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on certain fields which in the on-shell theory are constructed as composite ones out
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gauge symmetry. Deformations of the ordinary SYM theory (as well as the fields)

are identified as elements of a certain spinorial cohomology, giving control over field

redefinitions and the distinction between physically relevant higher-order corrections

and those removable by field redefinitions. The conditions derived severely constrain

theories involving F 2-level terms plus higher-order corrections, as for instance those

derived from open strings as effective gauge theories on D-branes.
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1. Introduction

Gauge and reparametrisation invariant theories arise as effective field theories in

string theory. In the case of open bosonic strings these field theories correspond

to ordinary F 2 Yang-Mills theory only in the limit of weak fields. In more general

situations, due to the appearence of the dimensionful parameter α′, one typically
finds an infinite set of higher-order terms involving arbitrary powers of the Yang-

Mills field strength as well as field strengths with any number of covariant derivatives

acting on them. To elucidate the structure of these effective actions has turned out

to be extremely difficult, and it is only in the abelian case and for constant field

strengths that we have any kind of understanding of the complete structure of the

action. Under precisely these conditions, the open bosonic string theory is known to

generate the Born-Infeld lagrangian

L = −
√
− det(ηab + 2πα′Fab) . (1.1)

For a quite comprehensive review of the role of the Born-Infeld action in string theory

including a large number of references, see ref. [7]. The supersymmetric version of

this lagrangian is also known and takes the form

L = −
√
− det (ηab + 2πα′Fab − 2(2πα′)2λ̄Γa∂bλ + (2πα′)4λ̄Γc∂aλλ̄Γc∂bλ) , (1.2)

as can be seen [8] by setting p = 9 in the action obtained by gauge fixing the

reparametrisation invariance and κ-symmetry of the actions for the Dp-branes de-

rived in [2].
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Adding non-abelian Chan-Paton factors to the ends of the open strings makes

it possible to derive non-abelian versions of the effective actions. The importance

of these actions have been highlighted recently in connection with the solitonic D-

brane solutions in string theory. As explained by Witten in ref. [11], the non-abelian

nature of the gauge theory can in this context be understood as arising from a stack

of branes by a detailed analysis of all possible configurations with the two ends of

the strings ending on different branes in the stack.

Unfortunately, in the non-abelian case our knowledge about the effective action

is at a very rudimentary level and there is as yet no situation in which we under-

stand its structure to general order in the fields. In fact there are only partial results

up to order F 6 [7, 12] beyond which we have not been able to obtain any informa-

tion. In the context of the superstring the situation is basically the same. However,

here one may pose interesting questions about to what extent κ-symmetry, extra

non-linear supersymmetries, and/or maximal linear supersymmetry constrain the

form of higher-order corrections to the ordinary F 2 super-Yang-Mills theory. In the

abelian case κ-symmetry [2] and non-linear supersymmetries [16] are known to be

intimately connected to the structure of the Born-Infeld theory. To find non-abelian

generalisations of these arguments has however turned out to be difficult, because

they related to poorly understood issues that arise when trying to define geometry

on a non-commutative (curved) spacetime, see e.g. ref. [10].

It was found some time ago [6] that at order F 4, assuming a symmetrised trace

over the gauge generators, henceforth denoted Str, and starting from the StrF 4 term,

supersymmetry is enough to unambiguously produce the structure of the non-abelian

action. This is in complete agreement with Tseytlin’s suggestion [9] that in the non-

abelian case it might suffice to consider the Born-Infeld lagrangian in (1.1) but with

all fields in the adjoint of the non-abelian gauge group and with a totally symmetric

trace over group generators to eliminate the ordering ambiguities. However, there

are strong indications that the Str prescription does not provide the full structure

as obtained from string theory at order F 6 and higher [13, 12]. Recently Bergshoeff

et al. [10] have found, based on an attempt to implement κ-symmetry in a non-

abelian setting, non-Str terms involving fermions (but no pure F -terms) also at

lower order than this. (The order discussed here is most easily kept track of by

giving the fields Fµν , λα and spacetime derivatives canonical four-dimensional mass

dimensions despite the fact that we will be dealing exclusively with ten-dimensional

super-Yang-Mills theory. When deriving the action from string theory these terms

get accompanied by appropriate powers of α′ which has dimension (mass)−2.)
In this paper we will consider ten-dimensional super-Yang-Mills theory [15] and

approach the problem of finding the constraints on the possible higher-order correc-

tions implied by (maximal) supersymmetry by embedding the theory in superspace.

