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1. Introduction

Two-dimensional sigma models have been the subject of a huge amount of study

because they are interesting toy models for gauge theories, because they often arise

in experimentally-realizable condensed-matter systems, because this is the highest

dimension in which they are naively renormalizable, and because of the powerful

theoretical methods applicable.
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One of the nice things about sigma models is that the same model can often

describe completely different physics. The reason is that in many situations, the

precise sigma model of interest follows mainly (or sometimes entirely) from the sym-

metries. For example, sigma models often arise in theories of interacting fermions

invariant under some group G. If some fermion bilinear gets an expectation value

manifestly invariant under some subgroup H , then the excitations at low energy

can be described by a field taking values in G/H. Put another way, the expectation

value gives the fermions mass at some scale M . One can then integrate out fermionic

excitations, leaving only bosonic G/H excitations with masses below M . The sigma

model describes the interactions of these low-energy excitations, and is independent

of many of the details of the original theory. This is why vastly different theories

may end up having the same low-energy physics.

Two-dimensional G/H sigma models all have a global symmetry group G, even

though the fields take values in the smaller space G/H. This is one big differ-

ence between two and higher dimensions. In higher dimensions, the symmetry G of

these sigma models would be spontaneously broken to H , and in the effective low-

energy-theory, the G symmetry is not manifest. In other words, in higher dimensions

the sigma model describes the physics of the massless Goldstone bosons. However,

the Mermin-Wagner-Coleman theorem says that in two dimensions continuous sym-

metries cannot be spontaneously broken. The way these sigma models satisfy this

theorem is to give the would-be Goldstone bosons a mass and keep the original global

symmetry intact.

In particular, many interesting sigma models in two dimensions are asymptot-

ically free. At large energies the interactions are weak, but at low energies the

interactions are strong. Naively, there seems to be no mass scale in the theory

(the coupling constant g is dimensionless), but a scale µ appears in the theory as

a result of short-distance effects which need to be renormalized. The coupling g

depends on this scale. At µ large, g(µ) is small, so the theory is effectively free,

while as µ decreases, g(µ) increases. In renormalization-group language, there is an

unstable trivial fixed point at g = 0. For G/H sigma models, the manifold G/H

has dimension dimG−dimH , so as g → 0 the theory reduces to dimG−dimH free
bosons.

Very elaborate techniques of perturbation theory have been developed to describe

sigma models in the regime where g(µ) is small (see [1]). However, when a sigma

model is being used as an effective theory, it is only applicable to the relevant physics

at low energies, where µ�M . Usually in this regime, g(µ) is large. Thus while the

perturbative techniques give valuable information, they may not tell the whole story.

To understand the regime where g(µ) is large, one must utilize alternative techniques.

Large-N expansions are a common and useful tool. However, for most applications

N is small. For example, an application of great current interest in the condensed

matter community is in sigma models describing disordered systems. These sigma
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models are derived by using the replica trick, which requires sending N → 0 at the
end of the computation. Obviously, large-N expansions are not necessarily going to

be reliable here.

Luckily, for two spacetime dimensions there are other non-perturbative methods

applicable. Many sigma models are integrable, with an infinite number of conserved

currents. The resulting conserved charges constrain the system, making exact com-

putations possible, even at strong coupling. The aim of these paper is to attempt to

discuss a number of aspects of integrable sigma models. I will derive the exact free

energy at finite temperature and in the presence of a magnetic field. This makes it

possible to compute the susceptibility and specific heat. It also makes it possible to

understand exactly the effects of the theta term, a modification of the sigma model

action which drastically changes the low-energy physics.

One extremely interesting question is if g(µ) continues to increase as µ decreases,

or if it reaches a fixed point. The existence of a fixed point obviously affects the

physics enormously. In the sigma models describing disordered systems, g is related

to the conductance of the system. If there is a fixed point, the system is a conductor,

with conductance determined by the value of g at the fixed point. If there is no fixed

point, the system is an insulator. In the former case, the excitations of the model

are massive, while in the latter, they are massless. For the models discussed in this

paper, a non-trivial fixed point appears if a theta term is added to the sigma model

action. The theta term has no effect on perturbation theory. Nevertheless, as shown

in [2, 3, 4, 5], its presence can result in the appearance of a fixed point at large g,

completely unseen in perturbation theory.

There are two sets of sigma models to be discussed in this paper. Their actions

can be written conveniently in terms of a symmetric matrix field Φ as

S =
1

g
tr

∫
d2x ∂µΦ†∂µΦ (1.1)

along with the constraint

Φ†Φ = Φ∗Φ = I , (1.2)

where I is the identity matrix. The constraint (1.2) that Φ be unitary can easily be

imposed by adding a potential like λ tr (Φ†Φ − I)2 and taking λ large. In theories
with interacting fermions, this often results from introducing a bosonic field to replace

four-fermion interaction terms with Yukawa terms (interactions between a boson and

two fermions). Integrating out the fermions then gives such a potential for the bosons

and hence the sigma model.

In the first set of models discussed in this paper, the field takes values on the

SU(N)/ SO(N) manifold. This corresponds to taking Φ to be a symmetric, unitary

N × N matrix of determinant 1. The simplest case, N = 2, corresponds to the
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manifold SU(2)/ SO(2) being a two-sphere. This is because a general symmetric

unitary 2× 2 matrix of determinant one can be written as(
v1 + iv2 iv3
iv3 v1 − iv2

)
,

where v1, v2 and v3 are real and obey (v1)
2 + (v2)

2 + (v3)
2 = 1.

In the second set of models discussed in this paper, the field takes values on the

O(2P )/O(P ) × O(P ) manifold. This corresponds to taking Φ to be a symmetric,
orthogonal, real, and traceless 2P×2P matrix. There are several correspondences be-
tween the two sets of models, because SO(6) = SU(4)/Z2, SO(4) = SU(2)×SU(2)/Z2,
and SO(3) = SU(2)/Z2. The case P = 2 therefore reduces to two decoupled

copies of the two-sphere, whereas the sigma model with P = 3 is equivalent to

the SU(4)/ SO(4) sigma model.

The reason these G/H manifolds can be described in terms of symmetric matrices

is as follows. In both cases, the global symmetry G acts on the field Φ as

Φ→ UΦUT , (1.3)

where U is a unitary matrix of determinant one. This transformation preserves the

fact that Φ is a symmetric matrix with determinant ±1. In the O(2P )/O(P )×O(P )
sigma models, the matrix Φ is also real. To preserve this reality, U must be real as

well, so G = O(2P ). The eigenvalues of a orthogonal matrix must be ±1, and if the
matrix is traceless as well, there must be the same number of +1 and −1 eigenvalues.
The field Φ in this case can diagonalized with an orthogonal matrix U , so Φ can be

written

Φ = UΛUT Φ ∈ O(2P )/O(P )×O(P ) ,

where U is in O(2P ), and Λ is the matrix with P values +1 and P values −1 on the
diagonal. Different U can result in the same Φ: the subgroup leaving Φ invariant

is H = O(P ) × O(P ). This is why the space of symmetric orthogonal traceless
matrices is indeed O(2P )/O(P )×O(P ). For the SU(N)/ SO(N) models, U can be
any unitary matrix of determinant one, so the global symmetry G is indeed SU(N).

Field configurations here can be written in the form

Φ = UUT Φ ∈ SU(N)/ SO(N) ,

where U is in SU(N). The subgroup H leaving Φ invariant is SO(N). For example,

Φ = I for any real U in SU(N), i.e. if U is in the real subgroup SO(N) of SU(N).

This is why H = SO(N) here.

Under renormalization, the matrix Φ preserves its form: e.g. it remains symmet-

ric. In other words, the space G/H preserves its “shape” under renormalization, with

only the overall volume changing. The effect of renormalization is to increase the
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curvature (increase g). These sigma models are all asymptotically free, so going to

high energies decreases g. This behavior happens for all sigma models on symmetric

spaces G/H (where H is a maximal subgroup of G).

With the action (1.1), there is no fixed point at large g. However, if one adds

a theta term, there is a non-trivial fixed point in these sigma models [5]. A theta

term affects field configurations with non-zero winding number n, which are called

instantons. The winding number is a topological invariant; roughly speaking, it

counts the number of times the field configuration wraps around the two-dimensional

spacetime. The theta term is then

Sθ = inθ . (1.4)

If the winding number n takes integer values, the theory is periodic under shifts of

the coupling θ to θ+2π. This is why the coupling θ is often called an angle. However

for the general cases considered here, n can take just two values, 0 and 1. This means

that θ takes just two values here: θ = 0 and θ = π. The variables n and θ should be

thought of as Fourier conjugates. Adding the θ term to the action amounts to doing

a discrete Fourier transform.

For the sphere sigma model (the case N = 2 or P = 2 here), n takes integer

values. It was argued in [2, 6] and proven in [4] that when θ = π in the sphere sigma

model, there is a non-trivial fixed point at large g. This behavior is widely believed to

persist in other models with a θ angle (see [7] for a review). An important question

is therefore whether the existence of these non-perturbative fixed points in sigma

models at θ = π can be generalized. In [5], it was shown that the SU(N)/ SO(N)

and O(2P )/O(P )×O(P ) sigma models have non-trivial fixed points at θ = π. The
former fixed points are described by the SU(N)1 WZW theory, while the latter are

described by the O(2P )1 WZW theory. The exact spectrum and S matrices were

found, and used to compute the energy at zero temperature in the presence of a

background field. This computation essentially proves the existence of these fixed

points.

It is the purpose of this paper to complete this proof by studying the behavior

of these models at finite temperature. I will compute a c-function [8] which clearly

shows how the field theory flows from the trivial fixed point (g = 0) to the non-

trivial fixed point at some large value of g. This computation also makes it possible

to compute the specific heat and susceptibility at both θ = 0 and θ = π, a fact which

will be useful in other work [9].

In section 2, I discuss the thermodynamic Bethe ansatz formalism necessary to

do the computation. In section 3, I compute the free energy at any temperature for

the massive θ = 0 sigma models. In section 4, I compute the free energy for the

massless θ = π models. In section 5, I discuss some related coset models. I conclude

in section 6 by discussing the symmetries of these sigma models, and the prospects

for generalizing these results to other sigma models.
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2. The thermodynamic Bethe ansatz

The proof that the sphere sigma model has a non-trivial fixed point at θ = π utilizes

the integrability of the model at θ = 0 and π [4, 10]. Integrability means that

there are an infinite number of conserved currents which allow one to find exactly

the spectrum of quasiparticles and their scattering matrix in the corresponding 1 +

1 dimensional field theory. The quasiparticles for θ = 0 are gapped and form a

triplet under the SU(2) symmetry [11], while for θ = π they are gapless, and form

SU(2) doublets (left- and right-moving) [4]. This is a beautiful example of charge

fractionalization: the fields (v1, v2, v3) form a triplet under the SU(2) symmetry, but

when θ = π the excitations of the system are doublets. To prove that this is the

correct particle spectrum, first one computes a scattering matrix for these particles

which is consistent with all the symmetries of the theory. From the exact S matrix,

the c function can be computed. It was found that at high energy c indeed is 2 as

it should be at the trivial fixed point, while c = 1 as it should be at the SU(2)1
low-energy fixed point [4].

