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We show that there is no UV/IR mixing on the fuzzy sphere. The fuzzy sphere is

characterized by two moduli: a dimensionless parameter N and a dimensionful ra-

dius R. Different geometrical phases can obtained at different corners of the moduli

space. In the limit of the commutative sphere, we find that the two point function

is regular without UV/IR mixing; however quantization does not commute with the

commutative limit, and a finite “noncommutative anomaly” survives in the commu-

tative limit. In a different limit, the noncommutative plane R2θ is obtained, and the

UV/IR mixing reappears. This provides an explanation of the UV/IR mixing as an

infinite variant of the “noncommutative anomaly”.
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1. Introduction

Much effort has been spent in recent years to study quantum field theory on non-

commutative spaces. There are many reasons why this is of interest, most of which

are related to our poor understanding of physics and the nature of spacetime at

very short distances. Additional motivation came from the possibility to realize such

spaces in string theory or M-theory [1]–[4]. This provides new insights to issues such

as nonlocality and causality of a noncommutative field theory, which are crucial in

understanding the structure of quantum spacetime.

Some of the problems that can arise in QFT on noncommutative spaces are

illustrated in the much-studied example of the noncommutative plane Rnθ ; see [5] for

a recent review. One of the most intriguing phenomena on that space is the existence

of an ultraviolet/infrared (UV/IR) mixing [6] in the quantum effective action. Due to

this mixing, an IR singularity arises from integrating out the UV degrees of freedom.

This threatens the renormalizability and even the existence of a QFT. Hence a better

understanding (beyond the technical level) of the mechanism of UV/IR mixing and

possible ways to resolve it are certainly highly desirable. One possible approach is
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to approximate Rnθ in terms of a different noncommutative space. We realize this

idea in the present paper, approximating R2θ by a fuzzy sphere. This will allow to

understand the UV/IR mixing as an infinite variant of a “noncommutative anomaly”

on the fuzzy sphere, which is a closely related but different phenomenon discussed

below. This is one of our main results. A related, but less geometric approach was

considered in [7].

In this article, we consider scalar Φ4 theory on the fuzzy sphere, and calculate

the two point function at one loop. The fuzzy sphere S2N is a particularly simple

noncommutative space [8], characterized by its radius R and a “noncommutativity”

parameter N which is an integer. It approaches the classical sphere in the limit N →
∞ for fixed R, and can be thought of as consisting of N “quantum cells”. The algebra
of functions on S2N is finite, with maximal angular momentum N . Nevertheless,

it admits the full symmetry group SO(3) of motions. The fuzzy sphere is closely

related to several other noncommutative spaces [9]. In particular, it can be used

as an approximation to the quantum plane R2θ, by “blowing up” for example the

neighborhood of the south pole. Thus QFT on S2N should provide an approximation

of the QFT on the quantum plane.

The fuzzy sphere has the additional merit that it is very clear how to quantize

field theory on it, using a finite analog of the path integral [10]. Therefore QFT on

this space is a priori completely well–defined, on a mathematical level. Nevertheless,

it is not clear at all whether such a theory makes sense from a physical point of view,

i.e. whether there exists a limiting theory for large N , which could be interpreted as

a QFT on the classical sphere. There might be a similar UV/IR problem as on the

quantum plane R2θ, as was claimed in a recent paper [11]. In other words, it is not

clear if and in what sense such a QFT is renormalizable. As a first step, we calculate

in the present paper the two point function at one loop and find that it is well defined

and regular, without UV/IR mixing. Moreover, we find a closed formula for the two

point function in the commutative limit, i.e. we calculate the leading term in a 1/N

expansion.

It turns out that the 1-loop effective action on S2N in the commutative limit

differs from the 1-loop effective action on the commutative sphere S2 by a finite

term, which we call “noncommutative anomaly” (NCA). It is a mildly nonlocal,

“small” correction to the kinetic energy on S2, and changes the dispersion relation.