The theory is then given in terms of a superfield gauge potential AA = (Aa, Aα),

where the indices a and α refer to the vector and spinor representations, respectively.
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The corresponding field strength satisfies ordinary superspace Bianchi identities. As

we will see in the next section, from these identities one can easily derive the field

equations corresponding to the lowest order, i.e., F 2, theory, supersymmetry trans-

formation rules etc. By relaxing the constraint that leads to these field equations

one instead obtains a system of superspace equations that any theory consistent with

supersymmetry and gauge invariance must satisfy. In section 3, we proceed to solve

these superspace equations. The solution is in the form of a number of algebraic

conditions on the various component fields appearing at different levels in the su-

perfields in terms of which the theory is defined. Section 4 is devoted to a formal

development of what we might call spinorial cohomology, where component fields

and deformations are obtained as elements of cohomology classes under a fermionic

exterior derivative. The understanding obtained elucidates the specific properties

enjoyed by maximally supersymmetric Yang-Mills being an on-shell superspace the-

ory and gives a solid underpinning of the approach adopted for finding physically

inequivalent deformations. Section 5 is devoted to some comments concerning how

this setup might be used to obtain information about possible higher-order correc-

tions. Some of these comments are of relevance for D-brane physics in string theory

and the search for a non-abelian Born-Infeld theory. A more comprehensive discus-

sion containing also explicit expressions at the next, i.e. F 4, level of corrections will

be published elsewhere [5].

2. Implementation of gauge invariance in superspace

This section provides a recapitulation of the superspace techniques in the context

of abelian and non-abelian gauge theories, restricted to ten dimensions which corre-

sponds to maximal supersymmetry. We will first set up our conventions and then

proceed to derive the equations of motion at order F 2 by imposing constraints on

the superspace Yang-Mills field stength [1].

If we turn a spacetime vector potential Am(x) into a superfield, we obtain the ba-

sic object, AM (x, θ), from which one may construct gauge theories that are manifestly

supersymmetric. Here the index M refers to the pair of curved indices m,µ, the first

enumerating the ten bosonic components and the second the sixteen fermionic ones.

A superspace one-form is constructed by contracting the superspace vector potential

with dxm and dθµ, which obey opposite statistics to the coordinates xm and θµ. From

the abelian one-form potential A, which transforms under gauge transformations as

δA = dΦ where Φ is a scalar superfield and d = dxm∂m + dθ
µ∂µ, we construct the

gauge invariant superfield strength F = dA. The corresponding Bianchi identity

reads dF = 0. In the non-abelian case we must of course use the covariant derivative

D = d+ A instead.

So far no on-shell information has been fed into the equations; in fact any super-

symmetric gauge theory must satisfy the superspace Bianchi identity (BI) DF = 0.

3



J
H
E
P
0
6
(
2
0
0
1
)
0
3
4

When analysing the superspace BI one usually considers its component equations in

tangent space. The reason for this is that since the tangent space structure group

is the ordinary Lorentz group Spin(1, 9) and not a supergroup, the vector index a

and chiral spinor index1 α never mix. Hence the components Fab, Faβ and Fαβ can

be treated as independent and, e.g., constraining a subset of them will not have

any effect on the manifest supersymmetry. Reading off the superspace torsion from

the supersymmetry algebra we find that superspace always has a non-trivial torsion

component, namely T cαβ . In the case of flat superspace considered here,

T cαβ = 2Γ
c
αβ (2.1)

is the only non-zero one.

In this case, the component form of the superspace BI becomes

D(αFβγ) + 2Γ
c
(αβF|c|γ) = 0 ,

2D(αFβ)c +DcFαβ + 2Γ
d
αβFdc = 0 ,

DαFbc + 2D[bFc]α = 0 ,

D[aFbc] = 0 . (2.2)

As is well-known the lowest order ten-dimensional supersymmetric Yang-Mills

theory is obtained by choosing the constraint [1]

Fαβ = 0 . (2.3)

The vector part of this constraint, (Γa)αβFαβ = 0, is a so called conventional con-

straint [4] which must be imposed in order to eliminate an unwanted extra vector

potential appearing at the first θ level in Aα. However, this can always be done with-

out affecting the supersymmetry since it just amounts to a shift of the superfield Aα
by the vector part of Fαβ . To see how the equations of motion emerge, we insert the

constraint (2.3) into the above component equations (2.2) leading to the following

set of equations:

Γc(αβF|c|γ) = 0 ,

D(αFβ)c + Γ
d
αβF|d|c = 0 ,

DαFbc + 2D[bFc]α = 0 ,

D[aFbc] = 0 . (2.4)

Instead of just presenting the solution to these equations, we will here take the

opportunity to elaborate, in a rather simple situation, on the different steps needed

to obtain it. The same procedure will be followed also in the next section where

the equations as well as the process of finding the solution is significantly more

complicated.
1We use upper and lower spinor indices to distinguish the two chiralities, and 16×16 Γ-matrices