As an even more detailed check, the free energy at zero temperature in the

presence of a magnetic field was computed for both θ = 0 [12] and π [10]. The

results can be expanded in a series around the trivial fixed point. One can identify

the ordinary perturbative contributions to this series, and finds that they are the

same for θ = 0 and π, even though the particles and S matrices are completely

different [10]. This is as it must be: instantons and the θ term are a boundary effect

and hence cannot be seen in ordinary perturbation theory. One can also identify the

non-perturbative contributions to these series, and see that they differ. Far away

from the trivial fixed point, the non-perturbative contributions dominate and cause

a non-trivial fixed point to appear when θ = π. The computation of the energy

at zero temperature in a background field was done for the SU(N)/ SO(N) and

O(2P )/O(P )×O(P ) sigma models in [5].
In this paper I will compute the exact free energy at any temperature, and thus

compute the c function. I will use a technique called the thermodynamic Bethe

ansatz (TBA), which I will describe in this section.

2.1 The exact S matrix

An integrable field theory possesses an infinite number of conserved currents and

charges. The symmetries strongly constrain the dynamics, but without making the

system trivial. The constraints are why the theory is “solvable”. In this context,

solvable means that some quantities can be computed exactly. These constraints

imply that once the particle spectrum is known, the exact S matrix can be found.

Integrable models have the striking property that in a collision all momenta are

conserved individually, and that the n-body S matrix factorizes into a product of

two-body ones. This two-body S matrix is completely elastic, meaning that the
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momenta and energy of the particles are conserved individually, not just overall.

Internal quantum numbers can change in a collision, so the S matrix is not necessarily

diagonal. There are two possible ways of factorizing the three-particle amplitude into

two-particle ones; the requirement that they give the same answer is the Yang-Baxter

equation. There have been hundreds of papers discussing how to solve this equation,

so I will not review this here. For a detailed discussion relevant to the sigma models

here, see e.g. [11], [13]–[15]. Solutions arising in the sigma models will be given

below.

One of the useful characteristics of having particles in representations of a Lie

algebra is that their S matrix can be written in terms of projectors onto representa-

tions of this algebra. The invariance of the G/H sigma model under the Lie-group

symmetry G requires that the S matrices commute with all group elements. The S

matrix can then be conveniently written in terms of projection operators. A projec-

tion operator Pa maps the tensor product of two representations onto an irreducible
representation labelled by a. By definition, these operators satisfy PaPb = δabPb.
Requiring invariance under G means that the S matrix for a particle in the repre-

sentation a with one in a representation b means that the S matrix is of the form

Sab(β) =
∑
c

fabc (β)Pc , (2.1)

where β ≡ βa−βb is the difference of the rapidities, and the fabc are as of yet unknown
functions. The sum on the right-hand side is over all representations c which appear

in the tensor product of a and b; of course
∑
cPc = 1. In an integrable theory,

the functions fabc (β) are determined by requiring that the the S matrix satisfy the

Yang-Baxter equation.

I define the prefactor F ab(β) to be the coefficient fabc in (2.1) where the highest

weight of the representation c is the sum of the highest weights of the representations

a and b. The Yang-Baxter equation does not give this prefactor. To obtain it, one

needs to require that the S matrix be unitary, and that it obey crossing symmetry.

With the standard assumption that the amplitude is real for β imaginary, the unitar-

ity relation S†(β)S(β) = I implies S(β)S(−β) = I. The latter is more useful because
it is a functional relation which can be continued throughout the complex β plane.

Crossing symmetry is familiar from field theory, where rotating Feynman diagrams

by 90o relates scattering of particles ai and bj to the scattering of the antiparticle āi
with bj .

Multiplying any S matrix by function F (β) which satisfies F (β)F (−β) = 1 and
F (iπ−β) = F (β) will give an S matrix still obeying the Yang-Baxter equation, cross-
ing and unitarity (this is called the CDD ambiguity). To determine F (β) uniquely,

one ultimately needs to verify that the S matrix is consistent with the bound-state

structure, and that it gives the correct c function.
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2.2 Fusion

In this paper, I derive the TBA equations for the sigma models by utilizing fusion.

Fusion is a method of finding new solutions of the Yang-Baxter equation from known

ones [16]. One starts with a solution where the states are in some representation of

a symmetry algebra. Then one can find new solutions in other representations, just

as one takes tensor products of representations. The usual place fusion appears

in the study of exact S matrices is in what is called the bootstrap (see e.g. [14]).

In many integrable models, various particles can be thought of as bound states of

other particles. The bootstrap procedure relates the S matrices of bound state to

those of its constituents. However, fusion is a more general procedure than just the

bootstrap. It can be used to relate S matrices of different models. This fact will

prove very useful here, because when the S matrices are related, the TBA equations

are related as well. This observation enables the computation of the TBA equation

for integrable sigma models.

Formally speaking, fusion relies on the observation that at certain values of β,

the coefficients of some of the projectors in the S matrix vanishes. This means that

some particles can be treated as being composites: they are composed of “constituen-

t” particles at specific rapidities. I avoid calling the composite particles bound states,

because this implies that the composites and the constituents are both particle states

in the same theory. This is the not case in general. For example, the only particles

in the sine-Gordon model at β2 = 8π particles are in the spin-1/2 representation of

SU(2), while in the sphere sigma model, the only particles are in the spin-1 repre-

sentation of SU(2). Fusion means that the S matrices are related, even though the

theories are different: the spin-1 particles are composites of the spin-1/2 ones.

I will demonstrate fusion in theories with SU(N) symmetry. The two-particle

S matrix for two particles in the N -dimensional vector representations of SU(N)

contains two terms: one involving the projector PS onto the symmetric represen-
tation, the other PA onto the antisymmetric representation. This is because the
tensor product of two symmetric representations in SU(N) decomposes into the ir-

reducible symmetric (N(N + 1)/2 dimensional) and antisymmetric representations

(N(N − 1)/2 dimensional):

(N)⊗ (N) = (N(N − 1)/2)⊕ (N(N + 1)/2).

For SU(2), the antisymmetric representation is the singlet, so this statement means

that two spin 1/2 representations tensored together is the sum of the spin-0 and

the spin-1 representations. The vector-vector S matrix for SU(N) is determined by

requiring that it satisfy the Yang-Baxter equation. It is

SV V (β) = F V V (β)

(
PS +

β + 2iπ/N

β − 2iπ/N PA
)
. (2.2)
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The function F V V (β) is the prefactor I defined above. It must be consistent with

unitarity, crossing and the bootstrap. A “minimal” solution of these constraints

means the S matrix has no poles in the region 0 < Im(β) < π. The minimal solution

here is

F V Vmin (β) =
Γ
(
1− β

2πi

)
Γ
(
β
2πi
+ 1
N

)
Γ
(
1 + β

2πi

)
Γ
(
− β
2πi
+ 1
N

) . (2.3)

For a given model, the prefactor F ab(β) may or may not be the minimal solution.

This prefactor is crucial to the physics, but the fusion procedure is valid for any

F ab(β).

At β = −2πi/N , SV V in (2.2) involves only the projector onto the symmetric
representation. The fusion procedure means that particles of rapidity βS in the

symmetric representation can be treated as being composed of two constituents in

the vector representation, of rapidities βS − iπ/N and βS + iπ/N . The reason this
works is described in [16]. The variable β in the S matrix is the difference of the

rapidities of the two particles, so when β = 2πi/N , the antisymmetric combination

is effectively projected out. The Yang-Baxter equation ensures that this projection

survives any scattering. In other words, if two vector particles are in the symmetric

combination, they can scatter from other particles and change state. However, if

their rapidity difference is 2πi/N , the final state of these two particles will still be

part of the symmetric representation.

Because particles in the symmetric representation are composed of vector con-

stituents, the S matrices are related as well. The S matrix for scattering two particles

in the symmetric representation has three terms. In the language of weights [17], the

symmetric representation has highest weight 2µ1, and the tensor product is

(2µ1)⊗ (2µ1) = (4µ1)⊕ (2µ1 + µ2)⊕ (2µ2) .

The S matrix is

SSS(β) = F SS(β)

(
P4µ1 +

β + 4πi/N

β − 4πi/N P2µ1+µ2 +
β + 2πi/N

β − 2πi/N
β + 4πi/N

β − 4πi/N P2µ2
)
.

(2.4)

The explicit form of the projection operators is given in [5]. The minimal solution of

the unitarity and crossing constraints F SSmin(β) has no poles in the region 0 < Im β <

π, and is

F SSmin(β) =
β − 2πi/N
β + 2πi/N

Γ
(
1− β

2πi

)
Γ
(
β
2πi
+ 2 1

N

)
Γ
(
1 + β

2πi

)
Γ
(
− β
2πi
+ 2 1

N

) . (2.5)

Note that F SSmin(β) differs from F V Vmin (β+2πi/N)(F
V V
min (β))

2F V Vmin (β−2πi/N); the pref-
actor does not automatically follow from the fusion procedure.

In cases where the composites are bound states of the constituents (all are par-

ticles in the same theory), then the bootstrap procedure relates the prefactors of

composite scattering to those of constituent scattering. However, the fusion does not

9



J
H
E
P
0
5
(
2
0
0
1
)
0
5
0

make such a requirement in general: the prefactor F SS(β) does not necessarily follow

from F V V (β). All the fusion procedure does is determine the overall form of the S

matrix for the composite particles and ensure that it obeys the Yang-Baxter equa-

tion. Although one might expect that F SS(β) = F V V (β+2iπ/N)(F V V (β))2F V V (β−
2iπ/N), I will show that below this is not true in general here. In another words, the

CDD ambiguity may be resolved in different ways in the constituent and composite

theories.

2.3 The free energy of an integrable theory

Once the exact S matrix is known, the exact free energy as a function of mass,

temperature, and magnetic field can be computed by using the thermodynamic Bethe

ansatz (TBA) [18, 19]. This enables one, for example, to compute thermodynamic

quantities like the susceptibility. It also allows a very substantial check on any

assumption of integrability. The reason is that at a critical point, the free energy is

known exactly — it is related to the central charge of the corresponding conformal

field theory [20]. Thus the free energy computed from the TBA must give this result

in the limit where the mass of the particles goes to zero, and the system is at the

unstable UV fixed point.

The TBA requires a relation between the density of states of the particles to the

actual particle density. This relation is called the Bethe equation. If the particles are

free, this is trivial: the density of states is independent of the particle density. If the

scattering is completely elastic and diagonal, this relation is easy to derive. This is

because a diagonal two-particle S matrix is the boundary condition the phase shift

in the wave function:

ψ(x1, x2) = e
ip1x1+ip2x2 for x1 � x2

ψ(x1, x2) = e
ip1x1+ip2x2S(p1, p2) for x1 � x2 . (2.6)

In a state of N particles, the Bethe equation follows by requiring that one-dimensio-
nal space of length L be periodic, and that the wavefunction be invariant under

sending any of the coordinates xi → xi + L. First consider the case where there is

only one kind of particle in the spectrum, with two-particle S matrix S(β1−β2). The
requirement of periodicity of the wavefunction ψ(x1, x2, . . . , xN ) yields the relations

eim sinh θiL
N∏
j=1

S(βi − βj) = 1 . (2.7)

One can think of this intuitively as bringing the particle around the world through the

other particles; one obtains a product of two-particle S-matrix elements because the

scattering is factorizable. This is the generalization of the free-particle momentum

quantization condition p = 2nπ/L.
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The Bethe equation is written in terms of the density of states P (β) and the

density of rapidities ρ(β). The former is defined so that the number of allowed

states with rapidities between β and β + dβ is P (β)dβ, while the number of states

actually occupied in this interval is ρ(β)dβ. The quantization condition relates the

two. Taking the derivative of the log of (2.7) yields

2πP (β) = mL cosh β +

∫ ∞
−∞

dβ ′Φ(β − β ′)ρ(β ′) , (2.8)

where Φ(β) = 1
i
d
dβ
lnS(β) . This is easily generalized to the situation where there is

more than one particle in the spectrum, as long as the scattering is diagonal. Let

Sab be the S matrix element for scattering a particle of type a from one of type b.

