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1. Introduction

The methods of toric geometry have been a crucial tool to the understanding of

many fundamental aspects of string theory on Calabi-Yau manifolds (cf. e.g. [1]).

In particular, the connexions between toric singularities and the manufacturing of

various gauge theories as D-brane world-volume theories have been intimate.

Such connexions have been motivated by a myriad of sources. As far back as

1993, Witten [2] had shown, via the so-called gauged linear sigma model, that the

Fayet-Illiopoulos parametre r in the D-term of an N = 2 supersymmetric field theory
with U(1) gauge groups can be tuned as an order-parametre which extrapolates

between the Landau-Ginzburg and Calabi-Yau phases of the theory, whereby giving

a precise viewpoint to the LG/CY-correspondence. What this means in the context

of abelian gauge theories is that whereas for r � 0, we have a Landau-Ginzberg
description of the theory, by taking r � 0, the space of classical vacua obtained
from D- and F-flatness is described by a Calabi-Yau manifold, and in particular a

toric variety.
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With the advent of D-brane technologies, vast amount of work has been done

to study the dynamics of world-volume theories on D-branes probing various ge-

ometries. Notably, in [3], D-branes have been used to probe abelian singularities

of the form C2/Zn. Methods of studying the moduli space of the SUSY theo-

ries describable by quiver diagrams have been developed by the recognition of the

Kronheimer-Nakajima ALE instanton construction, especially the moment maps

used therein [4].

Much work followed [5, 6, 7]. A key advance was made in [8], where, exemplifying

with abelian C3 orbifolds, a detailed method was developed for capturing the various

phases of the moduli space of the quiver gauge theories as toric varieties. In another

vein, the huge factory built after the brane-setup approach to gauge theories [9]

has been continuing to elucidate the T-dual picture of branes probing singularities

(e.g. [10, 11, 12]). Brane setups for toric resolutions of Z2×Z2, including the famous
conifold, were addressed in [17, 18]. The general question of how to construct the

quiver gauge theory for an arbitrary toric singularity was still pertinent. With the

AdS/CFT correspondence emerging [5, 6], the pressing need for the question arises

again: given a toric singularity, how does one determine the quiver gauge theory

having the former as its moduli space?

The answer lies in “Partial Resolution of abelian Orbifolds” and was introduced

and exemplified for the toric resolutions of the Z3 ×Z3 orbifold [8, 13]. The method
was subsequently presented in an algorithmic and computationally feasible fashion

in [14] and was applied to a host of examples in [15].

One short-coming about the inverse procedure of going from the toric data to

the gauge theory data is that it is highly non unique and in general, unless one starts

by partially resolving an orbifold singularity, one would not be guaranteed with a

physical world-volume theory at all! Though the non uniqueness was harnessed in [14]

to construct families of quiver gauge theories with the same toric moduli space, a

phenomenon which was dubbed “toric duality,” the physicality issue remains to be

fully tackled.

The purpose of this writing is to analyse toric duality within the confinement of

the canonical method of partial resolutions. Now we are always guaranteed with a

world-volume theory at the end and this physicality is of great assurance to us. We

find indeed that with the restriction of physical theories, toric duality is still very

much at work and one can construct D-brane quiver theories that flow to the same

moduli space.

We begin in section 2 with a seeming paradox which initially motivated our

work and which ab initio appeared to present a challenge to the canonical method.

In section 3 we resolve the paradox by introducing the well-known mathematical fact

of toric isomorphisms. Then in section 4, we present a detailed analysis, painstak-

ingly tracing through each step of the inverse procedure to see how much degree

of freedom one is allowed as one proceeds with the algorithm. We consequently
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arrive at a method of extracting torically dual theories which are all physical; to

these we refer as “phases.” As applications of these ideas in section 5 we re-

analyse the examples in [14], viz., the toric del Pezzo surfaces as well as the ze-

roth Hirzebruch surface and find the various phases of the quiver gauge theories

with them as moduli spaces. Finally in section 6 we end with conclusions and fu-

ture prospects.

2. A seeming paradox

In [14] we noticed the emergence of the phenomenon of “Toric Duality” wherein

the moduli space of vast numbers of gauge theories could be parametrised by the

same toric variety. Of course, as we mentioned there, one needs to check exten-

sively whether these theories are all physical in the sense that they are world-volume

theories of some D-brane probing the toric singularity.

Here we shall discuss an issue of more immediate concern to the physical probe

theory. We recall that using the method of partial resolutions of abelian orbifolds [8,

13, 14, 17], we could always extract a canonical theory on the D-brane probing the

singularity of interest.

However, a discrepancy of results seems to have risen between [14] and [6] on

the precise world-volume theory of a D-brane probe sitting on the zeroth Hirzebruch

surface; let us compare and contrast the two results here.

• Results from [14]: the matter contents of the theory are given by (on the left we
present the quiver diagram and on the right, the incidence matrix that encodes

the quiver):
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BA 5, 9

6, 10D C

2, 41, 3 7, 8, 11, 12

d =


X1X2X3X4X5X6X7X8X9X10X11X12

A −1 0 −1 0 −1 0 1 1 −1 0 1 1

B 0 −1 0 −1 1 0 0 0 1 0 0 0

C 0 1 0 1 0 1 −1−1 0 1 −1 −1
D 1 0 1 0 0 −1 0 0 0 −1 0 0


and the superpotential is given by

W = X1X8X10 −X3X7X10 −X2X8X9 −X1X6X12 +X3X6X11 +X4X7X9 +
+X2X5X12 −X4X5X11 . (2.1)
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Figure 1: Two alternative resolutions of C2/Z3 × Z3 to the Hirzebruch surface F0: Case
1 from [14] and Case 2 from [6].

• Results from [6]: the matter contents of the theory are given by (for i = 1, 2):
X
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d =


Xi 12 Xi 21 Yi 11 Yi 22

A −1 0 1 0

B 1 0 0 −1
C 0 1 −1 0

D 0 −1 0 1


and the superpotential is given by

W = εijεklXi 12Yk 22Xj 21Yl 11 . (2.2)

Indeed, even though both these theories have arisen from the canonical partial

resolutions technique and hence are world volume theories of a brane probing a

Hirzebruch singularity, we see clearly that they differ vastly in both matter content

and superpotential! Which is the “correct” physical theory?