Γaαβ, Γ
aαβ (strictly speaking the Γ-matrices are 32×32 with these as off-diagonal blocks).
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It is convenient to first analyze in detail the representation content of the equa-

tions as well as of the fields. Then the goal is to derive all the algebraic relations

between the irreducible fields that are hidden in these equations. Decomposing into

irreducible representations the symmetric product of three spinor representations we

find2 ⊗3s(00010) = (00030)⊕ (10010). Thus the first Bianchi identity above can only
produce restrictions on fields transforming in the two representations (00030) and

(10010). Decomposing also Faβ we find (00001)⊕ (10010) which we write as

Faβ = F̃aβ + Γa βγλ
γ , (2.5)

where F̃aβ is Γ-traceless, Γ
aαβF̃aβ = 0. λ will turn out to be the physical on-shell

spinor field. Comparing the equation content to the field content we see immediately

that no information can be obtained about the spinor λ while there is one equation

for the field in representation (10010). In fact one finds that this equation puts this

field to zero. Thus the (αβγ) Bianchi identity reduces to

Faβ = Γa βγλ
γ . (2.6)

Turning to the second component Bianchi identity (with index structure a(βγ) ) we

repeat the above steps and obtain the table:

Dβλ
γ : (00000) ⊕ (00011) ⊕ (01000)

Fba : (01000)

BI : (00000) ⊕ (00011) ⊕ (01000) ⊕ (10020) ⊕ (20000) (2.7)

Here the explicit form of the field content at first order in the θ expansion of λ has

been written in the equivalent form of a covariant derivative on λα as

Dαλ
β = δα

βΛ +
1

2
Γabα

βΛab +
1

4!
Γabcdα

βΛabcd . (2.8)

The BI yields

Λ = 0 , Λab = Fab , Λabcd = 0 . (2.9)

The third BI, of dimension 5/2, reads

DαFab = 2(Γ[aDb]λ)α , (2.10)

which when inserted into eq. (2.8) together with the solution for the Λ’s (2.9) turns

into DαDβλ
γ = Γabβ

γ(ΓaDbλ)α. Contraction of this equation with Γ
αβ
c Γ

c
γδ gives the

equation of motion for the spinor,

D/λ = 0 . (2.11)

2We denote irreducible representations of the Lorentz group by highest weight Dynkin labels

according to the standard enumeration
5

4

321
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Acting on this equation with a spinor derivative and using eq. (2.8) gives the equation

of motion for the vector,

DbFab − λΓaλ = 0 , (2.12)

where the second term arises from pulling the spinor derivative through the vector

derivative and using the dimension-3/2 field strength (2.6).

3. Solving the superspace Bianchi identities off-shell

In this section we relax the constraint Fαβ = 0 and derive what we will refer to as

the off-shell equations. These equations will include dynamical equations for Aa and

λα which however contain other unspecified auxiliary fields taking the theory off the

mass-shell derived from Fαβ = 0. The effects of relaxing the constraint were discussed

in ref. [1], which ruled out the possibility of constructing an off-shell lagrangian.

As discussed in the previous section the constraint Fαβ = 0 on the dimension-1

field strength puts the theory on the ordinary (lowest order) mass shell. In order to

relax it, we set [1]3

Fαβ =
1

5!
Γa1...a5αβ Ja1...a5 , (3.1)

where we choose J to be anti-selfdual, i.e., J ∈ (00020). In principle, there could be
a Γ(1) term, which is set to zero by a conventional constraint as explained above. At

dimension 3/2, F is expanded as

Faα = F̃aα + (Γaλ)α , (3.2)

where F̃ ∈ (10010) is Γ-traceless, and λ ∈ (00001) (λ is the physical spinor field).
At the same time, DαJabcde is expanded according to (00010)⊗ (00020) = (00030)⊕
(00110)⊕ (10010):

DJabcde = J̃abcde + 10Γ[abJ̃cde] + 5Γ[abcdJ̃e] , (3.3)

whose different irreducible parts can be reexpressed in terms of covariant derivatives

on Jabcde by means of the following inversion formulæ:

J̃a =
1

1680
ΓbcdeDJbcdea ,

J̃abc = − 1
12
ΓdeDJdeabc − 1

224
Γ[abΓ

defgDJ|defg|c] ,

J̃abcde = DJabcde +
5

6
Γ[abΓ

fgDJ|fg|cde] +
1

24
Γ[abcdΓ

fghiDJ|fghi|e] . (3.4)

The first equation to be solved is the one in (2.2) of dimension 3/2. It reads

0 = D(αFβγ) + T(αβ
aF|a|γ) , (3.5)

3This relaxed constraint has also been discussed in refs. [6, 19].
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and contains the irreps ⊗3s(00010) = (00030)⊕ (10010). Analyzing eq. (3.5) we find
that it sets J̃abcde to zero, leaves J̃abc and λ unconstrained and relates J̃a and F̃a in

the following way:

F̃aα = −7J̃aα . (3.6)

The vanishing of the (00030) component is absolutely essential, and has a cohomo-

logical interpretation (see the following section). It is the only condition that the

superfield Jabcde has to satisfy. Once it is fulfilled, the modified equations of motion

follow.