Defining densities Pa and ρa for each type of particle, the Bethe equations are

2πPa(β) = maL cosh β +
∑
b

∫ ∞
−∞

dβ ′Φab(β − β ′)ρb(β ′) , (2.9)

where

Φab =
1

i

d

dβ
lnSab(β) .

Once the Bethe equations are known, the TBA equations and hence the free

energy can be derived. This is done by minimizing the free energy, using (2.9) as a

constraint. The result is most conveniently written in terms of the “dressed particle

energies” εa(β), defined by

ρa(β)

Pa(β)
=

1

1 + eεa(β)/T
. (2.10)

For simplicity, I have set all chemical potentials and background fields to be zero.

The resulting TBA equations are [18, 19]

εa(β) = ma cosh β −
∑
b

T

∫ ∞
−∞

dβ ′

2π
Φab(β − β ′) ln

(
1 + e−εb(β)/T

)
. (2.11)

For free particles, Φab = 0 and the εa just reduce to the particle energies. The form

of the TBA equations reflects the fact that in all integrable particle theories of this

type, it is either proven or assumed that the particles fill levels like fermions: at most

one particle in a level. The free energy per unit length F is given in terms of these

dressed energies εa. It is

F (m,T ) = −T
∑
a

ma

∫ ∞
−∞

dβ

2π
cosh β ln

(
1 + e−εa(β)/T

)
. (2.12)

In the IR limit ma → ∞, the gas of particles becomes dilute, and interactions can
be neglected. The free energy becomes

lim
ma→∞

F (m,T ) = −T
∑
a

ma

∫ ∞
−∞

dβ

2π
cosh βe−ma cosh(β)/T . (2.13)

This integral can be done, yielding a Bessel function.
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Calculating the free energy using the TBA allows an extremely non-trivial check

on the exact S matrix. In the limit of all masses going to zero, the theorem of [20]

says that the free energy per unit length must behave as

lim
ma→0

F = −πT
2

6
cUV , (2.14)

where cUV is the central charge of the conformal field theory describing this UV limit.

The number cUV can usually be calculated analytically from the TBA, because in

this limit the free energy can be expressed as a sum of dilogarithms [21]. The cUV
computed from the TBA must of course match the cUV from the field theory. This

provides an extremely non-trivial check not only of the S matrix, but of whether the

entire spectrum is known. All particles contribute to the free energy, so if some piece

of the spectrum is missing or if an incorrect particle is included, the correct cUV will

not be obtained.

The TBA computation is much trickier if the scattering between particles is non-

diagonal, as is the situation for the models of interest here. The Bethe equation is

much harder to derive, because as one particle is going around the periodic world, it

can change state as it scatters though the other particles. This requires introducing

the “transfer matrix” T for bringing the a given particle through the others; since
the scattering is not diagonal, the final state is not necessarily the same as the initial.

To define T explicitly, I first introduce the scattering matrix Tab(β) for bringing a
particle of type a and rapidity β through N particles and ending up with a particle
of type b. Thus the different Tab make up a set of s2 sN × sN matrices, where s is
the number of different types of particles. The scattering is completely elastic, so

the rapidities do not change even though the scattering is not diagonal. This means

Tab(β) depends on the rapidities β1 . . . βN as well as β. Let Sab→cd(β1 − β2) be the
two-particle S matrix element for scattering an initial state a(β1)b(β2) and ending

with a final state of c(β2)d(β1). Then the components of Tab can be written in terms
of the S matrix elements as

(Tab(β|β1 . . . βN ))d1d2...dNc1c2...cN ≡
≡
∑

Sac1→d1f1(β − β1)Sf1c2→d2f2(β − β2) · · ·SfN cN→dN b(β − βN ) ,
where the sum is over the intermediate states f1 = 1, . . . , s, f2 = 1, . . . , s, . . . ,

fN = 1, . . . , s. The matrix T follows by exploiting the fact that all the S matrices of
interest at zero relative rapidity just permute the colliding particles. In other words,

Sab→cd(0) = −δacδbd. Thus setting β = βα effectively turns the α
th particle so that

it scatters through all the others. This is precisely what is needed for the TBA. To

put periodic boundary conditions on the system, one sums Taa over all a. The result
is that

T (βα|β1, . . . βN ) ≡
∑
a

Taa(β = βα|βα+1, . . . βN , β1, . . . , βα−1) . (2.15)

This is a sN−1 × sN−1 matrix.
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The TBA requires finding the eigenvalues Λ(βα|β1, . . . , βN ) of T . The crucial
effect of the S matrix satisfying the Yang-Baxter relation is that the T (β) commute
for different β. This ensures that T (β) can be simultaneously diagonalized for all
β by a β-independent set of eigenvectors; only the eigenvalues depend on β. The

quantization condition (2.7) is generalized to

eimα sinhβαLΛ(βα|β1, . . . , βN ) = 1 . (2.16)

This must hold for all particles α = 1, . . . ,N . In the limit of large N , Λ depends on
the particle densities instead of the individual rapidities. Henceforth I will just write

Λ(β). For the cases of interest here, finding the eigenvalues Λ(β) is quite difficult,

but has been done in [22]–[24]. The Bethe equations are still of the form (2.9), and

the TBA equations are still of the form (2.11). However, extra particles, known as

“pseudoparticles” or “magnons”, enter the equations. These particles appear in the

equations just as if they were a particle species, but withma = 0. I will give examples

of the explicit form of these equations below.

The transfer matrix has very nice properties under fusion, because the fused

S matrices are products of the constituent S matrices. The case of most interest

here is when particles in the representation with highest weight µa are fused to

give particles in the representation 2µa. Then the transfer matrices for N /2 fused
particles is related to the product of transfer matrices for N constituents. The reason
it is a product is because both constituents must be brought around the world in the

fused transfer matrix. The precise relation is

T 2µa(βα|β1, . . . , βN/2) = C(βα)T µa(βα + η|β1 + η, β1 − η, . . . , βN/2 + η, βN/2 − η)×
×T µa(βα − η|β1 + η, β1 − η, . . . , βN/2 + η, βN/2 − η) (2.17)

The rapidity difference of the constituents is 2η. The reason for the extra factor C(β)

is that the prefactors of the S matrices need not satisfy the exact fusion relation, as

discussed above. This constant of proportionality is

C(β) =

N/2∏
α=1

F 2µa να(β − βα)
F µaνα(β − βα + η)F µaνα(β − βα − η)

,

where the particle with rapidity βα is in the representation να. Given this relation

between transfer matrices, the eigenvalues obey the relation

Λ2µa(β) = C(β)Λµa(β + η)Λµa(β − η) . (2.18)

3. Massive sigma models

In this section I will derive the TBA equations for a variety of massive sigma models.

I start with the sphere sigma model, before going on to the more complicated cases.
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3.1 The sphere sigma model

One of the best-known sigma models is the sphere sigma model, where the field takes

values on a two-sphere. In the G/H language I have been using, this corresponds to

G = SU(2) or G = SO(3), and H = U(1) or H = SO(2). The TBA equations were

derived originally by taking the limit of certain integrable fermion models [25, 26],

and conjectured on different grounds in [27]. I will rederive the TBA equations here

directly from the S matrix, because this is the method which generalizes most simply

to the more general sigma models of interest.

In a two-dimensional G/H sigma model, the global symmetry group is G. There-

fore the symmetry group of the sphere sigma model is G = SO(3): the symmetry

corresponds to rotations of the sphere. The particles of this model were shown long

ago to be in the spin-1 representation of SO(3) [11]. Their S matrix was derived by

solving the Yang-Baxter equation directly, and is given by (2.4) with N = 2 and

F SSN=2(β) =
β − iπ
β + iπ

. (3.1)

Since this S matrix is non-diagonal, one needs to diagonalize the transfer matrix

as described in the last section. The way to do this is to first solve the problem

for particles in the spin-1/2 representation of SU(2), and then use fusion to find the

answer for spin 1. For particles in the spin-1/2 representation of SU(2), the two-

particle S matrix is given by (2.2) with N = 2. This S matrix is four-by-four, since

there are just two different kinds of particles (spin up and down). The choice

F V VN=2 = F
V V
min

gives the S matrix of the sine-Gordon model at the coupling β2 = 8π in the usual

conventions. At this coupling, the dimension of the cosβφ perturbation is two,

so that it is marginally relevant; the U(1) symmetry of the sine-Gordon model is

enhanced to SU(2). Another name for this model is the SU(2) Gross-Neveu model.

For particles in the spin-1/2 representation of SU(2), the Bethe equations were

derived 70 years ago, in the original paper by Bethe himself [28]. The reason is

that the transfer matrix for the spin-1/2 representation of SU(2) as defined in (2.15)

precisely corresponds to the transfer matrix of the Heisenberg spin chain. In the

limit of large number of particles N , the eigenvalues of the transfer matrix follow
by adopting the “string hypothesis”. This means that the eigenvalues Λ(β) of the

transfer matrix defined in (2.15) are expressed in terms of densities ρ̃k(β), with

k = 1 . . .∞. These are the pseudoparticles discussed above: they enter the TBA
equations as if they were real particles with no mass term. (I have somewhat abused

the conventional notation: most authors would not use the ˜ here, but it makes

subsequent relations less confusing.) The other density entering the equations is the

density of particles ρ0(β). This is the total particle density, with contributions of

both spin up and spin down particles.
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Bethe’s result for the eigenvalues is

d

dβ
ln Λ(β) = Y (2) ∗ ρ0(β) +

∞∑
j=1

σ
(∞)
j ∗ ρ̃j(β) , (3.2)

where convolution integrals are defined as

f ∗ g(β) =
∫ ∞
−∞

dβ ′f(β − β ′)g(β) .

The kernels are given explicitly in the Appendix. The kernel Y (N) comes from the

prefactor of the S matrix. This only affects the coupling to the total particle density,

and not the pseudoparticles, because it contributes an overall factor
∏N
α=1 F

V V (β −
βα) to the transfer matrix. Now I can write down the first of the Bethe equations,

by taking the derivative of the log of (2.16). This gives

2πP0(β) = m cosh β + Y
(2) ∗ ρ0(β)−

∞∑
j=1

σ
(∞)
j ∗ ρ̃j(β) , (3.3)

where m is the mass of the particles. P0 is the total density of states for the particles.