In response to this seeming paradox, let us refer to figure 1. Case 1 of course

was what had been analysed in [14] (q.v. ibid.) and presented in (2.1); let us now

consider case 2. Using the canonical algorithm of [13, 14], we obtain the matter
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content (we have labelled the fields and gauge groups with some foresight)

dia =


X1 X ′1 X ′2 Y1 Y2 Y ′1 Y2 Y ′2

D 0 1 1 0 0 −1 0 −1
A −1 0 0 1 1 0 −1 0

B 1 −1 −1 0 0 0 1 0

C 0 0 0 −1 −1 1 0 1


and the dual cone matrix

KTij =



X1 X
′
1 X

′
2 Y1 Y2 Y

′
1 X2 Y

′
2

p1 1 0 0 0 0 1 0 0

p2 0 1 0 1 0 0 0 0

p3 1 0 0 0 0 0 1 0

p4 0 1 1 0 0 0 0 0

p5 0 0 1 0 1 0 0 0

p6 0 0 0 0 0 1 0 1


which translates to the F-term equations

X1Y
′
2 = p1p3p6 = Y

′
1X2 ; X ′1Y2 = p2p4p5 = Y1X

′
2 .

What we see of course, is that with the field redefinitionXi ↔ Xi 12, X ′i ↔ Yi 22, Yi ↔
Yi 11 and Y

′
i ↔ Xi 21 for i = 1, 2, the above results are in exact agreement with the

results from [6] as presented in (2.2).

This is actually of no surprise to us because upon closer inspection of figure 1, we

see that the toric diagram for Cases 1 and 2, respectively has the coordinate points

G1t =

−1 1 1 0 −1
0 −1 0 0 1

2 1 0 1 1

 , G2t =

 0 −1 1 0 0
−1 0 0 1 0

2 2 0 0 1

 .
Now since the algebraic equation of the toric variety is given by [19]

V (Gt) = SpecMax

(
C[X

G∨t ∩Z3
i ]

)
,

we have checked that, using a reduced Gröbner polynomial basis algorithm to com-

pute the variety [20], the equations are identical up to redefinition of variables.

Therefore we see that the two toric diagrams in Cases 1 and 2 of figure 1 both

describe the zeroth Hirzebruch surface as they have the same equations (embedding

into C9). Yet due to the particular choice of the diagram, we end up with strikingly

different gauge theories on the D-brane probe despite the identification of the moduli

space in the IR. This is indeed a curiously strong version of “toric duality.”

Bearing the above in mind, in this paper, we will analyse the degrees of freedom

in the Inverse Algorithm expounded upon in [14], i.e. for a given toric singularity,

how many different physical gauge theories (phase structures), resulting from various

5
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partial resolutions can one have for a D-brane probing such a singularity? To answer

this question, first in section 2 we present the concept of toric isomorphism and give

the conditions for different toric data to correspond to the same toric variety. Then

in section 3 we follow the Forward Algorithm and give the freedom at each step

from a given set of gauge theory data all the way to the output of the toric data.

Knowing these freedoms, we can identify the sources that may give rise to different

gauge theories in the Inverse Algorithm starting from a prescribed toric data. In

section 4, we apply the above results and analyse the different phases for the partial

resolutions of the Z3 × Z3 orbifold singularity, in particular, we found that there
are two inequivalent phases of gauge theories, respectively for the zeroth Hirzebruch

surface and the second del Pezzo surface. Finally, in section 5, we give discussions

for further investigation.

3. Toric isomorphisms

Extending this observation to generic toric singularities, we expect classes of inequiv-

alent toric diagrams corresponding to the same variety to give rise to inequivalent

gauge theories on the D-brane probing the said singularity. An immediate question

is naturally posed: “is there a classification of these different theories and is there a

transformation among them?”

To answer this question we resort to the following result. Given M-lattice cones

σ and σ′, let the linear span of σ be linσ = Rn and that of σ′ be Rm. Now each
cone gives rise to a semigroup which is the intersection of the dual cone σ∨ with
the dual lattice M , i.e. Sσ := σ

∨ ∩M (likewise for σ′). Finally the toric variety is
given as the maximal spectrum of the polynomial ring of C adjoint the semigroup,

i.e. Xσ := SpecMax(C[Sσ]).

Definition 1. We have these types of isomorphisms:

1. We call σ and σ′ cone isomorphic, denoted σ ∼=cone σ′, if n = m and there is a
unimodular transformation L : Rn → Rn with L(σ) = σ′;

2. we call Sσ and Sσ′ monomial isomorphic, denoted Sσ ∼=mon Sσ′, if there exists
mutually inverse monomial homomorphisms between the two semigroups.

Thus equipped, we are endowed with the following

Theorem 1 ([22], VI.2.11) The following conditions are equivalent:

(a) σ ∼=cone σ′ ⇐⇒ (b) Sσ ∼=mon Sσ′ ⇐⇒ (c) Xσ ∼= Xσ′ .

What this theorem means for us is simply that, for the n-dimensional toric variety, an

6
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SL(n;Z) transformation1 on the original lattice cone amounts to merely coördinate

transformations on the polynomial ring and results in the same toric variety. This,

is precisely what we want: different toric diagrams giving the same variety.

The necessity and sufficiency of the condition in Theorem 1 is important. Let

us think of one example to illustrate. Let a cone be defined by (e1, e2), we know this

corresponds to C2. Now if we apply the transformation

(e1, e2)

[
2 0

−1 1
]
= (2e1 − e2, e2),

which corresponds to the variety xy = z2, i.e. C2/Z2, which of course is not isomor-

phic to C2. The reason for this is obvious: the matrix we have chosen is certainly

not unimodular.

4. Freedom and ambiguity in the algorithm

In this section, we wish to step back and address the issue in fuller generality. Recall

that the procedure of obtaining the moduli space encoded as toric data once given

the gauge theory data in terms of product U(1) gauge groups, D-terms from matter

contents and F-terms from the superpotential, has been well developed [6, 8]. Such

was called the forward algorithm in [14]. On the other hand the reverse algo-

rithm of obtaining the gauge theory data from the toric data has been discussed

extensively in [13, 14].