It arises from the nonplanar loop integration. Finally, we consider the planar limit

of the fuzzy sphere. We find that a IR singularity is developed in the nonplanar two

point function, and hence the UV/IR mixing emerges in this limit. This provides an

understanding of the UV/IR mixing for QFT on R2θ as a “noncommutative anomaly”

which becomes singular in the planar limit of the fuzzy sphere dynamics.

This paper is organized as follows. In section 2, we consider different geometrical

limits of the classical (ie. ~ = 0) fuzzy sphere. In particular, we show how the

commutative sphere and the noncommutative plane R2θ can be obtained in different
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corners of the moduli space of the fuzzy sphere. In section 3, we study the quantum

effects of scalar Φ4 field theory on the fuzzy sphere at 1-loop. We show that the planar

and nonplanar 2-point function are both regular in the external angular momentum

and no IR singularity is developed. This means that there is no UV/IR mixing

phenomenon on the fuzzy sphere. We also find that the planar and nonplanar two

point functions differ by a finite amount which is smooth in the external angular

momentum, and survives in the commutative limit. Therefore the commutative

limit of the Φ4 theory at one loop differs from the corresponding one loop quantum

theory on the commutative sphere by a finite term (3.23). In section 4, we consider

the planar limit of this QFT, and recover the UV/IR mixing.

2. The fuzzy sphere and some limits

2.1 The fuzzy sphere S2N

We start by recalling the definition of fuzzy sphere in order to fix our conventions

and notation. The algebra of functions on the fuzzy sphere is the finite algebra S2N
generated by hermitian operators x = (x1, x2, x3) satisfying the defining relations

[xi, xj] = iλNεijkxk , (2.1)

x21 + x
2
2 + x

2
3 = R

2 . (2.2)

The noncommutativity parameter λN is of dimension length, and can be taken pos-

itive. The radius R is quantized in units of λN by

R

λN
=

√
N

2

(
N

2
+ 1

)
, N = 1, 2, . . . (2.3)

This quantization can be easily understood. Indeed (2.1) is simply the Lie algebra

su(2), whose irreducible representation are labeled by the spin α := N/2. The

Casimir of the spin-N/2 representation is quantized, and related to R2 by (2.2).

Thus the fuzzy sphere is characterized by its radius R and the “noncommutativity

parameters” N or λN . The algebra of “functions” S
2
N is simply the algebraMat(N+

1) of (N + 1)× (N + 1) matrices. It is covariant under the adjoint action of SU(2),
under which it decomposes into the irreducible representations with dimensions (1)⊕
(3)⊕ (5)⊕ ...⊕ (2N + 1).
The integral of a function F ∈ S2N over the fuzzy sphere is given by

R2
∫
F =

4πR2

N + 1
tr[F (x)] , (2.4)

where we have introduced
∫
, the integral over the fuzzy sphere with unit radius. It

agrees with the integral
∫
dΩ on S2 in the large N limit. Invariance of the integral

3
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under the rotations SU(2) amounts to invariance of the trace under adjoint action.

One can also introduce the inner product

(F1, F2) =

∫
F1†F2 . (2.5)

A complete basis of functions on S2N is given by the (N+1)
2 spherical harmonics,

Y Jj , (J = 0, 1, . . . , N ;−J ≤ j ≤ J),1 which are the weight basis of the spin J
component of S2N explained above. They correspond to the usual spherical harmonics,

however the angular momentum has an upper bound N here. This is a characteristic

feature of fuzzy sphere. The normalization and reality for these matrices can be

taken to be

(Y Jj , Y
J ′
j′ ) = δJJ ′δjj′, (Y Jj )

† = (−1)JY J−j . (2.6)

They obey the “fusion” algebra

Y Ii Y
J
j =

√
N + 1

4π

∑
K,k

(−1)2α+I+J+K+k
√
(2I + 1)(2J + 1)(2K + 1)

(
I J K

i j −k
)
×

×
(
I J K

α α α

)
Y Kk , (2.7)

where the sum is over 0 ≤ K ≤ N,−K ≤ k ≤ K, and
α = N/2 . (2.8)

Here the first bracket is the Wigner 3j-symbol and the curly bracket is the 6j-symbol

of su(2), in the standard mathematical normalization [12]. Using the Biedenharn–

Elliott identity (B.4), it is easy to show that (2.7) is associative. In particular,

Y 00 =
1√
4π
1. The relation (2.7) is independent of the radius R, but depends on

the deformation parameter N . It is a deformation of the algebra of product of the

spherical harmonics on the usual sphere. We will need (2.7) to derive the form of

the propagator and vertices in the angular momentum basis.