The other Bethe equations relate the densities of states for the pseudoparticles to

particle and pseudoparticle densities. They are

2πρj(β) = σ
(∞)
j ∗ ρ0(β)−

∞∑
l=1

A
(∞)
jl ∗ ρ̃l(β) , (3.4)

where the density of string states Pj is

Pj = ρ̃j + ρj .

Note that all the Bethe equations are of the form (2.9), with no mass term for the

pseudoparticles.

Using identities in the appendix A, all the Bethe equations (including that for

P0) can be written in the compact form

2πPj(β) = δj0m cosh β +
∞∑
l=0

I
(∞)
jl

∫ ∞
−∞

dβ ′
1

cosh(β − β ′)ρl(β
′) . (3.5)

Here the indices j and l in the incidence matrix I
(∞)
jl = δj,l+1 + δj,l−1 run from

0, 1, . . . ,∞. Note that the right-hand-side involves the hole densities, not the particle
densities. This Bethe equation is conveniently represented by the diagram in figure 1.

With these equations, it follows from the standard TBA calculation that the TBA

equations (2.11), (2.12) hold, with

Φjl(β) =
I
(∞)
jl

cosh(β)
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. . .
Figure 1: The incidence diagram for the SU(2) Gross-Neveu model (the sine-Gordon at

β2 → 8π). The circles represent the functions εa; the filled node represents the fact that
the equation for ε0 has a mass term. The line represents the coupling between the functions

in the TBA equations.

and

mj = δj0m cosh β .

These equations were first derived in the context of the sine-Gordon model at β2 →
8π in [29]. One can easily check that the free energy has the correct properties. In

the UV limit m/T → 0, one obtains the correct central charge cUV = 1 from (2.14).
This follows from a now-standard analysis, involving expressing the free energy as a

sum of dilogarithms (see e.g. [21, 19, 30]). In the IR limit, the generalization of (2.13)

to the case with pseudoparticles is

F = mT
(
1 + e−ε1(∞)

)1/2 ∫ ∞
−∞

dβ

2π
cosh βe−m cosh(β)/T .

For particles with mj 6= 0, e−εj(∞) vanishes. However, the pseudoparticles have no
mass term, and here one finds that e−εj(∞) = (j + 1)2 − 1 for j ≥ 1. This means
that the free energy in the IR limit is that of 2 types of particles of mass m, as it

must be.

It is now simple to get the S matrices and TBA for the sphere sigma model by

using fusion. The fusion procedure says that the spin-1 particles in the sphere sigma

model can be viewed as having the spin-1/2 particles as constituents. As explained

above, a spin-1 particle (in a representation with highest weight 2µ1) is composed

of a pair spin-1/2 particles (each in a representation with highest weight µ1) with

rapidities βi + iπ/2 and βi − iπ/2. The transfer matrix for N /2 spin-1 particles is
related to that for the N spin-1/2 particles by the relation (2.17) with η = iπ/2.

Because the two transfer matrices are related in this way, the Bethe equations for the

sphere sigma model follow from those above after a few modifications. The eigenvalue

of the sphere sigma model transfer matrix follows from the spin-1/2 eigenvalue (3.2),

and the fusion equation (2.18). It is

d

dβ
lnΛsphere(β) = Z(2) ∗ ρ0(β) +

∞∑
j=1

τ
(∞)
j ∗ ρj(β) , (3.6)

where

τ
(∞)
j (β) = σ

(∞)
j

(
β +

iπ

N

)
+ σ

(∞)
j

(
β − iπ

N

)
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Figure 2: The incidence diagram for the sphere sigma model.

with N = 2 here. The first term in (3.6) arises from the prefactor of the sphere S

matrix (3.1), with

Z(2) = −i ∂
∂β
ln F SSN=2 =

2π

β2 + π2
.

The explicit expressions for τ (s) and Z(N) are given in (A.6) and (A.3) in the appendix.

Using this expression for the eigenvalue in (2.16) gives

2πP0(β) = m cosh β + Z
(2) ∗ ρ0(β)−

∞∑
j=1

τ
(∞)
j ∗ ρj(β) . (3.7)

The Bethe equations for the densities of states of the pseudoparticles (3.4) are mod-

ified because the real particles come in pairs with rapidities β ± iπ/2. Thus for the
sphere sigma model

2πρj(β) = τ
(∞)
j ∗ ρ0(β)−

∞∑
l=1

A
(∞)
jl ∗ ρ̃l(β) (3.8)

for j ≥ 1.
By using the identities in the appendix, the Bethe equations (3.8), (3.7) can be

put in the unified form

2πPj(β) = δj0m cosh β +

∞∑
l=0

I(∞)jl

∫ ∞
−∞

dβ ′
1

cosh(β)
ρl(β

′) . (3.9)

The indices j and l here run from 0 . . .∞. Above, the incidence matrix I(s) was
associated with SU(s). Here, the incidence matrix I(s) is associated with O(2s):
I(s)jl = 2δjl − C

O(2s)
jl , where CO(2s) is the Cartan matrix for O(2s). Explicitly,

I(∞)jl = δj,l+1 + δj,l−1 + δj,2δl,0 + δj,0δl,2 − δj,1δl,0 − δj,0δl,1 . (3.10)

This Bethe equation is conveniently represented by the diagram in figure 2.

With these equations, it follows from the standard TBA calculation that the

TBA equations (2.11), (2.12) hold, with

Φjl(β) =
I(∞)jl

cosh(β)
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and

mj = δj0m cosh β .

One can easily check that the free energy has the correct properties [27]. In the

UV limit m/T → 0, one obtains the correct central charge cUV = 2 by the standard
dilogarithm analysis. In the IR limit, one finds that

F = mT
(
1 + e−ε2(∞)

)1/2 ∫ ∞
−∞

dβ

2π
cosh βe−m cosh(β)/T .

As with the spin-1/2 system, the functions obey e−εj(∞) = (j + 1)2 − 1 for j ≥ 1.
This means that the free energy in the IR limit is that of 3 types of particles of mass

m, the spin-1 triplet.

3.2 SU(N) Gross-Neveu models

To find the sigma model free energy, it is best to first perform the analysis for the

vector particles and then use fusion. The appropriate field theory with particles in

the vector representation of SU(N) is the SU(N) Gross-Neveu model (also sometimes

called the chiral Gross-Neveu model) [31, 32]. Its similarities and differences with the

sigma model were discussed at length in [5]. The vector particles in the SU(N) Gross-

Neveu model have the S matrix (2.2). The prefactor F V VGN (β) is not the minimal one

given in (2.3). It is instead

F V VGN (β) = F
V V
min (β)X(β) ,

where

X(β) =
sinh (1/2(β + 2πi/N))

sinh (1/2(β − 2πi/N)) . (3.11)

Note that X = 1 for N = 2, so the sine-Gordon model at β2 → 8π is indeed the
SU(2) Gross-Neveu model.

The pole at β = 2πi/N in this factor X(β) means that for N > 2, the vector

particles in the Gross-Neveu model have bound states in the antisymmetric repre-

sentation. Upon completing the bootstrap procedure, one finds that the model has

bound states in all the antisymmetric representations with a indices, a = 1, . . . , N−1.
These are called the fundamental representations, and they have highest weight µa.

The particles can be expressed as bound states of a particles in the vector represen-

tation. These have mass

ma = m sinh
(πa
N

)
.

The representation with highest weight µN−a is the conjugate of the representa-
tion µa, because of the invariant ε tensor. For example, the N representation has

highest weight µN−1 and mass mN−1 = m1. The bootstrap procedure gives the S

matrices for all scattering of these particles. The scattering is not diagonal, but it
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is diagonal in the representation labels. When a particle in representation a with

rapidity βα scatters, the final particle with rapidity βα must be in some state in

same representation a. This means that the two-particle S matrix prefactors can be

labelled by F ab. The vector-vector prefactor F V V ≡ F 11 in this new notation. The

explicit prefactor F abGN is necessary for the calculation, and is given in (A.2) in the

appendix A.

Computing the Bethe equations for the SU(N) Gross-Neveu models looks ex-

tremely difficult or impossible. Remarkably, the computation has already been

done in [23, 24] by using fusion. Here the Bethe equations are found for any

simply-laced Lie algebra G, when the particles are in any representations with

highest weight mµi where µi is a fundamental weight of G, and m is an integer.

This work was generalized to non-simply-laced groups in [33]. The fusion proce-

dure gives functional relations like (2.17) for all the T a(βα|β1, . . . , βN ) [23]. The
label a here indicates that the αth particle is in the representation with highest

weight µa. These functional relations relate various T a. The prefactors F ab(β)
need to be computed, but the explicit S matrix is not needed: all the relevant

physics is contained in the representation theory and in the fusion. From the

functional relations and a few mild analyticity assumptions, the eigenvalues of T a
and the Bethe equations can be derived in the limit of a large number of parti-

cles.

The Bethe equations for the general case require the introduction of pseudopar-

ticle densities and densities of states into the Bethe equation (2.9). Here the pseu-

doparticle densities ρ̃a,j and densities of states Pa,j(β) are labelled by two indices.

(In the literature, this is usually called a nested Bethe ansatz.) The index a runs

from 1 to N − 1 for SU(N). For the N = 2 case treated above, this index takes
only one value can be suppressed. The index j is the same index as before, running

from 1, . . .∞ for the pseudoparticles. The functions ρa,0 and Pa,0 are defined respec-
tively as the density and density of states for all the particles in the representation

µa. It is consistent to define separate densities for each representation, because the

particles cannot change representation when scattering. For all values of a and j,

Pa,j = ρa,j + ρ̃a,j .

The computation of the TBA equations directly from the SU(N) Gross-Neveu

model S matrix was done in [34]. The eigenvalues of the transfer matrix T a are [23,

24]

d

dβ
lnΛaGN(β) =

N−1∑
b=1

Y
(N)
ab ∗ ρb,0(β) +

∞∑
j=1

σ
(∞)
j ∗ ρ̃a,j(β) , (3.12)

where the kernels are given explicitly in the appendix A. The kernel Y
(N)
ab comes from

the prefactor F ab of the S matrix. It couples the density of states of real particles

in representation a to the density of particles in representation b. The first of the
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Bethe equations follows from (2.16), and is

2πPa,0(β) = ma cosh β +

N−1∑
b=1

Y
(N)
ab ∗ ρb,0(β)−

∞∑
j=1

σ
(∞)
j ∗ ρ̃a,j(β) . (3.13)

The other Bethe equations relate the densities of states for the pseudoparticles to

particle and pseudoparticle densities. They follow from [23, 24] as well, and are

2πρa,j(β) = σ
(∞)
j ∗ ρa,0 −

N−1∑
b=1

∞∑
l=1

A
(∞)
jl ∗K

(N)
ab ∗ ρ̃b,l(β) , (3.14)

where Pa,j = ρ̃a,j + ρa,j . Explicit expressions for these kernels are given in the

appendix A. Note how all these equations reduce to those in the last subsection by

setting N = 2.

By using the fact that A and K are inverses, and the identities in the appendix,

all the Bethe equations (3.13), (3.14) can be written in the combined form [34]

2πρ̃a,j(β) = δj0ma cosh β −
N−1∑
b=1

∞∑
l=0

K
(∞)
jl ∗ ANab ∗ ρb,l(β) . (3.15)

Here the indices j and l run from 0, 1, . . . ,∞. With these densities, the dressed
energies εa,j(β) are defined as in (2.10). It follows from the standard TBA calculation

that the TBA equations (2.11,2.12) hold, with

Φab,jl(β) = δjlδabδ(β)−K(∞)jl ∗ A
(N)
ab (β)

and

maj = δj0ma cosh β .