It was pointed in [14] that both the forward and reverse algorithm are highly

non unique, a property which could actually be harnessed to provide large classes

of gauge theories having the same IR moduli space. In light of this so-named “toric

duality” it would be instructive for us to investigate how much freedom do we have at

each step in the algorithm. We will call two data related by such a freedom equivalent

to each other. Thence further we could see how freedoms at every step accumulate

and appear in the final toric data. Modulo such equivalences we believe that the

data should be uniquely determinable.

4.1 The forward algorithm

We begin with the forward algorithm of extracting toric data from gauge data. A brief

review is at hand. To specify the gauge theory, we require three pieces of information:

the number of U(1) gauge fields, the charges of matter fields and the superpotential.

The first two are summarised by the so-called charge matrix dli where l = 1, 2, . . . , L

with L the number of U(1) gauge fields and i = 1, 2, . . . , I with I the number of

matter fields. When using the forward algorithm to find the vacuum manifold (as

1Strictly speaking, by unimodular we mean GL(n;Z) matrices with determinant ±1; we shall
denote these loosely by SL(n;Z).
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a toric variety), we need to solve the D-term and F-term flatness equations. The

D-terms are given by dli matrix while the F-terms are encoded in a matrix Kij with

i, 1, 2, . . . , I and j = 1, 2, . . . , J where J is the number of independent parameters

needed to solve the F-terms. By gauge data then we mean the matrices d (also called

the incidence matrix) and the K (essentially the dual cone); the forward algorithm

takes these as input. Subsequently we trace a flow-chart:

D-Terms −→ d −→ ∆y
F-Terms −→ K V ·KT=∆−−−−−→ Vy y
T = Dual(K)

U ·TT=Id−−−−−→ U −→ V Uy y
Q = [Ker(T )]T −→ Qt =

(
Q

V U

)
−→ Gt = [Ker(Qt)]T

arriving at a final matrix Gt whose columns are the vectors which prescribe the nodes

of the toric diagram.

What we wish to investigate below is how much procedural freedom we have at

each arrow so as to ascertain the non-trivial toric dual theories. Hence, if A1 is the

matrix whither one arrives from a certain arrow, then we would like to find the most

general transformation taking A1 to another solution A2 which would give rise to an

identical theory. It is to this transformation that we shall refer as “freedom” at the

particular step.

Superpotential: the matrices K and T The solution of F-term equations gives

rise to a dual cone K1 = Kij defined by I vectors in Z
J . Of course, we can choose

different parametres to solve the F-terms and arrive at another dual cone K2. Then,

K1 and K2, being integral cones, are equivalent if they are unimodularly related, i.e.

KT2 = A ·KT1 for A ∈ GL(J,Z) such that det(A) = ±1. Furthermore, the order of
the I vectors in ZJ clearly does not matter, so we can permute them by a matrix

SI in the symmetric group SI . Thus far we have two freedoms, multiplication by A
and S:

KT2 = A ·KT1 · SI , (4.1)

and K1,2 should give equivalent theories.

Now, from Kij we can find its dual matrix Tjα (defining the cone T ) where

α = 1, 2, . . . , c and c is the number of vectors of the cone T in ZJ , as constrained by

K · T ≥ 0 (4.2)

8



J
H
E
P
0
8
(
2
0
0
1
)
0
4
0

and such that T also spans an integral cone. Notice that finding dual cones, as given

in a algorithm in [19], is actually unique up to permutation of the defining vectors.

Now considering the freedom of Kij as in (4.1), let T2 be the dual of K2 and T1 that

of K1, we have K2 · T2 = STI ·K1 · AT · T2 ≥ 0, which means that

T1 = A
T · T2 · Sc . (4.3)

Note that here Sc is the permutation of the c vectors of the cone T in and not that

of the dual cone in (4.1).

The charge matrix Q The next step is to find the charge matrix Qkα where

α = 1, 2, . . . , c and k = 1, 2, . . . , c− J . This matrix is defined by

T ·QT = 0 . (4.4)

In the same spirit as the above discussion, from (4.3) we have T1 · QT1 = AT · T2 ·
Sc · QT1 = 0. Because AT is a invertible matrix, this has a solution when and only
when T2 · Sc ·QT1 = 0. Of course this is equivalent to T2 · Sc ·QT1 · Bkk′ = 0 for some
invertible (c− J)× (c− J) matrix Bkk′. So the freedom for matrix Q is

QT2 = Sc ·QT1 · B . (4.5)

We emphasize a difference from (4.2); there we required both matrices K and T to be

integer where here (4.4) does not possess such a constraint. Thus the only condition

for the matrix B is its invertibility.

Matter content: the matrices d, Ṽ and U Now we move onto the D-term and

the integral dli matrix. The D-term equations are d · |X|2 = 0 for matter fields X.
Obviously, any transformation on d by an invertible matrix CL×L does not change
the D-terms. Furthermore, any permutation SI of the order the fields X, so long as it

is consistent with the SI in (4.1), is also game. In other words, we have the freedom:

d2 = C · d1 · SI . (4.6)

We recall that a matrix V is then determined from ∆, which is d with a row deleted

due to the centre of mass degree of freedom. However, to not to spoil the above

freedom enjoyed by matrix d in (4.6), we will make a slight amendment and define

the matrix Ṽlj by

Ṽ ·KT = d . (4.7)

Therefore, whereas in [8, 14] where V ·KT = ∆ was defined, we generalise V to Ṽ
by (4.7). One obvious way to obtain Ṽ from V is to add one row such that the sum

of every column is zero. However, there is a caveat: when there exists a vector h

such that

h ·KT = 0 ,

9
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we have the freedom to add h to any row of Ṽ . Thus finding the freedom of Ṽlj
is a little more involved. From (4.1) we have d2 = Ṽ2 · KT2 = Ṽ2 · A · KT1 · SI and
d2 = C · d1 · SI = C · Ṽ1 · KT1 · SI . Because SI is an invertible square matrix, we
have (Ṽ2 ·A−C · Ṽ1) ·KT1 = 0, which means Ṽ2 ·A−C · Ṽ1 = CHK1 for a matrix H
constructed by having the aforementioned vectors h as its columns. When KT has

maximal rank, H is zero and this is in fact the more frequently encountered situation.