Now we turn to various limits of the fuzzy sphere. By tuning the parameters

R and N , one can obtain different limiting algebras of functions. In particular, we

consider the commutative sphere S2 and the noncommutative plane R2θ.

2.2 The commutative sphere limit S2

The commutative limit is defined by

N →∞, keeping R fixed . (2.9)

In this limit, (2.1) reduces to [xi, xj] = 0 and we obtain the commutative algebra of

functions on the usual sphere S2. Note that (2.7) reduces to the standard product of
1We will use capital and small letter (e.g. (J, j)) to refer to the eigenvalue of the angular mo-

mentum operator J2 and Jz respectively.
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spherical harmonics, due to the asymptotic relation between the 6j-symbol and the

Wigner 3j-symbol [12],

lim
α→∞
(−1)2α√2α

{
I J K

α α α

}
= (−1)I+J+K

(
I J K

0 0 0

)
. (2.10)

2.3 The quantum plane limit R2θ

If the fuzzy sphere is blown up around a given point, it becomes an approximation of

the quantum plane [8]. To obtain this planar limit, it is convenient to first introduce

an alternative representation of the fuzzy sphere in terms of stereographic projection.

Consider the generators

y+ = 2Rx+(R− x3)−1 , y− = 2R(R− x3)−1x− , (2.11)

where x± = x1 ± ix2. The generators y± are the coordinates of the stereographic
projection from the north pole. y = 0 corresponds to the south pole. Now we take

the large N and large R limit, such that

N →∞, R2 = Nθ/2→∞, keeping θ fixed . (2.12)

In this limit,
λN√
θ
∼ 1√

N
(2.13)

and [y+, y−] = −4R2λN(R− x3)−1 + o(λ2N). Since y+y− = 4R2(R+ x3)(R− x3)−1 +
o(N−1/2), we can cover the whole y-plane with x3 = −R + β/R with finite but
arbitrary β. The commutation relation of the y generators takes the form

[y+, y−] = −2θ (2.14)

up to corrections of order λ2N , or

[y1, y2] = −iθ (2.15)

with y± = y1 ± iy2.

3. One loop dynamics of Φ4 on the fuzzy sphere

Consider a scalar Φ4 theory on the fuzzy sphere, with action

S0 =

∫
1

2
Φ(∆ + µ2)Φ +

g

4!
Φ4 . (3.1)

Here Φ is hermitian, µ2 is the dimensionless mass square, g is a dimensionless coupling

and ∆ =
∑
J2i is the Laplace operator. The differential operator Ji acts on function

F ∈ S2N as
JiF =

1

λN
[xi, F ] . (3.2)
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This action is valid for any radius R, since µ and g are dimensionless. To quantize the

theory, we will follow the path integral quantization procedure as explained in [10].

We expand Φ in terms of the modes,

Φ =
∑
L,l

aLl Y
L
l , a

L
l † = (−1)laL−l . (3.3)

The Fourier coefficient aLl are then treated as the dynamical variables, and the path

integral quantization is defined by integrating over all possible configuration of aLl .

Correlation functions are computed using [10]

〈aL1l1 · · ·aLklk 〉 =
∫
[DΦ]e−S0 aL1l1 · · ·aLklk∫

[DΦ]e−S0 . (3.4)

For example, the propagator is

〈aLl aL
′
l′ †〉 = (−1)l〈aLl aL

′
−l′〉 = δLL′δll′

1

L(L+ 1) + µ2
, (3.5)

and the vertices for the Φ4 theory are given by

aL1l1 · · ·aL4l4 V (L1, l1; · · · ;L4, l4) , (3.6)

where

V (L1, l1; · · · ;L4, l4) = g
4!