The TBA equations can be rewritten in a much more elegant form by using the fact

that A and K are inverses, and the simple relation between K and the incidence

matrix

I
(N)
jl = δj,l−1 + δj,l+1 j, l = 1, . . . , N − 1 . (3.16)

The result is

εa,j(β) = T

N−1∑
b=1

I
(N)
ab

∫ ∞
−∞

dβ ′

2π

N

2 cosh(N(β − β ′)/2) ln
(
1 + eεb,j(β

′)/T
)
−

−T
∞∑
l=0

I
(∞)
jl

∫ ∞
−∞

dβ ′

2π

N

2 cosh(N(β − β ′)/2) ln
(
1 + e−εa,l(β

′)/T
)
. (3.17)

This is a substantial simplification because the equation for εa,j only involves “adja-

cent” functions εa,j±1 and εa±1,j . These equations are displayed schematically in fig-
ure 3. The dashed and unbroken lines account for the different minus signs in (3.17).
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Figure 3: The incidence diagram for the SU(N) Gross-Neveu model. There are N − 1
rows and an infinite number of columns.

Note that the masses do not appear in rewritten TBA equations (3.17), although they

appear in the original ones. When using the form (3.17), the asymptotic conditions

εa,0(β →∞)→ ma cosh β.

must be imposed.

This free energy of the SU(N) Gross-Neveu model has the correct properties.

In the UV limit m/T → 0, one obtains the correct central charge cUV = N − 1
from the dilogarithm analysis. In the IR limit, one finds that each representation

contributes one term to the free energy, with the correct multiplicity (e.g. N for the

vector representation a = 1, N(N−1)/2 for the antisymmetric representation a = 2).

3.3 SU(N)/ SO(N) sigma models

Here I find the TBA equations for the SU(N)/ SO(N) sigma model, generalizing the

analysis for the sphere sigma model, which corresponds to N = 2. The TBA analysis

is related to that for SU(N) Gross-Neveu models via fusion for all N .

The SU(N)/ SO(N) sigma models have a lagrangian description (1.1) in terms

of a a symmetric and unitary matrix field. The particles of the sigma model are in

all representations with highest weight 2µa, a = 1 . . .N − 1 [5]. The representation
with highest weight 2µ1 is the symmetric representation. The two-particle S with

both particles in the symmetric representation is given by (2.4) with prefactor [5]

F SS(β) = X(β)F SSmin(β) ,

where the minimal factor is given in (2.5), and X(β) is in (3.11). The pole in X(β)

at β = 2πi/N means that particles in the representation 2µ2 are the bound state of

two particles in the symmetric representation 2µ1. Because the factor X(β) is the
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same as that of the SU(N) Gross-Neveu model, the masses are the same:

ma = m sin(πa/N)

for the sigma model as well. However, the multiplicites are different because the

former are in representations with highest weight µa, while in the latter they are in

representations with highest weight 2µa.

As discussed above, β = −2πi/N , the S matrix (2.2) is entirely in the symmetric
channel. Therefore, the particles in the symmetric representation 2µ1 can be viewed

as composites of those in the vector representation µ1. The same is true for all

the particles in the SU(N)/ SO(N) sigma model: those in the representation 2µa are

composites of two particles in the µa representation. Because of this relation between

S matrices, the transfer matrices are also related by (2.17) [22, 23]. This means that

the resulting TBA systems are closely related, and all the densities are labelled in

the same way. Explicitly, the Bethe equations for the SU(N)/ SO(N) sigma model

are obtained from those of the Gross-Neveu model by two modifications. The kernel

Y
(N)
ab coming from the S matrix prefactor is replaced with Z

(N)
ab , while the kernel σ

(∞)
ab

is replaced with τ
(∞)
j , defined by

τ
(s)
j (β) = σ

(s)
j (β + iπ/N) + σ

(s)
j (β − iπ/N) . (3.18)

The sigma model version of (3.13) is

2πPa,0(β) = ma cosh β +

N−1∑
b=1

Z
(N)
ab ∗ ρb,0(β)−

∞∑
j=1

τ
(∞)
j ∗ ρ̃a,j(β) , (3.19)

while the Bethe equations for the pseudoparticles are

2πρa,j(β) = τ
(∞)
j ∗ ρa,0(β)−

N−1∑
b=1

∞∑
l=1

A
(∞)
jl ∗K

(N)
ab ∗ ρ̃b,l(β) . (3.20)

Explicit expressions for these kernels are given in the appendix A. Note how all these

equations reduce to those of the sphere sigma model by setting N = 2.

The different kernels in the Bethe equations of course mean that the TBA system

is not quite the same as that of the Gross-Neveu model. All the modifications involve

the couplings of the functions of ρa,0(β) to the other ρb,j. After using the identities

in the appendix, one finds that the net effect is to remove couplings between εa,0 to

εa,1 in the Gross-Neveu TBA (3.17), and replace them with a coupling between εa,0
to εa,2. The SU(N)/ SO(N) TBA equations are

εa,j(β) = T

N−1∑
b=1

I
(N)
ab

∫ ∞
−∞

dβ ′

2π

N

2 cosh(N(β − β ′)/2) ln
(
1 + eεb,j(β

′)/T
)
−

−T
∞∑
l=0

I(∞)jl

∫ ∞
−∞

dβ ′

2π

N

2 cosh(N(β − β ′)/2) ln
(
1 + e−εa,l(β

′)/T
)
. (3.21)
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Figure 4: The incidence diagram for the SU(N)/SO(N) sigma model. There are N − 1
rows and an infinite number of columns.

The asymptotic conditions are the same as for the Gross-Neveu model. In fact, the

only difference is that the second incidence matrix I(∞) is replaced with I(∞). These
equations are displayed schematically in figure 4.

Both cases can be conveniently summarized in the language of Dynkin diagrams:

the Gross-Neveu model in figure 3 is described by (SU(N), SU(∞)), while the in-
cidence diagram in figure 4 for the SU(N)/ SO(N) sigma model is described by

(SU(N), SO(∞)). The latter TBA system was previously discussed in [35], but with-
out the association with the sigma model. As with all previous cases, one can check

that the UV and IR limits of the TBA equations agree with known results, namely

the central charge cUV = (N + 2)(N − 1)/2 and the particles being in the represen-
tations 2µa. This computation in particular checks that these are all the particles

in the spectrum, because additional (or fewer) particles would change this central

charge.

3.4 O(2P ) Gross-Neveu models

As with the models with SU(N) symmetry, I will start with the O(2P ) Gross-Neveu

models [36, 37, 13] (these are in fact the models Gross and Neveu originally stud-

ied). Like the SU(N) case, there are particles in all the fundamental representations

with highest weights µa. This includes the spinor representations, which physically

correspond to kinks. The mass spectrum is given by

ma = m sin(aπ/(2P − 2)) mP−1 = mP =
m

2 sin(π/(2P − 2)) ,

where the latter two correspond to the spinor representations. As opposed to the

SU(N) case, for P ≥ 4 there can be more than one representation with a given mass,
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as explained in detail in [13]. For any value of a there are particles in the representa-

tion µa, but there may be additional ones as well. For example, for P = 4, there are

particles in the vector and spinor representations (all 3 of them being 8-dimensional)

of mass m1, particles in the antisymmetric representation (28-dimensional, weight

µ2) with mass m2 =
√
3m1, and a particle in the singlet representation, with mass

m2. This apparently is related to representation properties of the yangian; it turns

out that the yangian associated with SO(8) has a 29-dimensional representation, but

not a 28-dimensional one. Under the SO(8) subalgebra of the yangian, the 29 de-

composes into 28+1. In the TBA equations below, the index a indicates all particles

of mass ma, which presumably corresponds to an irreducible representation of the

yangian [15].

Luckily, the Bethe equations for SO(2P )-type systems were also found in [23, 24].

These were more or less conjectured based on analogy with the SU(N) case, but were

proven up to some technical assumptions in [33]. Basically, they amount to doing

the computation by replacing the SU(N) incidence matrix I(N) with the SO(2P )

incidence matrix I(P ). The details for proving this are given in the appendix A. The
TBA equations for the O(2P ) Gross-Neveu models are

εa,j(β) = T

P∑
b=1

I(P )ab
∫ ∞
−∞

dβ ′

2π

P − 1
cosh[(P − 1)(β − β ′)] ln

(
1 + eεb,j(β

′)/T
)
−

−T
∞∑
l=0

I
(∞)
jl

∫ ∞
−∞

dβ ′

2π

P − 1
cosh[(P − 1)(β − β ′)] ln

(
1 + e−εa,l(β

′)/T
)
. (3.22)

These equations are displayed schematically in figure 5; the indices a and b now run

over the nodes of a SO(2P ) Dynkin diagram. The correct central charge cUV = P is

obtained in the UV limit. This system was also discussed in [35].

3.5 O(2P )/O(P )×O(P ) sigma models

In [5] the O(2P )/O(P ) × O(P ) sigma models were shown to resemble the SU(N)/
SO(N) sigma models discussed above. This is not terribly surprising, since the

lagrangian formulation of both is in terms of symmetric matrix fields. I will show

here how their TBA systems are also similar.

In [5] the exact spectrum and the S matrix SSS for the O(2P )/O(P ) × O(P )
sigma models are found. Like the SU(N)/ SO(N) case, there are particles are in all

representations with highest weight 2µa, where here a = 1 . . . P , although because of

some peculiarities of the O(2P ) S matrices (and because of yangian representation

properties), there must be particles in some of the fundamental representations as

well. The sigma model mass spectrum is the same as the O(2P ) Gross-Neveu model,

although of course the multiplicities differ. The TBA system for the O(2P )/O(P )×
O(P ) sigma models should not come as any surprise at this point. It follows from

the O(2P ) Gross-Neveu model calculation just as the SU(N)/ SO(N) calculation
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Figure 5: The incidence diagram for the O(2P ) Gross-Neveu model. There are P rows

and an infinite number of columns.

follows from that of the SU(N) Gross-Neveu model [5]. The TBA equations for

O(2P )/O(P )×O(P ) sigma models are

εa,j(β) = T

P∑
b=1

I(P )ab
∫ ∞
−∞

dβ ′

2π

P − 1
cosh[(P − 1)(β − β ′)] ln

(
1 + eεb,j(β

′)/T
)
−

−T
∞∑
l=0

I(∞)jl

∫ ∞
−∞

dβ ′

2π

P − 1
cosh[(P − 1)(β − β ′)] ln

(
1 + e−εa,l(β

′)/T
)
. (3.23)

The kernels and identities for this derivation are discussed in the appendix A.

4. Massless sigma models with θ = π

The results of the last section further confirmed the results of [5] for the S matrices

of the SU(N)/ SO(N) and O(2P )/O(P ) × O(P ) sigma models when the instanton
coupling θ = 0. In this section, I find the TBA equations for these sigma models

when θ = π, further confirming results of [5].