At dimension 2 the relevant equation reads

0 = DaFαβ − 2D(αF|a|β) + TαβbFba
=
1

5!
Γa1...a5αβ DaJa1...a5 + 14D(αJ̃|a|β) − 2Γa(α|γ|Dβ)λγ + 2ΓαβbFba . (3.7)

The irreducible content of the various quantities is

DaJa1...a5 : (00011) ⊕ (10020)
D(αJ̃|a|β) : (00011) ⊕ (01000) ⊕ (10020)

Dβλ
γ : (00000) ⊕ (00011) ⊕ (01000)

Fba : (01000)

BI : (00000) ⊕ (00011) ⊕ (01000) ⊕ (10020) ⊕ (20000) (3.8)

(in the second row, symmetrisation (αβ) has been used, as well as the property

J̃ ∼ DJ , which takes away (20000)). Schematically, the equations are

(00000) : Dαλ
α = 0 ,

(00011) : D2J + (DΓ(4)λ) ∼ 0 ,
(01000) : D2J + (DΓ(2)λ) + F ∼ 0 ,
(10020) : D2J ∼ 0 . (3.9)

At the second level in J , one has the irreps (00011)⊕ (01000)⊕ (10020)⊕ (00120)⊕
(01011)⊕ (10100), of which only the first three take part in the BI. We write

D[αDβ]Jabcde = 10Γ[abcKde] +
1

2
Γabcde

fgKfg + 10Γ[ab
fK|f |cde] +

+
5

6
Γ[abcd

fghK|fgh|e] +
5

2
(Γ[a

gh)αβS|gh|bcd,e] + · · · ,

D(αDβ)Jabcde = −1
2
Tαβ

fDfJabcde − 1
2
[Fαβ, Jabcde]

= −ΓfαβDfJabcde −
1

2 · 5!Γ
fghij
αβ [Jfghij , Jabcde] (3.10)

(the [J, J ] part only contains the representations (00120) ⊕ (10100) which do not
enter the dim 2 BI). The inversions for the K’s will be used later and read

Kab =
1

5376
(DΓcdeD)Jcdeab ,

Kabcd =
1

480
(DΓ[a

fgD)J|fg|bcd] . (3.11)
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We also decompose Dλ as

Dαλ
β = δα

βΛ +
1

2
Γabα

βΛab +
1

4!
Γabcdα

βΛabcd . (3.12)

The equations become:

(00000) : 0 = Λ ,

(00011) : 0 =
7

30
DfJfabcd + 2Kabcd − Λabcd ,

(01000) : 0 =
28

5
Kab + Λab − Fab ,

(10020) : 0 = Sabcde,f +
5

6

(
DfJabcde +D[aJbcde]f − ηf [aDgJ|g|bcde]

)
. (3.13)

There is one important consistency check here: when J̃abcde in the representation

(00030) vanishes at dimension 3/2, there is no new independent (10020) at dimension

2 (see figure 1). The equation obtained from acting with one spinor derivative on

J̃abcde = 0 will contain a part in (10020) that had better coincide with the one in

eq. (3.13), if we are not to get a differential constraint on J . We have checked

that this is the case. Similar consistency conditions arise at higher dimensions, and

are always automatically fulfilled once the (00030) representation at dimension 3/2

vanishes. The (00030) constraint also implies that the (00120) part of D[αDβ]Jabcde
is expressible in terms of the one in [J, J ]. The (10100) ⊕ (01011) part remains
unconstrained.