However, when KT is not maximal rank, so as to give non-trivial solutions of h, we

have that Ṽ1 and Ṽ2 are equivalent if

Ṽ2 = C · (Ṽ1 +HK1) · A−1 . (4.8)

Moving on to the matrix Ujα defined by

U · T T = Ijj′ , (4.9)

we have from (4.3) Ijj′ = U1 · T T1 = U1 · STc · T T2 · A, whence A−1 = U1 · STc · T T2 and
I = A · U1 · STc · T T2 . This gives (A · U1 · STc − U2) · T T2 = 0 which has a solution
A · U1 · STc − U2 = HT2 where HT2 · T T2 = 0 is precisely as defined in analogy of the
H above. Therefore the freedom on U is subsequently

U2 = A · (U1 −HT1) · STc , (4.10)

where HT1 = A
−1HT2(S

T
c )
−1 and HT1 ·T T1 = (A−1HT2(STc )−1)(STc ·T T2 ·A) = 0. Finally

using (4.8) and (4.10), we have

(Ṽ2·U2) = C ·(Ṽ1+HK1)·A−1·A·(U1−HT1)·STc = C ·(Ṽ1+HK1)(U1−HT1)·STc , (4.11)

determining the freedom of the relevant combination (Ṽ · U).
Let us pause for an important observation that in most cases HK1 = 0, as we

shall see in the examples later. From (4.4), which propounds the existence of a non-

trivial nullspace for T , we see that one can indeed obtain a non-trivial HT1 in terms

of the combinations of the rows of the charge matrix Q, whereby simplifying (4.11) to

(Ṽ2 · U2) = C · (Ṽ1 · U1 +HV U1) · STc , (4.12)

where every row of HV U1 is linear combination of rows of Q1 and the sum of its

columns is zero.

Toric data: the matrices Qt and Gt At last we come to Q̃t, which is given by

adjoining Q and Ṽ ·U . The freedom is of course, by combining all of our results above,

(Q̃t)2 =

(
Q2
Ṽ2 · U2

)
=

(
BT ·Q1 · STc

C · (Ṽ1 · U1 +HV U1) · STc

)
=

(
BT ·Q1

C · (Ṽ1 · U1 +HV U1)
)
· STc . (4.13)

10
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Now Q̃t determines the nodes of the toric diagram (Gt)pα (p = 1, 2, . . . , (c−(L−1)−J)
and α = 1, 2, . . . , c) by

Qt ·GTt = 0 ; (4.14)

The columns of Gt then describes the toric diagram of the algebraic variety for the

vacuum moduli space and is the output of the algorithm. From (4.14) and (4.13)

we find that if (Q̃t)1 · (Gt)T1 = 0, i.e. Q1 · (Gt)T1 = 0 and Ṽ1 · U1 · (Gt)T1 = 0, we
automatically have the freedom (Q̃t)2 · (STc )−1 · (G̃t)T1 = 0. This means that at most
we can have

(Gt)
T
2 = (S

T
c )
−1 · (Gt)T1 ·D , (4.15)

where D is a GL(c− (L− 1)− J,Z) matrix with det(D) = ±1 which is exactly the
unimodular freedom for toric data as given by Theorem 1.

One immediate remark follows. From (4.14) we obtain the nullspace of Qt in Z
c.

It seems that we can choose an arbitrary basis so that D is a GL(c− (L− 1)− J,Z)
matrix with the only condition that det(D) 6= 0. However, this is not stringent
enough: in fact, when we find cokernel Gt, we need to find the integer basis for the

null space, i.e. we need to find the basis such that any integer null vector can be

decomposed into a linear combination of the columns of Gt. If we insist upon such

a choice, the only remaining freedom2 is that det(D) = ±1, viz, unimodularity.

4.2 Freedom and ambiguity in the reverse algorithm

Having analysed the equivalence conditions in last subsection, culminating in (4.13)

and (4.15), we now proceed in the opposite direction and address the ambiguities in

the reverse algorithm.

The toric data: Gt We note that theGt matrix produced by the forward algorithm

is not minimal in the sense that certain columns are repeated, which after deletion,

constitute the toric diagram. Therefore, in our reverse algorithm, we shall first

encounter such an ambiguity in deciding which columns to repeat when constructing

Gt from the nodes of the toric diagram. This so-called repetition ambiguity was

discussed in [14] and different choices of repetition may indeed give rise to different

gauge theories. It was pointed out (loc. cit.) that arbitrary repetition of the columns

certainly does not guarantee physicality. By physicality we mean that the gauge

theory arrived at the end of the day should be physical in the sense of still being

a D-brane world-volume theory. What we shall focus here however, is the inherent

symmetry in the toric diagram, given by (4.15), that gives rise to the same theory.

This is so that we could find truly inequivalent physical gauge theories not related

by such a transformation as (4.15).

2We would like to express our gratitude to M. Douglas for clarifying this point to us.
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The charge matrix: from Gt to Qt From (4.14) we can solve for Qt. However,

for a given Gt, in principle we can have two solutions (Qt)1 and (Qt)2 related by

(Qt)2 = P (Qt)1, (4.16)

where P is a p × p matrix with p the number of rows of Qt. Notice that the set
of such transformations P is much larger than the counterpart in the forward algo-

rithm given in (4.13). This is a second source of ambiguity in the reverse algorithm.

More explicitly, we have the freedom to arbitrarily divide the Qt into two parts,

viz., the D-term part Ṽ U and the F-term part Q. Indeed one may find a matrix

P such that (Qt)1 and (Qt)2 satisfy (4.16) but not matrices B and C in order to

satisfy (4.13). Hence different choices of Qt and different division therefrom into D

and F-term parts give rise to different gauge theories. This is what we called FD

Ambiguity in [14]. Again, arbitrary division of the rows of Qt was pointed out to

not to ensure physicality. As with the discussion on the repetition ambiguity above,

what we shall pin down is the freedom due to the linear algebra and not the choice

of division.

The dual cone and superpotential: from Q to K The nullspace of Q is the

matrix T . The issue is the same as discussed at the paragraph following (4.15) and

one can uniquely determine T by imposing that its columns give an integral span of

the nullspace. Going further from T to its dual K, this is again a unique procedure

(while integrating back from K to obtain the superpotential is certainly not). In

summary then, these two steps give no sources for ambiguity.