The particles of the sigma models are massless when θ = π. The reason is

that both sets of models have stable infrared fixed points, the SU(N)1 and O(2P )1
WZW models, respectively. The S matrices for these flows were found in [5]. Since

the particles are massless, they are either left- or right-moving. Rapidity variables

are still useful for parameterizing the energy and momentum of massless particles:

E = p = meβ for a right mover, and E = −p = me−β for a left mover. The
parameter m here is not the mass of the particle, but rather is the scale (analogous

to ΛQCD) which parameterizes the interactions. In condensed-matter language, it is

the crossover scale. With these definitions, the rapidity difference is still an invariant

in a collision. In a collision between a right mover and a left mover, the invariant
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is (E1 + E2)
2 − (p1 + p2)2 = m2eβ1−β2. In “collisions” between two right movers,

the invariant is E1/E2 = eβ1−β2 . I put collisions in quotes because the S matrix is
properly interpreted here as a matching condition on the wavefunction, as in (2.6).

For more details on the S matrix approach to massless theories, see [4, 30].

The spectrum and S matrices of these sigma models at θ = π are closely related

to that of the corresponding Gross-Neveu model. For the SU(N)/ SO(N) sigma

model [5],

SabLL(β) = SabRR(β) = S
ab
GN(β)

SabLR(β) = SabGN(β)/X
(N)
ab (β) ,

where X
(N)
ab comes from fusing X as defined in (3.11):

X
(N)
ab (β) ≡

a∏
i=1

b∏
j=1

X

(
β +
[i+ j − 1− (a + b)/2]

N

)
. (4.1)

For N = 2, this reduces to the result of [4]. The reason for dividing out by X
(N)
ab (β)

in SLR is simple. Poles in SLR in the region 0 < Im(β) < π are forbidden [4],

and all are contained in this factor. For similar reasons, the S matrices for the

O(2P )/O(P )×O(P ) sigma model at θ = π are [5]

SabLL(β) = SabLL(β) = SabGN (β)
SabLR(β) = SabLR(β) = SabGN (β)/X

(P )
ab (β) ,

where

X (P )ab (β) = X
(2P−2)
ab (β)X

(2P−2)
ab (iπ − β) (4.2)

and SabGN is the S matrix of the O(2P ) Gross-Neveu model.
The TBA systems follow from the results in the last section, given the close

relation with the Gross-Neveu models. The pseudoparticles are identical, so the

densities ρa,j are labeled by two indices as before. However, in scattering, left movers

stay left moving, and right movers stay right moving. Thus instead of densities

ρa,0, now there are both ρa,L and ρa,R. For the SU(N) case, the first of the Bethe

equations (3.13) is replaced with the two equations

2πPa,R(β) = mae
β +

N−1∑
b=1

Y
(N)
ab ∗ ρb,R(β) +

N−1∑
b=1

(
Y
(N)
ab − δabδ(β) + A

(N)
ab

)
∗ ρb,L(β)−

−
∞∑
j=1

σ
(∞)
j ∗ ρ̃a,j(β) (4.3)

2πPa,L(β) = mae
−β +

N−1∑
b=1

Y
(N)
ab ∗ ρb,L(β) +

N−1∑
b=1

(
Y
(N)
ab − δabδ(β) + A

(N)
ab

)
∗ ρb,R(β)−

−
∞∑
j=1

σ
(∞)
j ∗ ρ̃a,j(β) . (4.4)
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The Bethe equations for the pseudoparticles (3.14) become

2πρa,j(β) = σ
(∞)
j ∗ (ρa,L(β) + ρa,R(β))−

N−1∑
b=1

∞∑
l=1

A
(∞)
jl ∗K

(N)
ab ∗ ρ̃b,l(β) . (4.5)

Using the identities in the appendix A gives the TBA equations

εa,j(β) =

N−1∑
b=1

I
(N)
ab

∫ ∞
−∞

dβ ′

2π

N

2 cosh(N(β − β ′)/2) ln
(
1 + eεb,j(β

′)/T
)
−

−
∑

l=L,R,1...∞
I(∞)jl

∫ ∞
−∞

dβ ′

2π

N

2 cosh(N(β − β ′)/2) ln
(
1 + e−εa,l(β

′)/T
)
, (4.6)

where j takes the values L,R, 1 . . .∞. These equations for the SU(N)/ SO(N) sigma
model at θ = π are identical to those for the SU(N)/ SO(N) sigma model at θ =

0 (3.21), once the labels are redefined (there j is takes the values 0, 1 . . .∞). However,
that does not mean the solutions are the same. Because the θ = 0 theory is massive

and the θ = π theory is massless, the asymptotic conditions are different. Namely,

as β → ±∞, for the massive theory:

εa0(β →∞) −→ ma cosh(β)

while for the massless theory as β → +∞

εaL(β →∞) −→ mae
β

εaR(β →∞) −→ constant

and as β → −∞

εaL(β → −∞) −→ constant
εaR(β → −∞) −→ mae

−β .

The free energy (2.12) is modified in the massless case to

F (π)(m, T ) = −T
∑
a

ma

∫ ∞
−∞

dβ

2π

[
eβ ln

(
1 + e−εaR(β)/T

)
+ e−β ln

(
1 + e−εaL(β)/T

)]
.

(4.7)

The equations for the massless theory are pictorially depicted in figure 6.

The different asymptotic conditions do not affect the free energy in the ultraviolet

limit m/T → 0. Thus the free energy is the same in massive and massless cases,
corresponding to that of a conformal field theory of central charge cUV = (N +

2)(N − 1)/2. This of course is the dimension of the manifold SU(N)/ SO(N). In
fact, because the TBA systems are identical except for the asymptotic conditions,

the entire UV perturbation theory is identical in both cases. This is as it must be:
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Figure 6: The incidence diagram for the SU(N)/SO(N) sigma model with θ = π. There

are N −1 rows and an infinite number of columns. The cross-hatched circles represent εaL
and εaR.

instantons are a non-perturbative effect, and so the effect of the instanton coupling

β cannot be seen in perturbation theory. Unfortunately, it is not known how to

compute the perturbative expansion at non-zero temperature, except for the leading

logarithmic correction [4]. The perturbative expansion at zero temperature can be

computed explicitly by using a generalized Wiener-Hopf technique. This computation

was done for the case at hand in [5], and does indeed give the same results at θ = 0

and π.

On the other hand, the physics for θ = π is radically different from that at θ = 0

in the low-energy limit m/T →∞. In the massive case the free energy in this limit
is merely that of a dilute gas of massive particles, as in (2.13). However, the particles

are massless when θ = π because the system flows to a non-trivial field theory in

the low-energy limit. This flow is immediately apparent from the S matrix point of

view, because the two-particle Lorentz invariant for a left and a right mover is ∝ m2,

so the S matrix goes to a β-independent constant value as m→∞. The right-right
and left-left matrices remain non-trivial, however, since the Lorentz invariant here is

independent of m. Thus in the low-energy limit, the left and right sectors decouple

from each other, but remain non-trivial. This is the behavior of a conformal field

theory. The free energy must obey a relation like that of the UV limit, namely [20]

lim
ma→∞

F = −πT
2

6
cIR . (4.8)

Here this gives cIR = N − 1. This is the central charge of SU(N)1, confirming the
flow discussed in [5].
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In fact, since the left and right movers decouple in the IR limit, the TBA system

for the right movers in this limit is obtained merely by removing the terms involving

εaL from the equations. The resulting system is identical to that of the SU(N) Gross-

Neveu model (3.17); only the asymptotic condition changes from εa0(β → ∞) →
ma cosh β to εaR(β → ∞) → mae

β . The TBA system for the left movers is the

same, with the replacement β → −β. This close relation is a consequence of the fact
discussed in [5], that the effective field theory for the SU(N)/ SO(N) sigma model

at θ = π in the low-energy limit is that of the SU(N) Gross-Neveu model at negative

coupling. The sign change changes the sign of the beta function, meaning that while

the Gross-Neveu model is an asymptotically-free massive theory, the critical point

in the sigma model is stable. In another language, the different signs correspond to

marginally-relevant and marginally-irrelevant perturbations respectively.

Not surprisingly, the O(2P )/O(P ) × O(P ) sigma model behaves in the same
fashion. The TBA system in (3.23) applies to both massive and massless cases.

Only the asymptotic conditions differ, as with the SU(N)/ SO(N) model. As a

consequence, the same cUV = P 2 is obtained for both θ = 0 and θ = π. In the

massless case, the flow is to a conformal field theory with cIR = P , and the equations

in the IR limit are those of the O(2P ) Gross-Neveu model. Thus indeed the flow is

to the O(2P )1 conformal field theory, confirming the results of [5].

5. Perturbed coset models

In [27, 38] it was shown how a G/H sigma model is related to a Gk/Hl coset con-

formal field theory perturbed by a certain operator. In this section, I review this

construction, and apply it to G/H = SU(N)/ SO(N) and O(2P )/O(P ) × O(P ). I
find the exact free energy of the perturbed coset models. this approach shows promise

for understanding whether other sigma models are integrable, as I will discuss in the

conclusion.

5.1 Perturbed coset models and sigma models

A Gk WZW model is a conformal field theory with an infinite-dimensional symmetry

algebra [39, 40]. This symmetry is an extension of a ordinary Lie algebra symmetry

G. The symmetry currents are denoted JA(z) and J̄A(z̄), where A runs from 1 . . .

dim(G). These currents satisfy the operator product

JA(z)JB(w) =
k

(z − w)2 +
fABCJC(w)

z − w + · · · , (5.1)

where the fABC are the structure constants of the ordinary Lie algebra for G. The

algebra (5.1) is known as an affine Lie algebra or a Kac-Moody algebra Gk. The level

k is a positive integer for a compact Lie group G. The central charge (coefficient of
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the conformal anomaly) of the Gk WZW model is

c =
k dimG

k + h
, (5.2)

where h is called the dual Coxeter number. It can be defined by fACDfBCD =

hδAB/2. For G = SU(N), h = N , while for G = SO(2P ), h = 2P − 2 (for P > 2).

The primary fields of the WZW model correspond to representations of Gk. It is

shown in [40] that they have scaling dimensions

xj =
2Cj
(k + h)

, (5.3)

where Cj is the quadratic Casimir defined by T
ATA = CjI, with the T

A the gen-

erators of the Lie algebra of G in the jth representation and I the identity matrix.

All the other scaling fields arise from the operator product of the JA(z) with the

primary fields; it follows from (5.1) that J has dimension 1 and therefore all fields

have dimensions xj plus an integer.

A coset conformal field theory Gk/Hl is formed from a Gk WZW theory and a

subalgebra Hl. The energy-momentum tensor is constructed from the generators of

Gk not in Hl [41]. The central charge of this new conformal field theory is c(Gk) −
c(Hl). The level l of the subalgebra H is determined is given by l = kr, where r

is a group-theory factor called the index of the embedding of G into Hl. For the

embedding of SO(N) into SU(N), r = 2 (r = 4 for N=3), while for the embedding

of O(N)×O(N) into O(2N), r = 1 (r = 2 for N = 3).
The fields of the Gk/Hl conformal field theory are constructed by decomposing

a field φG in Gk into representations of the Hl subalgebra. Because the energy-

momentum tensor obeys the orthogonal decomposition TG = TH +TG/H , the decom-

position of φG must be of the form

φG = ⊕aφaG/H ⊗ φaH . (5.4)

The coefficients φaG/H of this decomposition are the fields of the coset model Gk/Hl.