N + 1

4π
(−1)L1+L2+L3+L4

4∏
i=1

(2Li + 1)
1/2
∑
L,l

(−1)l(2L+ 1) ·

·
(
L1 L2 L

l1 l2 l

)(
L3 L4 L

l3 l4 −l
){
L1 L2 L

α α α

}{
L3 L4 L

α α α

}
.

(3.7)

One can show that V is symmetric with respect to cyclic permutation of its arguments

(Li, li).

The 1PI two point function at one loop is obtained by contracting 2 legs in

(3.7) using the propagator (3.5). The planar contribution is defined by contracting

neighboring legs:

(Γ
(2)
planar)

LL′
ll′ =

g

4π

1

3
δLL′δl,−l′(−1)l · IP ,

IP :=
N∑
J=0

2J + 1

J(J + 1) + µ2
. (3.8)

All 8 contributions are identical. Similarly by contracting non-neighboring legs, we

find the non-planar contribution

(Γ
(2)
nonplanar)

LL′
ll′ =

g

4π

1

6
δLL′δl,−l′(−1)l · INP ,

INP :=

N∑
J=0

(−1)L+J+2α (2J + 1)(2α+ 1)
J(J + 1) + µ2

{
α α L

α α J

}
. (3.9)
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Again the 4 possible contractions agree. These results can be found using standard

identities for the 3j and 6j symbols, see e.g. [12] and appendix B.

It is instructive to note that INP can be written in the form

INP =

N∑
J=0

2J + 1

J(J + 1) + µ2
fJ , (3.10)

where fJ is obtained from the generating function

f(x) =

∞∑
J=0

fJx
J

=
1

1− x 2F1
(
−L,L+ 1, 2α+ 2, x

x− 1
)
2F1

(
−L,L+ 1,−2α, x

x− 1
)
.

Here the hypergeometric function 2F1(−L,L + 1; c; z) is a polynomial of degree L
for any c. Note that the oscillatory sign in INP in (3.9) is cancelled by the sign

of the 6j-symbol in (3.16), and is replaced by a slower oscillatory behaviour of the

6j-symbol as a function of L and J . The latter is precisely the counter-part of the

nonplanar Moyal phase factor in the noncommutative plane case.2

For example, for L = 0, one obtains

fJ = 1, 0 ≤ J ≤ N , (3.11)

and hence the planar and nonplanar two point functions coincides. For L = 1, we

have

fJ = 1− J(J + 1)
2α(α + 1)

, 0 ≤ J ≤ N , (3.12)

and hence

INP = IP − 1

2α(α+ 1)

2α∑
J=0

J(J + 1)(2J + 1)

J(J + 1) + µ2
. (3.13)

Note that the difference between the planar and nonplanar two point functions is

finite. It is easy to convince oneself that for any finite external angular momentum

L, the difference between the planar and nonplanar two point function is finite and

analytic in 1/α. This fact is important as it implies that, unlike in the Rnθ case, there

is no infrared singularity developed in the nonplanar amplitude. We will have more

to say about this later.

2It was argued in [11] that the nonplanar two-point function has a different sign for even and odd

external angular momentum L. This is not correct, because as we just explained, the oscillations

are indeed much milder after combining with the 6j-symbol. As we will show, this leads to a well-

behaved loop integral which is a sum over all J , and the resulting low L-behaviour is completely

regular. We note that only the single value of J = 2α was considered in [11].
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3.1 On UV/IR mixing and the commutative limit

Let us recall that in the case of noncommutative space Rnθ , the one-loop contribution

to the effective action often develops a singularity at θp = 0 [6, 14]. This infrared

singularity is generated by integrating out the infinite number of degree of freedom

in the nonplanar loop. This phenomenon is referred to as “UV/IR mixing”, and it

implies in particular that (1) the nonplanar amplitude is singular when the external

momentum is zero in the noncommutative directions; and (2) the quantum effective

action in the commutative limit is different from the quantum effective action of the

commutative limit [13].