The matter content: from Ṽ U to d matrix The d matrix can be directly

calculated as [14]

d = (Ṽ U) · T T ·KT . (4.17)

Substituting the freedoms in (4.1), (4.3) and (4.11) we obtain

d2 = (Ṽ2 · U2) · T T2 ·KT2 = C · [(Ṽ1 · U1) +HV U1] · STc · (STc )−1 · T T1 · A−1 ·A ·KT1 · SI
= C · (Ṽ1 · U1) · T T1 ·KT1 · SI + C ·HV U1 · T T1 ·KT1 · SI = C · d1 · SI ,

which is exactly formula (4.6). This means that the matter matrices are equivalent

up to a transformation and there is no source for extra ambiguity.

5. Application: phases of Z3 × Z3 resolutions
In [14] we developed an algorithmic outlook to the Inverse Procedure and applied

it to the construction of gauge theories on the toric singularities which are partial

resolutions of Z3×Z3. The non uniqueness of the method allowed one to obtain many
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different gauge theories starting from the same toric variety, theories to which we

referred as being toric duals. The non uniqueness mainly comes from three sources:

(i) the repetition of the vectors in the toric data Gt (Repetition Ambiguity), (ii) the

different choice of the null space basis of Qt and (iii) the different divisions of the

rows of Qt (F-D Ambiguity). Many of the possible choices in the above will generate

unphysical gauge theories, i.e. not world-volume theories of D-brane probes. We have

yet to catalogue the exact conditions which guarantee physicality.

However, Partial Resolution of abelian orbifolds, which stays within subsectors of

the latter theory, does indeed constrain the theory to be physical. To these physical

theories we shall refer as phases of the partial resolution. As discussed in [14] any

k-dimensional toric diagram can be embedded into Zk−1n for sufficiently large n, one

obvious starting point to obtain different phases of a D-brane gauge theory is to try

various values of n. We leave some relevances of general n to appendix A. However,

because the algorithm of finding dual cones becomes prohibitively computationally

intensive even for n ≥ 4, this approach may not be immediately fruitful.
Yet armed with Theorem 1 we have an alternative. We can certainly find all

possible unimodular transformations of the given toric diagram which still embeds

into the same Zk−1n and then perform the inverse algorithm on these various a fortiori

equivalent toric data and observe what physical theories we obtain at the end of the

day. In our two examples in section 1, we have essentially done so; in those cases

we found that two inequivalent gauge theory data corresponded to two unimodu-

larly equivalent toric data for the examples of Z5-orbifold and the zeroth Hirzebruch

surface F0.

The strategy lays itself before us. Let us illustrate with the same examples as

was analysed in [14], namely the partial resolutions of C3/(Z3 × Z3), i.e. F0 and the
toric del Pezzo surfaces dP0,1,2,3. We need to (i) find all SL(3;Z) transformations of

the toric diagram Gt of these five singularities that still remain as sub-diagrams of

that of Z3×Z3 and then perform the inverse algorithm; therefrom, we must (ii) select
theories not related by any of the freedoms we have discussed above and summarised

in (4.13).

5.1 Unimodular transformations within Z3 × Z3
We first remind the reader of the Gt matrix of Z3×Z3 given in figure 1, its columns
are given by vectors: (0, 0, 1), (1,−1, 1), (0,−1, 2), (−1, 1, 1), (−1, 0, 2), (−1,−1, 3),
(1,−1, 1), (−1, 2, 0), (1, 0, 0), (0, 1, 0). Step (i) of our above strategy can be im-
mediately performed. Given the toric data of one of the resolutions G′t with x
columns, we select x from the above 10 columns of Gt and check whether any

SL(3;Z) transformation relates any permutation thereof unimodularly to G′t. We
shall at the end find that there are three different cases for F0, five for dP

0, twelve

for dP1, nine for dP2 and only one for dP3. The (unrepeated) Gt matrices are as
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follows:

(F0)1 (0,0,1), (1,−1, 1), (−1, 1, 1), (−1, 0, 2), (1,0,0)
(F0)2 (0,0,1), (0,−1, 2), (0,1,0), (−1, 0, 2), (1,0,0)
(F0)3 (0,0,1), (1,−1, 1), (−1, 1, 1), (0,−1, 2), (0,1,0)
(dP0)1 (0,0,1), (1,0,0), (0,−1, 2), (−1, 1, 1)
(dP0)2 (0,0,1), (1,0,0), (−1,−1, 3), (0,1,0)
(dP0)3 (0,0,1), (−1, 2, 0), (1,−1, 1), (0,−1, 2)
(dP0)4 (0,0,1), (0,1,0), (1,−1, 1), (−1, 0, 2)
(dP0)5 (0,0,1), (2,−1, 0), (−1, 1, 1), (−1, 0, 2)
(dP1)1 (1, 0, 0), (0, 1, 0), (−1, 1, 1), (0,−1, 2), (0, 0, 1)
(dP1)2 (−1,−1, 3), (0,−1, 2), (1, 0, 0), (0, 1, 0), (0, 0, 1)
(dP1)3 (0,−1, 2), (1,−1, 1), (1, 0, 0), (−1, 1, 1), (0, 0, 1)
(dP1)4 (0,−1, 2), (1,−1, 1), (0, 1, 0), (−1, 2, 0), (0, 0, 1)
(dP1)5 (0,−1, 2), (1,−1, 1), (0, 1, 0), (−1, 0, 2), (0, 0, 1)
(dP1)6 (0,−1, 2), (1,−1, 1), (−1, 2, 0), (−1, 1, 1), (0, 0, 1)
(dP1)7 (0,−1, 2), (1, 0, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
(dP1)8 (1,−1, 1), (2,−1, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
(dP1)9 (1,−1, 1), (1, 0, 0), (0, 1, 0), (−1, 0, 2), (0, 0, 1)
(dP1)10 (1,−1, 1), (0, 1, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
(dP1)11 (2,−1, 0), (1, 0, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
(dP1)12 (−1,−1, 3), (1, 0, 0), (0, 1, 0), (−1, 0, 2), (0, 0,1)
(dP2)1 (2,−1, 0), (1,−1, 1), (−1, 0, 2), (−1, 1, 1), (1, 0, 0), (0, 0, 1)
(dP2)2 (−1,−1, 3), (0,−1, 2), (1, 0, 0), (0, 1, 0), (−1, 0, 2), (0, 0, 1)
(dP2)3 (0,−1, 2), (1,−1, 1), (1, 0, 0), (0, 1, 0), (−1, 1, 1), (0, 0, 1)
(dP2)4 (0,−1, 2), (1,−1, 1), (1, 0, 0), (0, 1, 0), (−1, 0, 2), (0, 0, 1)
(dP2)5 (0,−1, 2), (1,−1, 1), (1, 0, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
(dP2)6 (0,−1, 2), (1,−1, 1), (0, 1, 0), (−1, 2, 0), (−1, 1, 1), (0, 0, 1)
(dP2)7 (0,−1, 2), (1,−1, 1), (0, 1, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
(dP2)8 (0,−1, 2), (1, 0, 0), (0, 1, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
(dP2)9 (1,−1, 1), (1, 0, 0), (0, 1, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)
dP3 (0,−1, 2), (1,−1, 1), (1, 0, 0), (0, 1, 0), (−1, 1, 1), (−1, 0, 2), (0, 0, 1)