These coset conformal field theories a priori have nothing to do with G/H sigma

models. The former are massless, and do not have a global symmetry G, while the

latter are gapped with a G global symmetry. Thus for the two to correspond, the

coset model must be perturbed by some operator. Moreover, the coset model has a

G global symmetry when k →∞. These and other considerations led to a conjecture
made in [38]. This conjecture is that the sigma model for G/H is equivalent to the

k → ∞ limit of the coset conformal field theory perturbed by a certain operator.
The operator is obtained by using (5.4) to decompose the currents JA into fields in

Gk/Hl. For the cases of interest here, G/H is a symmetric space, meaning that there

is no normal subgroup of G containing H other than G itself. A consequence of G/H
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being a symmetric space is that the generators of G not in H form a real irreducible

representation of H [42]. Thus when a field JA(z) is decomposed into representations

of H in (5.4) there is only one term on the right hand-side. The resulting field in

Gk/Hl is denoted by J A. The fields J A form a real irreducible representation of H ,
of dimension cUV = dimG− dimH. The operator Oσ is defined as

Oσ ≡
cUV∑
A=1

J A(z)J A(z) . (5.5)

The conjecture of [38] can now be stated precisely: the G/H sigma model is equiva-

lent to the Gk/Hl coset conformal field theory perturbed by the operator Oσ in the
limit k →∞.
The conjecture passes a few simple checks. The ultraviolet limit is obtained by

removing the perturbation of the coset model. From (5.2) it follows that the central

charge of the Gk/Hl theory as k → ∞ is indeed cUV = dimG − dimH as in the
sigma model. Moreover, when one decomposes JA into representations of H for A in

G but not H , the resulting field φAH has dimension going to zero as k →∞, because
the quadratic Casimir in (5.3) is independent of k. Thus the field J A has dimension
1 in this limit, so the perturbation Oσ is of dimension 2 and so is naively marginal.
It is not exactly marginal — this is the phenomenon of dimensional transmutation

and asymptotic freedom. Therefore the coset and its perturbation have the general

properties of a sigma model. Further support for this conjecture is discussed in [38].

For example, it has been shown to be true for the principal chiral models [43], and in

the sphere sigma model [27]. The results in this section give strong further evidence

in support.

The models of interest in this paper are the SU(N)k/ SO(N)2k and the O(2P )k/

O(P )k ×O(P )k conformal field theories perturbed by Oσ. The former theories have

cUV (k,N) =
k(k − 1)(N + 2)(N − 1)
(N + k)(N − 2 + 2k)

while the latter have

cUV (k, P ) =
k(k − 1)P 2

(P − 2 + k)(2P − 2 + k) .

To find the dimensions of the perturbing operators requires a little group theory.

Fields in the adjoint representation of SU(N) decompose under the SO(N) sub-

group as

(N2 − 1)→
(
N(N − 1)
2

)
+

(
N(N + 1)

2
− 1
)
.

The representation of dimension N(N − 1)/2 consists of the generators JA with
A in the SO(N) subgroup as well. Thus the operators J A are in the symmetric
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representation of SO(N)2k, of dimension N(N + 1)/2− 1. The quadratic Casimir of
this representation is Csym = N . Since the dimension of J

A is always 1, the dimension

of Oσ in the SU(N)k/ SO(N)2k conformal field theory for N > 2 is

xσ = 2−
2N

N − 2 + 2k = 4
k − 1

N − 2 + 2k .

Similarly, the adjoint representation of O(2P ) decomposes into

(P (2P − 1))→
(
P (P − 1)
2

, 1

)
+

(
1,
P (P − 1)
2

)
+ (P, P )

under the O(P ) × O(P ) subgroup. Thus the operator Oσ here is in the (P, P )
representation of O(P )k×O(P )k. The quadratic Casimir of the vector representation
of O(P ) is (P − 1)/2, so

xσ = 2−
P − 1

P − 2 + k = 2
k − 1

P − 2 + k . (5.6)

As far as I known, these perturbed conformal field theories have never been studied

in the literature.

The role the instanton coupling θ takes in the conjecture of [27, 38] is quite

interesting. The action of the perturbed conformal field theories can be denoted

schematically as

S = SCFT + λ

∫
d2zO(z, z̄) .

It follows from simple scaling considerations that mass scalem in the theory is related

to λ by m ∝ |λ|1/(2−x). If the theory has a Z2 symmetry under which O → −O then
the theories with positive and negative λ are identical. In general, they are not. A

well known example is the SU(2)k×SU(2)1/ SU(2)k+1 “minimal” models of conformal
field theory perturbed by Oσ (usually called φ1,3 in this context). With one sign of
λ, the model is massive. With the other sign, the model flows to the minimal

model with k− 1 [44], so the excitations are massless. In the SU(N)k/ SO(N)2k and
O(2P )k/O(P )k × O(P )k cases for k > 2, the two signs of λ give different theories
as well, one massive and the other massless. In the k → ∞ limit these differing
theories correspond to θ = 0 and θ = π respectively. This was argued in [27] for

SU(2)k/O(2). Strikingly, one can also see from the perturbed conformal field theories

here that that the different sign affects perturbation theory only at the order λk. Thus

as k →∞, the different sign does not affect perturbation theory. Its only effects are
non-perturbative, just as they must be if the change λ→ −λ is to describe the effects
of a θ term.

5.2 The particle spectrum

Here I discuss the particle spectrum of the perturbed conformal field theories just de-

fined.
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The results for the simplest cases k = 2 are already well known (when k = 1,

the models are trivial). The SU(N)2/O(N)4 conformal field theories are known as

the ZN parafermion theories; the equivalence to the better known coset description

SU(N)1 × SU(N)1/ SU(N)2 was shown in [45]. The perturbation Oσ of dimension
2/(N +2) is called the thermal operator here. This is an integrable field theory, with

S matrices derived in [46]. The spectrum consists of N − 1 particles, with mass [47]

ma = m sin
(aπ
N

)
.

This is the same mass spectrum as in the SU(N) Gross-Neveu model and the

SU(N)/ SO(N) sigma models discussed above. The degeneracies are different: there

is only one particle of each mass in the parafermion model, while in the other cases,

there are multiplets of particles in SU(N) representations with highest weights µa
and 2µa respectively. The parafermion theory has a ZN symmetry, but no SU(N)

symmetry.

Likewise, the O(2P )2/O(P )2×O(P )2 conformal field theories are the D2P para-
fermion theories. Their symmetry group is not O(2P ), but instead the dihedral

group D2P . The equivalence to the usual formulation O(2P )1 × O(2P )1/O(2P )2
formulation of these parafermion theories can be shown using the techniques of [45].

These theories have c = 1 for any P . The perturbation is of dimension 2/P , and

so the massive theory corresponds to the sine-Gordon model at β2 = 8π/P . This

is of course integrable [11], and in fact corresponds to the “reflectionless” points of

sine-Gordon, where the scattering is diagonal. The spectrum consists of P particles,

of masses

ma = m sin(aπ/(2P − 2)) mP−1 = mP =
m

2 sin(π/(2P − 2)) .

The particles of masses P and P − 1 are the kink and antikink of the sine-Gordon
model. This mass spectrum is the same as that in the O(2P ) Gross-Neveu model,

and the O(2P )/O(P )×O(P ) sigma model, but with multiplicity 1 here.
The fact that the mass spectrum of the k = 2 perturbed coset models are the

same as the corresponding sigma models is already a strong piece of evidence in

support of the conjecture of [38]. The issue now is to find the spectrum and S

matrices for general k. For N = 2 and P = 2, the answers are given in [48], but

otherwise these models have not been discussed in the literature. I will solve this

problem for all k.

To understand the particle spectrum in an integrable model, it is crucial to

understand the symmetries of the model. For the sigma models, this symmetry

algebra is an ordinary Lie algebra G. I conjecture that the perturbed coset models

are invariant under a one-parameter deformation of G called the quantum-group

algebra Uq(G). The particles in the perturbed Gk/Hl models form finite-dimensional

representations of Uq(G), with the parameter q = eiπ/(k+h), where h is still the dual
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Coxeter number. As k → ∞, q → 1 and the algebra reverts to the usual G Lie
algebra. All known integrable perturbations of coset conformal field theories are

proven or believed to be invariant under some such quantum-group algebra. For

example, for models where G = H×H , this was discussed in detail in [43]. For other
models, this was discussed in [49]. For the cases of interest here, the particles in the

SU(2)k/O(2) were shown to form a representation of Uq(SU(2)) in [48].

To give a concrete example, Uq(SU(2)) is the algebra

[Sz, S±] = ±2S± , [S+, S−] =
q2Sz − q−2Sz
q − q−1 . (5.7)

When the parameter q = 1, this reverts to the usual SU(2) Lie algebra. A nice

physical realization of this algebra is discussed in [50], where it is shown how when

the Heisenberg spin chain is deformed into the XXZ spin chain, the SU(2) symmetry

is deformed into Uq(SU(2)). The properties of the representations of Uq(G) can be

quite different from those of G when q is a root of unity other than 1 or −1. For
example, the right-hand-side of the last equation in (5.7) vanishes on states with

2Sz = p when qp = 1. This means that representations with maximum value of 2Sz
greater than p are reducible. In other words, the only irreducible representations have

|2Sz| < p, as opposed to ordinary SU(2), where there are irreducible representations

with any integer value of 2Sz.

Particles in a representation of a quantum-group algebra are most conveniently

treated as restricted kinks [51]. Consider a field φ, with a potential V (φ) tuned so

that there are degenerate minima, which I will sometimes call vacua. Then kinks

are field configurations with φ(x = −∞) one minimum of the potential, φ(x = ∞)
another. The kinks in the perturbed coset models form what are called “restricted

solid-on-solid”, or RSOS, representations of the quantum-group algebra. The name

comes from the statistical mechanical lattice models in which these representations

first arose [52].

For Uq(SU(2)), these restricted kinks are easy to describe. They interpolate

between the minimum of a potential which has k+1 minima in a row. For example,

the potential V (φ) = φ2(φ2−1)2 has three minima at φ = 0,±1; the potential V (φ) =
(φ2− 1)2(φ2− 9)2 has four vacua in a row. Kinks in these sorts of potentials provide
representations of the quantum-group algebra Uq(SU(2)) with q a root of unity.

The two-dimensional representations are kinks which interpolate between adjacent

vacua. Such representations behave just like ordinary SU(2) spin-1/2 representations.

For example, for k = 2, there are three minima labeled 0,±1, and the generators
S± exchange the states φ(−∞) = 0 and φ(+∞) = ±1. To construct the larger
representations, one can take the tensor product of smaller representations. The rules

are just like that of ordinary SU(2): for example, the tensor product of two spin-1/2

representations decomposes into the sum of a spin-1 and a spin-0 representation.