Effective action on the fuzzy sphere. We want to understand the behavior of

the corresponding planar and nonplanar two point functions on the fuzzy sphere, to

see if there is a similar UV/IR phenomenon. We emphasize that this is not obvious

a priori even though quantum field theory on the fuzzy sphere is always finite. The

question is whether the 2-point function is smooth at small values of L, or rapidly

oscillating as was indeed claimed in a recent paper [11]. Integrating out all the degrees

of freedom in the loop could in principle generate a IR singularity, for large N .

However, this is not the case. We found above that the planar and nonplanar two

point function agree precisely with each other when the external angular momentum

L = 0. For general L, a closed expression for fJ for general L is difficult to obtain.

We will derive below an approximate formula for the difference INP − IP , which is
found to be an excellent approximation for large N by numerical tests, and becomes

exact in the commutative limit N →∞.
First, the planar contribution to the two point function

IP =
N∑
J=0

2J + 1

J(J + 1) + µ2
(3.14)

agrees precisely with the corresponding terms on the classical sphere as N → ∞,
and it diverges logarithmically

IP ∼ logα + o(1) . (3.15)

To understand the nonplanar contribution, we start with the following approximation

formula [12] for the 6j symbols due to Racah,{
α α L

α α J

}
≈ (−1)

L+2α+J

2α
PL(1− J

2

2α2
) , (3.16)

where PL are the Legendre Polynomials. This turns out to be an excellent approxi-

mation for all 0 ≤ J ≤ 2α, provided α is large and L� α. Since this range of validity
of this approximation formula is crucial for us, we shall derive it in appendix A. This
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allows then to rewrite the sum in (3.9) to a very good approximation as

INP − IP =
2α∑
J=0

2J + 1

J(J + 1) + µ2

(
PL(1− J

2

2α2
)− 1

)
(3.17)

for large α. Since PL(1) = 1 for all L, only J � 1 contributes, and one can approxi-
mate the sum by the integral

INP − IP ≈
2∫
0

du
2u+ 1/α

u2 + u/α+ µ2/α2

(
PL

(
1− u

2

2

)
− 1
)

=

1∫
−1
dt

1

1− t(PL(t)− 1) + o(1/α) , (3.18)

assuming µ� α. This integral is finite for all L. Indeed using generating functions
techniques, it is easy to show that

1∫
−1
dt
1

1− t(PL(t)− 1) = −2
(
L∑
k=1

1

k

)
= −2h(L) , (3.19)

where h(L) =
∑L
k=1

1
k
is the harmonic number and h(0) = 0. While h(L) ≈ logL for

large L, it is finite and well-behaved for small L. Therefore we obtain the effective

action

Sone−loop = S0 +
∫
1

2
Φ(δµ2 − g

12π
h(∆̃))Φ + o(1/α) (3.20)

to the first order in the coupling where

δµ2 =
g

8π

N∑
J=0

2J + 1

J(J + 1) + µ2
(3.21)

is the mass square renormalization, and ∆̃ is the function of the laplacian which has

eigenvalues L on Y Ll . Thus we find that the effects due to noncommutativity are

analytic in the noncommutative parameter 1/α. This is a finite quantum effect with

nontrivial, but mild L dependence. Therefore no IR singularity is developed, and we

conclude that there is no UV/IR problem on the fuzzy sphere.3

3The author of [11] adopted a wilsonian approach integrating the “cutoff” by one unit, and

argued that the effective action is not a smooth function of the external momentum and suggested

this to be a signature of UV/IR mixing. We disagree with his result. In this paper, we follow the

more conventional program of renormalization (for the 2-point function), and calculate the full loop

integral which is perfectly regular.
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The commutative limit. The commutative limit of the QFT is defined by the

limit

α→∞, keeping R, g, µ fixed . (3.22)

In this limit, the resulting one-loop effective action differs from the effective action

obtained by quantization on the commutative sphere by an amount

Γ
(2)
NCA = −

g

24π

∫
Φh(∆̃)Φ . (3.23)

We refer to this as a “NonCommutative Anomaly”, since it is the piece of the quan-

tum effective action which is slightly nonlocal and therefore not present in the clas-

sical action. “Noncommutative” also refers to fact that the quantum effective action

depends on whether we quantize first or take the commutative limit first.