The reader is referred to figure 2 to figure 6 for the toric diagrams of the data above.

The vigilant would of course recognise (F0)1 to be Case 1 and (F0)2 as Case 2 of fig-

ure 1 as discussed in section 2 and furthermore (dP0,1,2,3)1 to be the cases addressed

in [14].

5.2 Phases of theories

The Inverse Algorithm can then be readily applied to the above toric data; of the

various unimodularly equivalent toric diagrams of the del Pezzo surfaces and the
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Figure 2: The 3 equivalent representations of the toric diagram of the zeroth Hirzebruch

surface as a resolution of Z3×Z3. We see that (2) and (3) are related by a reflection about
the 45◦ line (a symmetry inherent in the parent Z3×Z3 theory) and we have the two giving
equivalent gauge theories as expected.

(1, 0, 0) (0, 1, 0) (-1, 2, 0)(2, -1, 0)

(1, -1, 1)

(0, -1, 2)

(-1, -1, 3)

(0, 0, 1)
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(-1, 0, 2)
13
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(1) (2) (3)

(4) (5)

9

8

10

37 38 29

6,15,32

7,14,217,14,30

3,7,30

5

4

36

9

38

4

Figure 3: The 5 equivalent representations of the toric diagram of the zeroth del Pezzo

surface as a resolution of Z3 × Z3. Again (1) and (4) (respectively (2) and (3)) are related
by the 45◦ reflection, and hence give equivalent theories. In fact further analysis shows
that all 5 are equivalent.

zeroth Hirzebruch, the details of which fields remain massless at each node (in the

notation of [14]) are also presented in those figures immediately referred to above.

Subsequently, we arrive at a number of D-brane gauge theories; among them, all

five cases for dP 0 are equivalent (which is in complete consistency with the fact that

dP 0 is simply C3/Z3 and there is only one non-trivial theory for this orbifold, corre-

sponding to the decomposition 3→ 1+1+1). For dP1, all twelve cases give back to
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Figure 4: The 12 equivalent representations of the toric diagram of the first del Pezzo

surface as a resolution of Z3×Z3. The pairs (1,5); (2,4); (3,9); (6,12); (7,10) and (8,11) are
each reflected by the 45◦ line and give mutually equivalent gauge theories indeed. Further
analysis shows that all 12 are equivalent.

same gauge theory (q.v. [14, Figure 5]). For F0, the three cases give two inequivalent

gauge theories as given in section 2. Finally for dP2, the nine cases again give two

different theories. For reference we tabulate the D-term matrix d and F-term matrix

KT below. If more than 1 theory are equivalent, then we select one representative

from the list, the matrices for the rest are given by transformations (4.1) and (4.6).
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surface as a resolution of Z3×Z3. The pairs (2,6); (3,4); (5,9) and (7,8) are related by 45◦
reflection while (1) is self-reflexive and are hence give pairwise equivalent theories. Further

analysis shows that there are two phases given, respectively by (1,5,9) and (2,3,4,6,7,8).
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Figure 6: The unique representations of the toric diagram of the third del Pezzo surface

as a resolution of Z3 × Z3.

The matter content for these above theories are represented as quiver diagrams
in figure 7 (multi-valence arrows are labelled with a number) and the superpotentials,

17



J
H
E
P
0
8
(
2
0
0
1
)
0
4
0

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

BA 5, 9

6, 10D C

2, 41, 3 7, 8, 11, 12

(F0) 1

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

(dP0)

2, 4, 6

A

CB

1, 3, 57, 8, 9

1,...,5

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

B

DC

A 1

2, 6

3, 5, 7

8, 10
9 4

(dP1)
1,...,12

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

F

9

8

A

E D
10

7

11

B

C

5, 12

1

42

14

13

6

3

(dP3)
1

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(dP2)1,5,9

7, 11

3, 5

64

2

9D C

BE

A

10

8, 12, 13

1

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

1

2,5

34

6

7

98,10

11

A

B

CD

E

(dP2)
2,3,4,6,7,8

X

Y

X

Y

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

A B

DC

(F0)
2,3

i 12

i 22

i 21

i 11

Figure 7: The quiver diagrams for the various phases of the gauge theory for the del Pezzo

surfaces and the zeroth Hirzebruch surface.

in the table below.

