In (3.8) we have introduced the character-

istic (single gluon) energy ω1 as a border separating real and virtual emissions. Real

and virtual gluons softer than ω1 cancelled, while the multiplicity of harder virtual

gluons provided the form factor suppression which resulted in quenching according

to (3.4). Given an interpretation of ω1 as the maximal energy of real gluons, the

shift can again be expressed as in (3.16b) which evaluation is now valid for arbitrary

p⊥, across (3.15).
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4. Approximations

We start the discussion of the approximations made by noting that having written

the factorised convolution (1.2) we supposed that the leading quark turns into the

registered hadron (hadronizes) outside the medium, which implies

p⊥R2conf > L .

Then, the power approximation for the vacuum spectrum with n =const can be

justified. Our derivation could have been damaged if the effective exponent n in (1.1)

changed significantly over the energy range p⊥ ÷ p⊥ + ε in the essential region in ε.
Substituting the typical energy loss (3.15a) we observe that it provides a correction

p⊥ + 〈ε〉 = p⊥
(
1 +
lnQ−1

2n

)

which is actually relatively small for all values ofQ of practical interest. This estimate

allows us to evaluate n at the value of the transverse momentum of the registered

particle, n = n(p⊥), and use the general expression (3.9) as the definition of the
characteristic energy parameter ω1.

Soft approximation. The medium induced gluon distribution (2.6) is valid in the

soft gluon approximation, ω � p⊥. This approximation is justified by the fact that
the main contribution to (3.7) comes from gluons with energies

ω ∼ ω1 = p⊥
n
� p⊥ . (4.1)

Moreover, finite quenching, lnQ−1 = O (1), implies p⊥ . α2 nωc so that

ω ∼ ω1 = p⊥
n
. α2 ωc � ωc , (4.2)

so that the approximate expressions (2.7), (2.10) are legitimate.3

Independent gluon radiation. The master equation (2.11) was based on the

independent gluon radiation picture. To estimate significance of possible interference

effects we need to look at a typical density of gluons in configuration space.

To this end we recall that the lifetime (formation time) t of a medium induced

gluon with a given energy ω and transverse momentum k⊥ follows from the relations

t ∼ ω
k2⊥
, k2⊥ ∼

t

λ
µ2 , (4.3)

3Subleading corrections due to hard gluons will be discussed in the next section.
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where µ is a typical transverse momentum transfer in a single scattering and λ the

gluon mean free path. This gives (µ2/λ ' q̂)

t '
√
ω

q̂
, (4.4a)

k2⊥ '
√
ω q̂ . (4.4b)

Multiplying (4.4a) by the multiplicity density (3.16a) and dividing by the size of the

medium, we estimate the “gluon occupation number”,

Occup ∼ t ·∆M · 1
L
∼
√
ω

q̂
· α
√
2ωc
ω
· 1
L
= α .

This looks natural: a bare quark produced in a hard interaction builds up its wave

function by emitting gluons, with α being the gluon density per unit phase space.

The rôle of a (dense) medium is to strip the quark off these gluons, so that the

formation process repeats again and again, resulting in induced production of many

gluons.

The smallness of the overlap between gluons4 allows us to neglect possible inter-

ference effects in multiple gluon radiation as potentially contributing at the level of

O (αs), while the main effect of the resummed medium induced radiation in (2.11)
is O (1). This justifies, aposteriori, the Poisson approximation (2.11).

Scale of the coupling. According to (4.4b) the characteristic scale of the QCD

coupling αs(k⊥) in the gluon emission spectrum (2.6) is rather small. For typical
gluon energies (3.8) we have (q̂ = 0.2GeV3)

k1⊥ ∼
(
q̂

n
p⊥

)1/4
' 700MeV ·

( p⊥
n ·GeV ,

)1/4
= O (1GeV) ,

which value is rather low and marginally increases with p⊥ reaching k1⊥ ∼ 1.5GeV
for p⊥ ∼ 100GeV (n ' 6). In what follows we take a fixed value for the coupling

αs = 0.5 , α =
2αsCF
π

' 0.42 ,

motivated by the studies of the effective QCD interaction strength in the infrared

region.

Bethe-Heitler limit. The perturbative approach to the problem inevitably limits

gluon energies from below. In particular, the gluon spectrum (2.6) describes the

Landau-Pomeranchuk-Migdal (LPM) suppression of the independent Bethe–Heitler

4A similar argument applies to an interference between medium- and vacuum-produced gluons.
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radiation and only applies to gluons with lifetimes larger than the mean free path,

t > λ, which is equivalent to limiting gluon energies from above, see (4.4a),

ω > ωBH ∼ µ2λ ∼ q̂ λ2 . (4.5)

In spite of the fact that the perturbative answer for the quenching factor (3.4) is

formally infrared safe, its sensitivity to the region of small gluon energies may be

significant, since the characteristic energy scale of the problem is strongly reduced

by the bias effect. Indeed, according to (3.7), to keep the value of the quenching

factor fully under perturbative control we have to choose the transverse momentum

well above

p⊥ > π n ωBH ≈ 10GeV , (4.6)

where for the sake of estimate we have taken the vacuum exponent [3, 27] n '
12÷ 13 and ωBH ' 300MeV corresponding to a hot medium with q̂ ' 0.2GeV3 and
λ ' 1

4
fm. At gluon energies comparable to ωBH Debye screening effect should also

become important thus limiting our ability of doing reliable calculations.