The new term Γ
(2)
NCA modifies the dispersion relation on the fuzzy sphere. It

is very remarkable that such a “signature” of an underlying noncommutative space

exists, even as the noncommutativity on the geometrical level is sent to zero. A

similar phenomena is the induced Chern-Simon term in 3-dimensional gauge theory

on R3θ [13]. This has important implications on the detectability of an underlying

noncommutative structure. The reason is that the vacuum fluctuations “probe”

the structure of the space even in the UV, and depend nontrivially on the external

momentum in the nonplanar diagrams. Higher-order corrections may modify the

result. However since the theory is completely well-defined for finite N , the above

result (3.23) is meaningful for small coupling g.

Summarizing, we find that quantization and taking the commutative limit does

not commute on the fuzzy sphere, a fact which we refer to as “noncommutative

anomaly”. A similar phenomenon also occurs on the noncommutative quantum plane

R
n
θ . However, in contrast to the case of the quantum plane, the “noncommutative

anomaly” here is not due to UV/IR mixing since there is no UV/IR mixing on

the fuzzy sphere. We therefore suggest that the existence of a “noncommutative

anomaly” is a generic phenomenon and is independent of UV/IR mixing.4 One

can expect that the “noncommutative anomaly” does not occur for supersymmetric

theories on the 2–sphere.

4. Planar limit of quantum Φ4

In this section, we study the planar limit of the Φ4 theory on the fuzzy sphere at one

loop. Since we have shown that there is no UV/IR mixing on the fuzzy sphere, one

may wonder whether (4.9) could provide a regularization for the nonplanar two point

4However, as we will see, they are closely related. We will show in the next section that the

UV/IR mixing on the noncommutative plane arises in the planar limit of the “NCA” for the fuzzy

sphere.
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function (4.10) on R2θ which does not display an infrared singularity. This would be

very nice, as this would mean that UV/IR can be understood as an artifact that

arises out of a bad choice of variables. However, this is not the case.

To take the planar limit, we need in addition to (2.12), also

µ2 = m2R2 ∼ α→∞, keeping m fixed , (4.1)

so that a massive scalar theory is obtained. We wish to identify in the limit of large

R the modes on the sphere with angular momentum L with modes on the plane with

linear momentum p. This can be achieved by matching the laplacian on the plane

with that on the sphere in the large radius limit, ie.

L(L+ 1)/R2 = p2 . (4.2)

It follows that

p =
L

R
. (4.3)

Note that by (2.12), a mode with a fixed nonzero p corresponds to a mode on the

sphere with large L:

L ∼ R ∼ √α. (4.4)

Since L is bounded by α, there is a UV cutoff Λ on the plane at

Λ =
2α

R
. (4.5)

Denote the external momentum of the two point function by p. It then follows that

α� L� 1 as long as p 6= 0.
It is easy to see that the planar amplitude (3.8) becomes

IP = 2

∫ Λ
0

dk
k

k2 +m2
(4.6)

in the quantum plane limit, with k = J/R. This is precisely the planar contribution

to the two point function on R2θ.