Singularity Matter Content d Superpotential

(F0)1

X1X2X3X4X5X6X7X8X9X10X11X12

A−1 0 −1 0 −1 0 1 1 −1 0 1 1

B 0 −1 0 −1 1 0 0 0 1 0 0 0

C 0 1 0 1 0 1 −1−1 0 1 −1 −1
D 1 0 1 0 0 −1 0 0 0 −1 0 0

X1X8X10 − X3X7X10 − X2X8X9 − X1X6X12 +
X3X6X11 +X4X7X9 +X2X5X12 −X4X5X11

(F0)2,3

X112Y122Y222Y111Y211X121X212X221

A −1 0 0 1 1 0 −1 0

B 1 −1 −1 0 0 0 1 0

C 0 0 0 −1 −1 1 0 1

D 0 1 1 0 0 −1 0 −1

εijεklXi 12Yk 22Xj 21Yl 11

(dP0)1,2,3,4,5

X1X2X3X4X5X6X7X8X9

A−1 0 −1 0 −1 0 1 1 1

B 0 1 0 1 0 1 −1−1−1
C 1 −1 1 −1 1 −1 0 0 0

X1X4X9 −X4X5X7 −X2X3X9 −X1X6X8 +
X2X5X8 +X3X6X7

(dP1)1,2,...,12

X1X2X3X4X5X6X7X8X9X10

A−1 0 0 −1 0 0 0 1 0 1

B 1 −1 0 0 0 −1 0 0 1 0

C 0 0 1 0 1 0 1 −1−1 −1
D 0 1 −1 1 −1 1 −1 0 0 0

X2X7X9 − X3X6X9 − X4X8X7 − X1X2X5X10 +
X3X4X10 +X1X5X6X8

(dP2)1,5,9

X1X2X3X4X5X6X7X8X9X10X11X12X13

A−1 0 0 −1 0 −1 0 1 0 0 0 1 1

B 0 0 −1 0 −1 1 0 0 0 1 0 0 0

C 0 0 1 0 1 0 1 −1−1 0 1 −1 −1
D 1 −1 0 0 0 0 0 0 1 −1 0 0 0

E 0 1 0 1 0 0 −1 0 0 0 −1 0 0

X2X9X11−X9X3X10−X4X8X11−X1X2X7X13+
X13X3X6 −X5X12X6 +X1X5X8X10 +X4X7X12

(dP2)2,3,4,6,7,8

X1X2X3X4X5X6X7X8X9X10X11

A−1 0 −1 0 0 0 1 0 0 0 1

B 1 −1 0 0 −1 0 0 0 1 0 0

C 0 0 1 −1 0 1 0 0 −1 0 0

D 0 0 0 0 0 −1−1 1 0 1 0

E 0 1 0 1 1 0 0 −1 0 −1 −1

X5X8X6X9+X1X2X10X7+X11X3X4−X4X10X6−
X2X8X7X3X9 −X11X1X5

(dP3)1

X1X2X3X4X5X6X7X8X9X10X11X12X13X14

A−1 0 0 0 1 0 0 1 −1 0 0 1 −1 0

B 0 0 −1 1 0 −1 0 0 0 0 0 0 1 0

C 1 −1 0 −1 0 0 0 0 0 0 0 0 0 1

D 0 0 1 0 0 0 0 −1 0 −1 1 0 0 0

E 0 0 0 0 −1 1 1 0 0 1 0 −1 0 −1
F 0 1 0 0 0 0 −1 0 1 0 −1 0 0 0

X3X8X13 −X8X9X11 −X5X6X13 −
X1X3X4X10X12 + X7X9X12 + X1X2X5X10X11 +

X4X6X14 −X2X7X14
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In all of the above discussions, we have restricted ourselves to the cases of U(1)

gauge groups, i.e. with only a single brane probe; this is because such is the only case

to which the toric technique can be applied. However, after we obtain the matter

contents and superpotential for U(1) gauge groups, we should have some idea for

multi-brane probes. One obvious generalization is to replace the U(1) with SU(N)

gauge groups directly. For the matter content, the generalization is not so easy.

A field with charge (1,−1) under gauge groups U(1)A × U(1)B and zero for others
generalised to a bifundamental (N, N̄) of SU(N)A × SU(N)B. However, for higher
charges, e.g. charge 2, we simply do not know what should be the generalization in the

multi-brane case (for a discussion on generalised quivers cf. e.g. [21]). Furthermore,

a field with zero charge under all U(1) groups, generalises to an adjoint of one SU(N)

gauge group in the multi-brane case, though we do not know which one.

The generalization of the superpotential is also not so straight-forward. For

example, there is a quartic term in the conifold with non-abelian gauge group [17, 18],

but it disappears when we go to the U(1) case. The same phenomenon can happen

when treating the generic toric singularity.

For the examples we give in this paper however, we do not see any obvious

obstruction in the matter contents and superpotential; they seem to be special enough

to be trivially generalized to the multi-brane case; they are all charge ±1 under no
more than 2 groups. We simply replace U(1) with SU(N) and (1,−1) fields with
bifundamentals while keeping the superpotential invariant. Generalisations to multi-

brane stack have also been discussed in [13].

6. Discussions and prospects

It is well known that in the study of the world-volume gauge theory living on a

D-brane probing an orbifold singularity C3/Γ, different choices of decomposition

into irreducibles of the space-time action of Γ lead to different matter content and

interaction in the gauge theory and henceforth different moduli spaces (as different

algebraic varieties). This strong relation between the decomposition and algebraic

variety has been shown explicitly for abelian orbifolds in [25]. It seems that there is

only one gauge theory for each given singularity.

A chief motivation and purpose of this paper is the realisation that the above

strong statement can not be generalised to arbitrary (non-orbifold) singularities and

in particular toric singularities. It is possible that there are several gauge theories

on the D-brane probing the same singularity. The moduli space of these inequiva-

lent theories are indeed by construction the same, as dictated by the geometry of

the singularity.

In analogy to the freedom of decomposition into irreps of the group action in

the orbifold case, there too exists a freedom in toric singularities: any toric diagram

is defined only up to a unimodular transformation (Theorem 1). We harness this
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toric isomorphism as a tool to create inequivalent gauge theories which live on the

D-brane probe and which, by construction, flow to the same (toric) moduli space in

the IR.

Indeed, these theories constitute another sub-class of examples of toric duality

as proposed in [14]. A key point to note is that unlike the general case of the duality

(such as F-D ambiguities and repetition ambiguities as discussed therein) of which we

have hitherto little control, these particular theories are all physical (i.e. guaranteed

to be world-volume theories) by virtue of their being obtainable from the canonical

method of partial resolution of abelian orbifolds. We therefore refer to them as phases

of partial resolution.

As a further tool, we have re-examined the Forward and Inverse Algorithms

developed in [8, 13, 14] of extracting the gauge theory data and toric moduli space

data from each other. In particular we have taken the pains to show what degree of

freedom can one have at each step of the Algorithm. This will serve to discriminate

whether or not two theories are physically equivalent given their respective matrices

at each step.