The dimension-5/2 Bianchi identity reads

0 = 2D[aFb]α +DαFab = −14D[aJ̃b]α − 2Γ[a|αβ|Db]λβ +DαFab . (3.14)

Inserting this expression for DαFab into one spinor derivative on Dαλ
β from above

gives

DαDβλ
γ =
1

2
Γabβ

γ

[
2(ΓaDbλ)α + 14DaJ̃bα − 28

5
DαKab

]
+

+
1

24
Γabcdβ

γ

[
7

30
DαD

fJfabcd + 2DαKabcd

]
, (3.15)

and contracting with Γg
αβΓgδγ gives (a preliminary form of) the equation of motion

for λ:

0 = D/λ +
3

5
DaJ̃a +

1

3600
ΓabcdDDfJfabcd +

6

25
ΓabDKab +

1

420
ΓabcdDKabcd . (3.16)

In order to simplify the equation of motion (3.16) for λ we need to expand the

last three terms. As seen in figure 1, there is one spinor (00010) at dimension 5/2 in

J . We parametrise it as

D[αDβDγ]J
abcde = 30Γ

[abc
[αβ (Γ

de]
ψ)γ] + · · · , (3.17)

8
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with the inversion

ψα = − 1

840 · 3! · 5!Γabc
βγΓde α

δD[βDγDδ]J
abcde . (3.18)

Since there is no (00010) in ∧3(00010)⊗ (00002), the right hand side of eq. (3.17) is
automatically anti-selfdual. We insert this into one spinor derivative on eq. (3.11) to

obtain, after some calculation,

ΓabDKab = −225
2
ψ +
5

2
DaJ̃a +

1

2016
Γabcde[λ, Jabcde] ,

ΓabcdDKabcd = −1260ψ − 140DaJ̃a − 1
36
Γabcde[λ, Jabcde] . (3.19)

The ψ terms come from the totally antisymmetrised product of three derivatives,

while terms with mixed symmetrisation give the J̃ and commutator terms from

torsion and curvature, respectively. We use DδD[βDγ] = D[δDβDγ] +
4
3
D(δDβ)Dγ −

2
3
DβD(δDγ), where antisymmetrisation [βγ] is understood in the right hand side. The

equation of motion for λ is

0 = D/λ− 30ψ + 4
3
DaJ̃a +

5

126 · 5!Γ
abcde[λ, Jabcde] . (3.20)

To derive the equation of motion for F , we start from the equation of motion

for λ, act with a spinor derivative and contract with a Γ matrix, i.e., write eq. (3.20)

as 0 = Λ(1) + Λ(2) + Λ(3) + Λ(4) ≡ Λ and consider the equation 0 = DΓaΛ ≡ La ≡
L
(1)
a + L

(2)
a + L

(3)
a + L

(4)
a . Then,

L(1)a = 16D
b

(
Fab − 28

5
Kab

)
− 14{λ, J̃a} − 16λΓaλ ,

L(2)a = 576wa −
64

3
DbKab − 40

9
{λ, J̃a} − 40

3
J̃bΓaJ̃

b +
2

105
J̃bcdΓaJ̃

bcd +

+
52

189
[Kbcde, Ja

bcde] +
2

567
[DfJfbcde, Ja

bcde] ,

L(3)a = −
256

15
DbKab +

8

3
{λ, J̃a} − 56

3
J̃bΓaJ̃

b ,

L(4)a = −
50

9
{λ, J̃a}+ 20

189
[Kbcde, Ja

bcde] +
1

81
[DfJfbcde, Ja

bcde] . (3.21)

Here, we have defined the vector w at fourth level in J by

D[αDβDγDδ]J
abcde = 60Γ

[abc
[αβΓ

de]f
γδ] wf + · · · , (3.22)

with the inversion

wa =
1

4032 · 4! · 5!Γ
[αβ
abcΓ

γδ]
defDαDβDγDδJ

bcdef , (3.23)

and used

DαD[βDγDδ] = D[αDβDγDδ] +
3

2
D(αDβ)DγDδ −DβD(αDγ)Dδ + 1

2
DβDγD(αDδ)

(antisymmetrisation [βγδ] understood) in L(2).
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(00020)

(00030) (00110)   (10010)

(10100)(00011) (00120) (01000)   (01011) (10020)

(00010) (00021) (00101)   (01010) (01010)   (01021) (02010)   (10001)   (10012) (10110) (11001)5/2:

2:

3/2:

1:

Figure 1: The representations in J up to dimension 5/2. The arrows show how the (00030)

constraint propagates. The boxed representation is the spinor ψ responsible for the right

hand side of the equation of motion for λ. The vector w at dimension 3, occurring in the

equation of motion for A, is also outside the (00030) superfield.

The equation of motion for A is thus

0 = DbFab − λΓaλ− 8DbKab + 36wa − 4
3
{λ, J̃a} − 2J̃bΓaJ̃ b + 1

140 · 3! J̃bcdΓaJ̃
bcd +

+
1

42
[Kbcde, Ja

bcde] +
1

42 · 4! [D
fJfbcde, Ja

bcde] . (3.24)

4. Fields and interactions from spinorial cohomology

In this section, we would like to present an argument that gives conceptual support

to the procedure we have adopted for constructing higher-order corrections to the

ordinary super-Yang-Mills theory.