For the nonplanar two point function (3.9), we can again use the formula (3.16)

which is valid for all J and large α, since the condition α� L is guaranteed by (4.4).
Therefore

INP (p) = 2

∫ Λ
0

dk
k

k2 +m2
PpR

(
1− 2 k

2

Λ2

)
(4.7)

For large L = pR, we can use the approximation formula

PL(cosφ) =

√
φ

sin φ
J0((L+ 1/2)φ) + O(L−3/2), (4.8)
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which is uniformly convergent [15] as L → ∞ in the interval 0 ≤ φ ≤ π − ε for any
small, but finite ε > 0. Then one obtains

INP (p) ≈ 2
∫ Λ
0

dk
k

k2 +m2

√
φk

sinφk
J0(pRφk)

≈ 2
∫ Λ
0

dk
k

k2 +m2
J0(θpk), (4.9)

where φk = 2 arcsin(k/Λ). The singularity at φ = π on the rhs of (4.8) (which is an

artefact of the approximation and not present in the lhs) is integrable and does not

contribute to (4.9) for large pΛθ. The integrals in (4.9) are (conditionally) convergent

for p 6= 0, and the approximations become exact for pΛθ →∞. Therefore we recover
precisely the same form as the one loop nonplanar two point function on R2θ,

1

2π

∫ Λ
0

d2k
1

k2 +m2
eiθp×k . (4.10)

For small pΛθ, i.e. in the vicinity of the induced infrared divergence on R2θ, these

approximations are less reliable. We can obtain the exact form of the infrared diver-

gence from (3.19),

INP = −2 log(p
√
θ) + (IP − logα) . (4.11)

Hence we find the same logarithmic singularity in the infrared as on R2θ [6]. In other

words, we find that the UV/IR mixing phenomenon which occurs in QFT on R2θ can

be understood as the infinite limit of the noncomutative anomaly (3.23) on the fuzzy

sphere. Hence one could use the fuzzy sphere as a regularization of R2θ, where the

logarithmic singularity log(p
√
θ) gets “regularized” by (3.19).

5. Discussion

We have done a careful analysis of the one-loop dynamics of scalar Φ4 theory on the

fuzzy sphere S2N . We found that the two point function is completely regular, without

any UV/IR mixing. We also give a closed expression for the two point function in the

commutative limit, i.e. we find an exact form for the leading term in a 1/N expansion.

Using this we discover a “noncommutative anomaly” (NCA), which characterizes the

difference between the quantum effective action on the commutative sphere S2 and

the commutative limit N →∞ of the quantum effective action on the fuzzy sphere.
This anomaly is finite but mildly nonlocal on S2, and changes the dispersion relation.

It arises from the nonplanar loop integration.

It is certainly intriguing and perhaps disturbing that even an “infinitesimal”

quantum structure of (space)time has a finite, nonvanishing effect on the quantum

theory. Of course this was already found in the UV/IR phenomenon on Rnθ , however
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in that case one might question whether the quantization procedure based on defor-

mation quantization is appropriate. On the fuzzy sphere, the result is completely

well-defined and unambiguous. One might argue that a “reasonable” QFT should be

free of such a NCA, so that the effective, macroscopic theory is insensitive to small

variations of the structure of spacetime at short distances. On the other hand, it

is conceivable that our world is actually noncommutative, and the noncommutative

dynamics should be taken seriously. Then there is no reason to exclude theories

with NCA. In particular, one would like to understand better how sensitive these

“noncommutative anolamies” are to the detailed quantum structure of spacetime.

By approximating the QFT on R2θ with the QFT on the fuzzy sphere, we can

explain the UV/IR mixing from the point of view of the fuzzy sphere as a infinite

variant of the NCA. In some sense, we have regularized R2θ. It would be interesting

to provide an explanation of the UV/IR mixing also for the higher dimensional case

R
4
θ. To do this, the first step is to realize R

4
θ as a limit of a “nicer” noncommutative

manifold. A first candidate is the product of two fuzzy spheres. Much work remains

to be done to clarify this situation.