Thus equipped, we have re-studied the partial resolutions of the abelian orbifold

C
3/(Z3×Z3), namely the 4 toric del Pezzo surfaces dP0,1,2,3 and the zeroth Hirzebruch
surface F0. We performed all possible SL(3;Z) transformation of these toric diagrams

which are up to permutation still embeddable in Z3 ×Z3 and subsequently initiated
the Inverse Algorithm therewith. We found at the end of the day, in addition to the

physical theories for these examples presented in [14], an additional one for both F0
and dP2. Further embedding can of course be done, viz., into Zn×Zn for n > 3; it is
expected that more phases would arise for these computationally prohibitive cases,

for example for dP3.

A clear goal awaits us: because for the generic (non-orbifold) toric singularity

there is no concrete concept corresponding to the different decomposition of group

action, we do not know at this moment how to classify the phases of toric dual-

ity. We certainly wish, given a toric singularity, to know (a) how many inequiv-

alent gauge theory are there and (b) what are the corresponding matter contents

and superpotential. It will be a very interesting direction for further investiga-

tion.

Many related questions also arise. For example, by the AdS/CFT correspon-

dence, we need to understand how to describe these different gauge theories on the

supergravity side while the underline geometry is same. Furthermore the dP 2 theory

can be described in the brane setup by (p, q)-5 brane webs [24], so we want to ask

how to understand these different phases in such brane setups. Understanding these

will help us to get the gauge theory in higher del Pezzo surface singularities.

Another very pertinent issue is to clarify the meaning of “toric duality.” So far

it is merely an equivalence of moduli spaces of gauge theories in the IR. It would be

very nice if we could make this statement stronger. For example, could we find the
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explicit mappings between gauge invariant operators of various toric-dual theories?

Indeed, we believe that the study of toric duality and its phase structure is worth

further pursuit.
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A. gauge theory data for Zn × Zn
For future reference we include here the gauge theory data for the Zn×Zn orbifold, so
that, as mentioned in [14], any 3-dimensional toric singularity may exist as a partial

resolution thereof.

We have 3n2 fields denoted as Xij , Yij, Zij and choose the decomposition 3 →
(1, 0) + (0, 1) + (−1,−1). The matter content (and thus the d matrix) is well known
from standard brane box constructions, hence we here focus on the superpotential [23]

(and thus the K matrix):

XijYi(j+1)Z(i+1)(j+1) − YijX(i+1)jZ(i+1)(j+1) ,
from which the F-terms are

∂W

∂Xij
: Yi(j+1)Z(i+1)(j+1) = Zi(j+1)Y(i−1)j ,

∂W

∂Yij
: Z(i+1)jXi(j−1) = X(i+1)jZ(i+1)(j+1) ,

∂W

∂Z(i+1)(j+1)
: XijYi(j+1) = YijX(i+1)j . (A.1)

Now let us solve (A.1). First we have Yi(j+1) = YijX(i+1)j/Xij. Thus if we take

Yi0 and Xij as the independent variables, we have

Yi(j+1) =

∏j
l=0X(i+1)l∏j
l=0Xil

Yi0 . (A.2)

There is of course the periodicity which gives

Yin = Yi0 =⇒
n−1∏
l=0

X(i+1)l =

n−1∏
l=0

Xil . (A.3)
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Next we use Xij to solve the Zij as Zi(j+1) = ZijX(i−1)(j−1)/Xij , whence

Zi(j+1) =

∏j
l=0X(i−1)(l−1)∏j

l=0Xil
Zi0 . (A.4)

As above,

Zin = Zi0 =⇒
n−1∏
l=0

X(i−1)(l−1) =
n−1∏
l=0

Xil . (A.5)

Putting the solution of Y, Z into the first equation of (A.1) we get∏j
l=0X(i+1)l∏j
l=0Xil

Yi0

∏j
l=0X(i)(l−1)∏j
l=0X(i+1)l

Z(i+1)0 =

∏j
l=0X(i−1)(l−1)∏j

l=0Xil
Zi0

∏j−1
l=0 Xil∏j−1

l=0 X(i−1)l
Y(i−1)0 ,

which can be simplified as Yi0Z(i+1)0Xi(n−1) = Zi0Y(i−1)0X(i−1)(n−1), or Xi(n−1) =
X(i−1)(n−1)

Y(i−1)0
Yi0

Zi0
Z(i+1)0

. From this we solve

Xi(n−1) = X0(n−1)
i−1∏
l=0

Yl0

Y(l+1)0

Z(l+1)0

Z(l+2)0
. (A.6)

The periodicity gives
n−1∏
l=0

Yl0

Y(l+1)0

Z(l+1)0

Z(l+2)0
= 1 . (A.7)

Now we have the independent variables Yi0 Zi0 and Xij for j 6= n − 1 and X0(n−1),
plus three constraints (A.3), (A.5) and (A.7). In fact, considering the periodic con-

dition for X, (A.3) is equivalent to (A.5). Furthermore considering the periodic

conditions for Zi0 and Yi0, (A.7) is trivial. So we have only one constraint. Putting

the expression (A.6) into (A.3) we get
∏n−2
l=0 X(i+1)l

Yi0
Y(i+1)0

Z(i+1)0
Z(i+2)0

=
∏n−2
l=0 Xil ⇒

∏n−2
l=0

X(i+1)l
1

Y(i+1)0Z(i+2)0
=
∏n−2
l=0 Xil

1
Yi0Z(i+1)0

.

From this we can solve the Xi(n−1) for i 6= 0 as

Xi(n−2) =

(
n−2∏
l=0

X0l

)
Yi0Z(i+1)0

Y00Z10

(
n−2∏
l=0

Xil

)−1
. (A.8)

The periodic condition does not give new constraints.

Now we have finished solving the F-term and can summarise the results into the

K-matrix. We use the following independent variables: Zi0, Yi0 for i = 0, 1, . . . , n−1;
Xij for i = 0, 1, . . . , n−1 j = 0, 1, . . . , n−3 and X0(n−2) X0(n−1), so the total number
of variables is 2n + n(n − 2) + 2 = n2 + 2. This is usually too large to calculate.
For example, even when n = 4, the K matrix is 48 × 18. The standard method to
find the dual cone T from K needs to analyse some 48!/(17!31!) vectors, which is

computationally prohibitive.
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