To estimate the absolute minimal value of the quenching factor we take p⊥ .
nωBH and, keeping in mind that N(ω) flattens out at small energies, from (3.4)

obtain

ln
1

[Q(p⊥) ]min
' N(ωBH) ' 2αsCR

π

√
2ωc
ωBH

' 2αsNc
π

· L
λR
∼ L
λR
,

where we have used 2ωc/ωBH ' (L/λ)2 and introduced the mean free path for the
parton R (quark in our case) which is related with the gluon mean free path by

CRλR = Ncλ.

5. Illustrations

5.1 Shift function and subleading (hard gluon) effects

If the integrated gluon multiplicity in (3.4) depended on a single variable ω/ωc, the

quenching factor would have been a function of a dimensionless ratio X = p⊥
nωc
.

In reality, such a scaling holds only approximately. Indeed, the gluon radiation

spectrum (2.6) and, therefore, the multiplicity N , depend on two energy ratios, ω/ωc
and x = ω/p⊥. The latter takes care, in particular, of the phase space restriction5

on the energy of radiated gluons, dI/dω ∝ N ∝ Θ(1− x).
According to (4.1), the main contribution to quenching originates from the region

x ∼ ω1/p⊥ ∼ 1/n � 1. The correction coming from “hard” gluons with x . 1
turns out, however, to be relatively large, O (1/√n). To take into account non-soft
corrections, in the numerical evaluation we supply the spectrum (2.6) with a factor

(1− x)Θ(1− x) as given in [12, 13].
5here we use an approximate equality of p⊥ to the total jet energy

13



J
H
E
P
0
9
(
2
0
0
1
)
0
3
3

S(p⊥)
∆E
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1
Normalized shift

p⊥
nωc

Figure 1: Shift S(p⊥) as a function of X ≡ p⊥
nωc
for n = 4 (lower curve) and n = 10 (upper

curve).

The effect of the hard gluon correction is illustrated in figure 1 where we plot

the shift normalized, for convenience, by ∆E = π
4
αωc (the BDMPS mean energy

loss [11]).

These subleading corrections can be treated analytically. With account of the

phase space restriction, ω < p⊥, and the “hard” factor (1−x) in (2.6) the integrated
multiplicity (2.10) gets modified as

N(ω) ' α
{√
2ωc
p⊥

[
1√
x
− 2 +√x

]
+ ln 2 [ln x+ 1− x]

}
, x =

ω

p⊥
. (5.1)

(N(ω ≥ p⊥) = 0) .
The energy integral for the shift function (3.5b) then becomes

S(p⊥) = p⊥

∫ 1
0

dxN (x p⊥) e−nx (5.2)

≈ αωc ·
{√
2π
p⊥
nωc

(
1− 2√

π n
+
1

2n

)
− p⊥
nωc

ln 2

[
lnn+ γE − 1 + 1

n

]}
,

where we have omitted exponentially small terms O (exp(−n)). We see that the hard
correction is rather large, O (1/√n), and significantly modifies the behaviour of the
shift even in the strong quenching limit, X = p⊥

nωc
� 1.

The exact numerical evaluation of S(p⊥) is compared with the approximate for-
mula (5.2) in figure 2 for n = 4. The comparison shows that even for the smallest

n value the approximation based on p⊥ � ωc turns out to be rather good up to
p⊥ = 2÷ 2.5ωc ∼ √nωc.
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Figure 2: Shift function for n = 4 (solid) and its analytic approximation (5.2) (dashed).

5.2 Quenching factors and infrared sensitivity

The estimate (4.6) shows that in the presently available RHIC range p⊥ < 6GeV
a reliable quantitative prediction of quenching can be hardly made. It is the soft

“singularity” of the LPM spectrum ωdI(ω)/dω ∝ 1/√ω that causes instability of
the perturbative QCD description.

At the same time, this very same instability makes the study of quenching in the

p⊥ ∼ 20GeV range, which is accessible at RHIC, the more interesting and valuable.
In this region the characteristic gluon energies are comfortably large, ω1 ∼ 2GeV,
while the quenching factor at the same time is still quite sensitive to much smaller

energies deep into the infrared domain.

To illustrate this point in figure 3 we show the expected quenching factors for the

hot medium (q̂ = 0.2GeV3, sizes L = 2 and L = 5 fm) as a function of an infrared

gluon energy cutoff. A sharp cutoff is not realistic and can be used only as a means

of quantifying sensitivity of the answer to the low momentum region. In reality,

what matters for quenching is the spectral properties of the (hot) medium which

determine how the gluons with energies of the order of ωBH are being produced.