It would also be very desirable to include fermions and gauge fields in these

considerations. In particular it will be interesting to determine the dispersion relation

for “photons”, depending on the “fuzzyness” of the underlying geometry. In the case

of noncommutative QED on R4θ, this question was studied in [14], where a nontrivial

modification to the dispersion relation of the “photon” was found which makes the

theory ill–defined. In view of our results, one may hope that these modifications are

milder on the fuzzy sphere and remain physically sensible.
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A. Approximation formula (3.16)

We derive the approximation formula (3.16) for large α and 0 ≤ J ≤ 2α, assuming
L� α.
There is an exact formula for the 6j coefficients due to Racah (see e.g. [12]),

which can be written in the form{
α α L

α α J

}
= (−1)2α+J

∑
n

(−1)n
(
L

n

)2
×

× (2α− L)!(2α + J + n+ 1)!(2α− J)!(J !)2
(2α + L+ 1)!(2α+ J + 1)!(2α− J − n)!((J − L+ n)!)2 .
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The sum is from n = max{0, L − J} to min{L, 2α − J}, so that all factorials are
non-negative. Assume first that L ≤ J ≤ 2α − L, so that the sum is from 0 to L.
Since α� L, this becomes{
α α L

α α J

}
≈ (−1)2α+J 1

(2α)2L+1

L∑
n=0

(−1)n
(
L

n

)2
(4α2 − J2)n

(
J !

(J − (L− n))!
)2
,

(A.1)

dropping corrections of order o(L
α
). Now there are 2 cases: either J � L, or otherwise

J � α since α� L. Consider first
1. J � L:
Then J !

(J−(L−n))! can be replaced by J
L−n, up to corrections of order o(L

J
). There-

fore {
α α L

α α J

}
≈ (−1)

2α+J

2α

(
J

2α

)2L L∑
n=0

(−1)n
(
L

n

)2((
2α

J

)2
− 1
)n

=
(−1)2α+J
2α

PL

(
1− J

2

2α2

)
, (A.2)

as claimed.

2. J � α:
Then in the sum (A.1), the dominant term is n = L, because J !

(J−(L−n))! ≤ JL−n.
Therefore one can safely replace the term J !

(J−(L−n))! in this sum by its value
at n = L, namely JL−n. The remaining terms are smaller by a factor of (J

α
)2.

Hence we can continue as in case 1.

If J ≤ L, one can either use the same argument as in the 2nd case since the
term n = L is dominant, or use the symmetry of the 6j symbols in L, J together

with PL(1− J2

2α2
) ≈ PJ(1− L2

2α2
) for J, L� α. Finally if J + L ≥ 2α, then the term

n = 0 dominates, and one can proceed as in case 1. Therefore (3.16) is valid for all

0 ≤ J ≤ 2α.
One can illustrate the excellent approximation for the 6j symbols provided

by (3.16) for all 0 ≤ J ≤ 2α using numerical calculations.

B. Some identities of 3j and 6j symbols

We quote here some identities of the 3j and 6j symbols which are used to derive the

expressions (3.8) and (3.9) for the one-loop corrections. The 3j symbols satisfy the

orthogonality relation∑
j,l

(
J L K

j l k

)(
J L K ′

−j −l −k′
)
=
(−1)K−L−J
2K + 1

δK,K ′δk,k′ , (B.1)

assuming that (J, L,K) form a triangle.
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The 6j symbols satisfy standard symmetry properties, and the orthogonality

relation ∑
N

(2N + 1)

{
A B N

C D P

}{
A B N

C D Q

}
=

1

2P + 1
δP,Q , (B.2)

assuming that (A,D, P ) and (B,C, P ) form a triangle. Furthermore, the following

sum rule is used in (3.9)

∑
N

(−1)N+P+Q(2N + 1)
{
A B N

C D P

}{
A B N

D C Q

}
=

{
A C Q

B D P

}
. (B.3)

The Biedenharn-Elliott relations are needed to verify associativity of (2.7):

∑
N

(−1)N+S(2N+1)
{
A B N

C D P

}{
C D N

E F Q

}{
E F N

B A R

}
=

{
P Q R

E A D

}{
P Q R

F B C

}
,

(B.4)

where S = A+B+C +D+E +F +P +Q+R. All these can be found e.g. in [12].
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