The gauge potentials are Aα and Aa. However, the spinor potential already

contains a vector (of correct dimension) at the θ level, and this is the reason why

a conventional constraint is needed in order to have one vector potential. This

constraint is

Γαβa Fαβ = 0 , (4.1)

which implies that (in the abelian case, for simplicity)

Aa = − 1
32
DΓaA . (4.2)

The rest of Fαβ , which lies in (00020), does not contain Aa. We have also noted

that part of the dimension-3/2 Bianchi identity states the vanishing of the (00030)

component of DαFβγ.
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These observations make it natural to consider, not the sequence of completely

symmetric representations in spinor indices, but a restriction of it, namely the se-

quence of Spin(1, 9) representations

(00000)
∆0−→ (00010) ∆1−→ (00020) ∆2−→ · · · ∆n−1−→ (000n0) ∆n−→ · · · (4.3)

The representation rn ≡ (000n0) is the part of the totally symmetric product of
n chiral spinors that has vanishing Γ-trace, and may be represented tensorially as

Cα1...αn = C(α1...αn), Γa
α1α2Cα1α2α3...αn = 0. For n = 2, C is an anti-selfdual five-form,

for n = 3 a Γ-traceless anti-selfdual five-form spinor, etc.

The operator ∆n: rn −→ rn+1 can schematically be written as ∆nCn = Π(rn+1)×
DCn, where D is the exterior covariant derivative D = dθαDα and Π(rn) is the

algebraic projection from ⊗ns (00010) to (000n0). It is straightforward to write an
explicit tensorial form for ∆ by subtracting Γ-traces from DC, but it will not be

used here.

It is straightforward to show that, for an abelian gauge group and standard flat

superspace, the sequence (4.3) forms a complex, i.e., that ∆2 = 0. This follows simply

from the fact that while {Dα, Dβ} = −TαβcDc, the torsion only has a component
2Γαβ

c which is projected out by Π(rn).

The question immediately arises whether this complex contains any non-trivial

cohomology. It is sometimes stated that fermionic cohomology is trivial. This is true

when one considers the complex of symmetric multi-spinors but, as we will see, not

when projected on the rn’s.

To investigate the content at each n, one has to expand the superfields Cα1...αn
in irreducible component fields. The representation occurring at level ` (multiplying

θ`) in Cn is given as r
`
n ≡ ∧`(00010) ⊗ (000n0). We would like to keep track of

dimensions of fields, so we give Cn mass dimension n/2, so that a component of

Cn at level ` has dimension
n+`
2
. Likewise, the cohomology is decomposed as Hn ≡

Ker∆n/Im∆n−1 = ⊕`Hn,`. The cohomology is purely algebraic, and is calculated
simply as Hn,` = r`n 	 r`+1n−1 	 r`−1n+1 where the second and third terms represent
the level ` contents of Im∆n−1 and (Ker∆n)⊥ respectively, and where “	” means
subtraction of an irreducible representation only if it is already present.

To be explicit, we present the calculation of H1. We have
H1,0 = r01 	 r10 = (00010)	 (00010) = 0 ,
H1,1 = r11 	 r20 	 r02

= (00010)⊗ (00010)	 ∧2(00010)	 (00020)
= (10000)⊕ (00100)⊕ (00020)	 (00100)	 (00020)
= (10000) ,

H1,2 = r21 	 r30 	 r12
= ∧2(00010)⊗ (00010)	 ∧3(00010)	 (00010)⊗ (00020)
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= (00110)⊕ (01001)⊕ (10010)⊕ (00001)	
	(01001)	 [(00030)⊕ (00110)⊕ (10010)]

= (00001) ,

H1,3 = r31 	 r40 	 r22
= ∧3(00010)⊗ (00010)	 ∧4(00010)	 ∧2(00010)⊗ (00020)
= (00011)⊕ (01000)⊕ (01011)⊕ (02000)⊕ (10002)⊕ (10100)	
	[(02000)⊕ (10002)]	
	[(00011)⊕ (00120)⊕ (01000)⊕ (01011)⊕ (10020)⊕ (10100)]

= 0 . (4.4)

Higher H1,` vanish. Using the dimensions instead of the level, we find that

H1 = (10000)1 ⊕ (00001)3/2 . (4.5)

The interpretation of this result is clear. C1 is the spinor potential Aα, and the

cohomology represents the physical component fields in the vector multiplet, Aa of

dimension 1 and λα of dimensions 3/2. Subtraction of Im∆0 means counting fields

modulo gauge transformations, and subtraction of (Ker∆1)
⊥ reflects the constraint

Fαβ = 0. The cohomology is not supersymmetric, since the manipulations so far only

involved spinorial derivatives. Imposing the complete Bianchi identities, as shown in

section 3, leads to the equations of motion for the component fields.