The label “n floating” in figure 3 (and below) means that for this p⊥ range
we have used the realistic fit to the vacuum spectrum provided by the PHENIX

collaboration [3],

dσvacuum(p⊥)
dp2⊥

= const · (1.71 + p⊥ [GeV])−12.44 ,

and evaluated the effective exponent n(p⊥) according to (1.1).
In figure 4 the quenching factors are shown for large transverse momenta, where

we have set n = 4, the asymptotic value. A mismatch between the Q values at the

common point p⊥ = 20GeV in figures 3 and 4 is due to the much stronger bias
effect in the former case: n ≈ 12 � 4. Knowing the p⊥ dependence of the vacuum

15
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Figure 3: “Infrared” dependence of the quenching factor for hot medium. The curves

(from bottom to top) correspond to the gluon energy cuts 0, 100, 300 and 500 MeV.
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Figure 4: Quenching factors for hot medium. (The curves are the same as in figure 3.)

production cross section is, obviously, a necessary ingredient of a reliable quenching

prediction.

Comparing the two figures we remark that at large transverse momenta (and

smaller n) the sensitivity to the infrared physics gets naturally reduced.

In figure 5 for the sake of comparison the magnitude of quenching for a final

state matter with the transport coefficient equal that of the cold nuclear matter,

q̂ = q̂cold = 0.01GeV
3, is displayed.
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Figure 5: Quenching factors for cold medium. (The curves are the same as in figure 3.)

6. Conclusions

In this paper we developed the perturbative QCD description of the suppression

(quenching) of inclusive production of hadrons with large transverse momenta p⊥
in a medium. We did not address the Cronin effect that enhances particle yield at

moderately large p⊥. A simple analysis shows that parton rescattering effects both
in the initial and in the final state (transverse momentum broadening) should die

out as O (q̂L/p2⊥), to be compared with the O
(
L
√
q̂/p⊥

)
behaviour characteristic

for quenching.

We found that quenching is related with the multiplicity of medium induced

(primary) gluons with energies larger than the characteristic energy ω1 as

− lnQ(p⊥) =
∫ ∞
0

dz e−z N(ω1z) ,

ω1(p⊥) ≡ −
[
d

dp⊥
ln
dσvacuum

dp2⊥

]−1
' p⊥
n
, n� 1 . (6.1)

One of the results of this study is the observation that the “shift” parameter S in

the commonly used parametrization (3.6),

dσmedium(p⊥)
dp2⊥

' dσ
vacuum(p⊥ + S)
dp2⊥

,

equals neither the mean medium induced energy loss, S = ∆E ∝ L2, nor S =
const · L. In fact, all over a broad kinematical region where quenching is sizeable,
− lnQ(p⊥) = O (1), the shift increases with p⊥ as

S(p⊥) ' 2αsCF
π

√
2π ωc ω1 ∝ L√p⊥

and equals twice a typical energy the quark looses to induced radiation.
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We also observed that the particle (jet) quenching phenomenon is sensitive to

the character of the distribution in the energy loss D(ε) (in particular, to the energy

region ε̄ ∼ α2ωc � ωc, where D(ε) has a maximum, see (2.17)), rather than to its
high-energy tail ε ∼ ωc which determines the mean energy loss ∆E. The latter is
dominated by a rare (O (αs)) single gluon emission with maximal available energy,
ε ≈ ω ∼ ωc.
Though formally a collinear- and infrared-safe quantity, we found the quench-

ing factor Q(p⊥) to be highly sensitive to the region of small gluon momenta, es-
pecially for p⊥ . 20GeV. The two effects that contribute to this are the bias
(n � 1) and the LPM suppression which makes the gluon energy spectrum sin-
gular at ω → 0. On the one hand, the region where the characteristic gluon

energy ω1 becomes comparable with ωBH ∼ 300MeV (which regulates the transi-
tion from the Landau-Pomeranchuk-Migdal to the Bethe-Heitler regime) the pure

perturbative treatment is hardly applicable. On the other hand, the experimen-

tal (and possibly theoretical) studies of the momentum region corresponding to

ω1 ∼ (1 ÷ 2)GeV which corresponds to p⊥ = 10 ÷ 20GeV (for n ' 10) where
the Cronin effect is expected to have disappeared, will provide an important infor-

mation about the spectral properties of the final state medium produced in heavy

ion collisions.

The final remark concerns our treatment of a medium as uniform and static,

which is obviously not a realistic approximation. For “hot” medium characterized

by a large transport coefficient q̂ ∼ 0.2GeV3 ' 5GeV fm−2 we estimate the charac-
teristic lifetime of gluons with energies ω1 ∼ p⊥/n that determine quenching as

t1 ∼
√
p⊥
n q̂

∼
(√

p⊥
5 · nGeV

)
[fm] .

In the most interesting and practically important situation this lifetime is small

compared with the size of the medium, t1 � L. In these circumstances it looks plau-
sible that one will be able to calculate the quenching factor by employing the basic

equations (2.13) with the dynamical position-dependent induced gluon distribution

dI(ω, z)/dωdz given in [28].
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[21] M. Gyulassy, P. Lévai and I. Vitev, Jet quenching in thin quark-gluon plasmas, 1.

Formalism, Nucl. Phys. B 571 (2000) 197 [hep-ph/9907461].
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