Let us continue with the second cohomology H2. The calculation is completely
analogous, and the result is that it contains a spinor (00010) at ` = 3 and a vector

at ` = 4:

H2 = (00010)5/2 ⊕ (10000)3 . (4.6)

These components match the ones of the currents occurring in the equations of

motion for λ and A. We can thus identify a deformation of the theory with a field

strength Fαβ being an element of H2. Now, subtraction of Im∆1 means counting
modulo field redefinitions, and subtraction of (Ker∆2)

⊥ is related to the dimension-
3/2 Bianchi identity, which implies the vanishing of the (00030) part of DαFβγ .

For a non-abelian gauge group, one can imagine starting from the undeformed

theory with Fαβ = 0, and trying to deform it infinitesimally by introducing some

non-zero Fαβ . Then ∆ is defined with respect to the undeformed theory, and an

infinitesimal deformation is an element of the cohomology. Finite deformations de-

mand a more refined analysis taking into account the interplay between terms of

different orders in an expansion parameter (e.g. α′). Field strengths expressible as
F = ∆a can be absorbed into the spinor potential through a field redefinition (this

will be used explicitly in section 5 and in a forthcoming publication [5]). We then

get information about physically inequivalent deformations of supersymmetric gauge

theories.
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The statement that (part of) the field strength belongs to a non-trivial cohomol-

ogy class näıvely seems to contradict the statement that it is obtained from a gauge

potential (which we made explicit use of when deriving the field equations from the

Bianchi identities). However, when the rest of the Bianchi identities are imposed,

they will imply equations of motion. Let us take the spinor equation as example.

It reads D/λ ∼ ψ + · · ·. If the cohomology class is trivial, the right hand side will
be expressible as D/µ, so that the deformation is removed by a field redefinition. If

the cohomology class is non-trivial, on the other hand, the equation of motion states

that the right hand side is D/λ, and in this sense the equations of motion resolve the

cohomology.

It is instructive to consider the analogous complex for six-dimensional super-

Yang-Mills with N = (1, 0) supersymmetry [17]. This theory has an off-shell formula-

tion in terms of the vector, the spinor and a triplet of auxiliary scalars of dimension 2.

The complex is

(000)(0)
∆0−→ (100)(1) ∆1−→ (200)(2) ∆2−→ · · · ∆n−1−→ (n00)(n) ∆n−→ · · · (4.7)

Indeed, the first cohomology is

H1 = (010)(0)1 ⊕ (001)(1)3/2 ⊕ (000)(2)2 , (4.8)

where the representations are given as standard Dynkin labels for Spin(1, 5)×SU(2)
(the second factor being the R-symmetry group). The second cohomology is trivial,

which also is expected–setting Fαβ to zero does not put the theory on-shell, and the

value of Fαβ does not contain any information about interactions, it can be set to

zero by a field redefinition.

Finally, we would like to comment on a potentially interesting observation con-

cerning the ten-dimensional theory. While Hn, n ≥ 4 seem to vanish, the third
cohomology H3 is non-trivial, and contains only a scalar of dimension 4, which is the
dimension of a lagrangian. We do not yet understand what this signifies.

5. Conclusions and outlook

In this paper we use superspace techniques to derive a set of algebraic constraints on

the irreducible field components in the superfield strengths FAB. Since some of these

field components will correspond to composite operators in theories with higher-order

corrections, the algebraic constraints will provide restrictions on the possible explicit

form of the corrections. In particular, the abelian Born-Infeld action must satisfy

these restrictions as must its non-abelian kin whose lagrangian we have very limited

information about.

Whereas κ-symmetry and non-linear supersymmetries are known to play a very

important role in dictating the form of the abelian Born-Infeld action, it is not known
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how much of the non-linear structure can be deduced from the maximal linear su-

persymmetry alone. We will return to this question in a forthcoming publication [5],

and conclude this section by briefly discussing the role of Fαβ in this context.

We introduced the five-form Jabcde in eq. (3.1). As follows from the results in

section 3, expressing Jabcde in terms of the physical fields Fab and λα will give rise

to field equations with higher-order corrections, as long as the (00030) constraint is

fulfilled, i.e., DαJabcde|(00030) vanishes.
We first observe that there are no corrections at order α′. For dimensional

reasons, Fαβ has to be proportional to λ
2, which does not contain the representation

(00020). Then, starting at order α′2, there are two types of possible terms, modulo
the lowest order field equations (A,B, . . . are adjoint gauge group indices, not to be

confused with A = (a, α) used earlier):4

JAabcde =
1

2
α′2MA

BCD(λ
BΓfΓabcdeΓ

gλC)FDfg +

+
1

6
α′2NABC

(
D[aλ

BΓbcdDe]λ
C − dual) . (5.1)

These satisfy the (00030) constraint at linear order, which is easily seen by acting

with a spinor derivative and perform tensor multiplication of the representations of

the fields. So far, M and N are kept arbitrary, but with the manifest symmetry

[BC] and (BC) respectively for the two terms. To derive the equations of motion we

need some of the higher components of J . This will be done in a following paper [5],

where the complete action at order α′2 will be constructed. For the moment we will
content ourselves with extracting the physically relevant deformations out of J . We

want to determine which types of terms can be removed by fields redefinitions and

which can not. The field redefinitions are taken care of by shifting Aα as explained

in the previous section. These shifts can be of three independent forms at this order

in α′, namely

δAAα =
1

6
α′2mABCD(λBΓabcλC)(ΓabcλD)α + α′2nABCD(λBΓaλC)(ΓaλD)α +

+α′2pABCFB ab(ΓaDbλC)α . (5.2)

When we calculate δFαβ = (∆δA)αβ , only the first and third of these contribute

to (00020) (any contribution to the vector part is removed by an accompanying

redefinition of Aa, so that the conventional constraint remains unaffected). The

third one is used to get rid of any “DλDλ” terms in eq. (5.1), so these can be

discarded as irrelevant. Examining the first (“λλλ”) term in (5.2), we observe that

it has mixed symmetry in the λ’s (i.e., neither the completely symmetric nor the

completely antisymmetric product of three (00001)’s contain (00010)). Consequently,

δJabcde is proportional to α
′2mAB[CD](λBΓfΓabcdeΓgλC)FDfg. Since the combination of

4This expression has appeared also in refs. [6, 19].
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fields contracting M and m are manifestly symmetric in (BC), this field redefinition

is used to remove the part of M with mixed symmetry, and the remaining relevant

part of M is only the one completely symmetric in (BCD). For any gauge group,

this seems to imply that M is symmetric in all four indices. If the gauge group is

SU(N), there are two available tensors, d(AB
EdCD)E and δ(ABδCD). The symmetric

trace is one specific combination of these.

This discussion shows that any F 4 terms in the action (that cannot be removed

by field redefinitions) are completely symmetric in the adjoint indices. This does not

mean that all terms at this order in α′ are contracted with symmetric tensors; we
have already seen that the field equations contain commutator terms, and we expect

terms like “Fλ4” contracted with an M and a structure constant f .

It will be very interesting to examine to which degree linear supersymmetry alone

determines the higher-order corrections. Clearly, once the first correction is postu-

lated, higher ones are necessary. In our framework, we see this as the need for cancel-

lation of the (00030) constraint at order α′4. It is yet an open question to what degree
there remains an arbitrariness in this procedure, i.e., if new (non-polynomial) invari-

ants arise that start at order α′4 and higher. Our intuition leads us to suspect that
the higher-order interactions are not unique, and that a second, non-linearly realised,

supersymmetry is necessary in order to determine the Born-Infeld action. We envis-

age that the techniques of the present paper, where all the dynamics is encoded in the

relatively simple object Fαβ, and where the (00030) constraint is the only condition

needed to consider in the iterative procedure, is suited for addressing such questions.

We would like to compare the results from the present approach with those

obtained by Bergshoeff et al. [10] by demanding a non-abelian κ-symmetry (with a

spinor parameter in the adjoint of the gauge group). In that paper, quartic terms

were found at order α′2 that are not contracted by a completely symmetric tensorM .
Our results seem to indicate that such terms, in any supersymmetric gauge theory,

are trivial and removable by field redefinitions.

The issues and techniques discussed in this paper can be directly taken over

to eleven-dimensional supergravity and the higher-order corrections generated by

string/M-theory. In fact, one of the reasons for the study conducted here is to

investigate the ideas in [14], where they were applied to M-theory, in the much

simpler context of Yang-Mills theory.
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theory, Göteborg-ITP-81-6; Pure spinors as auxiliary fields in the ten-dimensional

supersymmetric Yang–Mills theory, Class. and Quant. Grav. 3 (1986) L41.

[2] M. Cederwall, A. von Gussich, B.E.W. Nilsson and A. Westerberg, The Dirichlet

super-three-brane in ten-dimensional type-IIB supergravity, Nucl. Phys. B 490 (1997)

163 [hep-th/9610148];
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