The one catch is that for q a root of unity, the larger representations are reducible.
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For k = 2, spin 0, 1/2 and 1 are all the irreducible representations. This is clearly

apparent from the kink picture, because for k = 2 there are only three vacua: an

irreducible spin-3/2 representation requires four vacua. Moreover, even the allowed

kinks are restricted. Restricted means that multi-kink configurations must obey the

rules implied by the potential. The number of N -kink states is much less than the
number of one-kink states to the N th power. For k = 2, in fact, there is only one way
to construct a multi-particle state from spin-1 particles: the vacua must alternate

between +1 and −1. The restriction is so strong that the kink structure gives no
new degrees of freedom, so it can be viewed as a normal particle.

Perturbed coset models with restricted kinks are already widely known. The

SU(2)k × SU(2)1/ SU(2)k+1 minimal models perturbed by Oσ are integrable. The
particles are spin-1/2 Uq(SU(2)) kinks, where q = eiπ/(k+2) [51, 43]. There are thus

k + 1 vacua here, with the kinks interpolating between adjacent vacua. The k = 1

case corresponds to the thermal perturbation of the Ising model (free Majorana

fermions). Since there are only two wells when k = 1, all the kink can do is go back

and forth, and one can forget it is a kink. For the case SU(2)k/O(2), the particles

are spin-1 Uq(SU(2)) kinks [48]. The k = 2 case here also corresponds to the thermal

perturbation of the Ising model. In this description, there are three vacua, but the

kinks are of spin 1, so again all they can do is go back and forth: there is only one

state for a given number of particles.

For general algebras Uq(G), the restricted-kink structure is more complicated.

The potential is defined so that the minima correspond to the highest-weight states

of the quantum-group algebra allowed at that value of q. For simply-laced algebras,

the allowed weights
∑
a caµa must satisfy

∑
a ca ≤ k. In this language, for Uq(SU(2))

with q4 = 1 (k = 2), the three minima correspond to highest weights 0, µ1, 2µ1, where

µ1 is the sole fundamental weight of SU(2). The kinks form representations of the

algebra, so each kink is also labelled by a weight. The rule is then that there can be

a kink of representation ra interpolating from the vacuum γ to the vacuum δ if the

corresponding representations obey the tensor product

ra ⊗ rγ = rδ ⊕ · · · .

I said “can be” because it depends on the specifics of a given theory if such a kink

actually does appear in the spectrum. There are a number of subtleties with this

picture for general groups and representations, but it is not necessary to understand

them for this work.

Given a particle spectrum consisting of restricted kinks, the S matrix can be

found using the Boltzmann weights of the corresponding lattice statistical-mechanical

model, which is usually known as the R matrix. For models with particles in the

fundamental representations, this was discussed in [51, 43, 53]. I emphasize that

by corresponding lattice model, I do not mean a lattice model whose continuum

limit is described by a field theory with this S matrix. I mean that there is some
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integrable lattice model whose Boltzmann weights are proportional to the S matrix.

In the corresponding lattice models, the variables which placed on sites of the lattice

play the role of the vacua, while the kinks correspond to the states on the links.

The rapidity difference in the S matrix corresponds to the spectral parameter in the

lattice model. The scattering of kinks in representation a from one in representation

b is given by the matrix Sab ∝ Rab (as before, a and b are not the matrix indices,

but rather label the different matrices). The prefactor is not of interest to the lattice

model, since it merely multiplies the partition function by an overall factor. It

is of course of great importance to the S matrix theory. The R matrices for the

RSOS models are trigonometric solutions of the Yang-Baxter equation. They can

be written in the form (2.1), where the fabc are trigonometric functions (as opposed

to the rational functions appearing in the sigma models). They are given explicitly

for the fundamental representations of all the quantum-group algebras Uq(G) in [54],

generalizing the SU(2) results of [52]. The fusion procedure also can be used to

construct the R matrices for kinks in the representations 2µa [55].

The spectrum of the perturbed coset models is easy to obtain, given the sigma

model result. The kinks must be in the same representation of Uq(G) as the particles

are of G. For example, for the case SU(2)k/U(1), the kinks are in the spin-1 represen-

tation of Uq(SU(2)), while the particles in the sigma model are in the spin-1 represen-

tation of SU(2). When k is finite, the vacua are restricted, but the restriction is re-

moved as k →∞: the particles in the sigma model no longer need be viewed as kinks.
Similarly, for the massive perturbed SU(N)k/ SO(N)2k and O(2P )k/O(P )k×O(P )k
models, the kinks are in all representations 2µa for a = 1, . . . , N−1 and a = 1, . . . , P
respectively. The vacua are all weights

∑
a caµa with

∑
a ca ≤ k.

Note also that the H Gross-Neveu model is obtained by taking k → ∞ in the
perturbed coset models Hk ×H1/Hk+1 [43, 53, 34].

5.3 The free energy of the perturbed coset models

The derivations of the TBA equations for the perturbed coset models requires diag-

onalizing the transfer matrices formed from the kink S matrices. The computation

is very similar for those of the sigma models, because the analysis of [23, 24] applies

to the RSOS models.

It is simplest to first discuss the case k = 2, where the perturbed coset models

reduce to the well-studied parafermion theories. As explained above, the kink struc-

ture is trivial: there is only one particle for each representation a = 1, . . . , N − 1 or
a = 1, . . . , P . The scattering here is diagonal but non-trivial. The S matrix element

for scattering a particle of type a from one of type b for SU(N) parafermions is

Sab(β) = X
(N)
ab (β) ,

whereX
(N)
ab (β) is defined in (4.1). For the O(2P ) parafermions, the S matrix elements

are X (P )ab (β), as defined in (4.2). The TBA equations instantly follow from using these
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S matrices to give the kernels in (2.11). There are no pseudoparticles because the

scattering is diagonal, so the only functions which appear can be labelled εa,0. Note

the distinction with the sphere sigma model, where the only functions which appear

are ε1,j in the present notation. For the SU(N) parafermions, the TBA equations

are [47]

εa,0(β) = ma cosh β − T ln
(
1 + e−εa,0(β)/T

)
+

+T

N−1∑
b=1

∫ ∞
−∞

dβ ′

2π
A
(N)
ab (β − β ′) ln

(
1 + e−εb,0(β

′)/T
)
,

where A
(N)
ab is the same kernel which appeared in the Bethe equations above, and

is given explicitly in the appendix. This can be simplified greatly by using the fact

that A and K are inverses, giving

εa,0(β) = T
N−1∑
b=1

I
(N)
ab

∫ ∞
−∞

dβ ′

2π

N/2

cosh[N(β − β ′)/2] ln
(
1 + e−εb,0(β

′)/T
)
, (5.8)

where the asymptotic condition εa,0 → ma cosh β as β →∞ is implied. The incidence
matrix couples only “adjacent” functions; it is displayed by restricting the diagram

in figure 3 or 4 to have only one column. For the O(2P ) parafermions, the kernel

A
(N)
ab is replaced by A

(P )
ab [47]. This results in the TBA equations

εa,0(β) = T

P∑
b=1

I(P )ab
∫ ∞
−∞

dβ ′

2π

P − 1
cosh[(P − 1)(β − β ′)] ln

(
1 + e−εb,0(β

′)/T
)
. (5.9)

Thus the TBA equations for the k = 2 cases amount to those of the corresponding

sigma models with all the pseudoparticles removed.

The TBA equations for general k are also found by truncating the equations

for the corresponding sigma model. The reason is simple to describe schematically.

Each irreducible representation of the quantum-group algebra is associated with some

transfer matrix. Relations like the fusion relation (2.17) relate the different transfer

matrices. The fact that there are only a finite number of irreducible representations of

the quantum-group algebra means that the fusion relations relating all these transfer

matrices truncate [22, 23, 24]. In the Bethe ansatz equations, this means that there

are only a finite number of pseudoparticles. In the TBA equation, the index j in the

functions εa,j now runs only from 0, . . . , k − 1 in the massive case.
This derivation of the Bethe equations is covered in detail in [23, 24, 34]. For

the SU(N) case, for example, the Bethe equations for the pseudoparticles are very

similar to (3.14), but are modified to

2πρa,j(β) = σ
(k)
j ∗ ρa,0(β)−

N−1∑
b=1

k−1∑
l=1

A
(k)
jl ∗K

(N)
ab ∗ ρ̃b,l(β) . (5.10)
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coset model perturbed by Oσ Q R behavior when k →∞
SU(N)k × SU(N)1/ SU(N)k+1 I(N) I(k) SU(N) Gross-Neveu model

SU(N)k/ SO(N)2k I(N) I(k) SU(N)/ SO(N) sigma model

O(2P )k ×O(2P )1/O(2P )k+1 I(P ) I(k) O(2P ) Gross-Neveu model

O(2P )k/O(P )k ×O(P )k I(P ) I(k) O(2P )/O(P )×O(P ) sigma model

Table 1: Summary of the TBA equations for various perturbed coset models.

The equations for the O(2P ) case are modified in a similar fashion. The S matrix

prefactor is modified as well; the kernel for the SU(N)k/ SO(N)2k case is given in

the appendix.

The result of these modifications is that the TBA equations are truncated. Like

the TBA equations (3.17), (3.21), (3.22), (3.23) they are of the form

εa,j(β) = T

rankG∑
b=1

Qab

∫ ∞
−∞

dβ ′

2π

h

2 cosh[h(β − β ′)/2] ln
(
1 + eεb,j(β

′)
)
−

−T
k−1∑
l=0

Rjl

∫ ∞
−∞

dβ ′

2π

h

2 cosh[h(β − β ′)/2] ln
(
1 + e−εa,l(β

′)
)
, (5.11)

where h is the dual Coxeter number for G, which is N for SU(N), and 2P − 2 for
O(2P ). The rank of SU(N) is N − 1, and the rank of O(2P ) is P . The matrices Q
and R are all incidence matrices. For the various models considered here, the results

are given in table 1. In all cases, the usual asymptotic conditions apply. All the

TBA equations in this paper are contained in this table. One can check that the

central charges resulting from taking the UV limit of the TBA equations are indeed

those of the corresponding conformal field theories for any value of k. This is an

enormous check on all the results of this paper.

5.4 Flows between coset models

I showed for the sigma models that the TBA equations for θ = 0 and θ = π are

identical, with the only difference being in the asymptotic conditions. The same

behavior should happen for the two signs of λ in the perturbed coset models (5.6).

The TBA results for the perturbed coset models make it possible to understand the

flow when the perturbation is massless. The TBA equations (5.11) and the table

still hold, except that the asymptotic conditions given in section 4 apply here. The

sum over l now runs from L,R, 1, . . . , k − 2. The IR fixed point can be read off
from the equations, as described above for the sigma models. Removing say the left

moving particles from the SU(N)k/ SO(N)2k perturbation gives the diagram for the

SU(N)k−1 × SU(N)1/ SU(N)k models. Thus the flow is between the conformal field
theories

SU(N)k
SO(N)2k

−→ SU(N)k−1 × SU(N)1
SU(N)k

.
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Likewise there is a flow

O(2P )k
O(P )k ×O(P )k

−→ O(2P )k−1 ×O(2P )1
O(2P )k

.

As far as I know, these flows were previously unknown. When k = 2, there is no flow:

the two cosets are already equivalent. By using the equivalences between different

coset models derived in [45], one can described these flows in different ways, if desired.

For example, the latter also amounts to a flow

O(k)P ×O(k)P
O(k)2P

−→ O(2P )k−1 ×O(2P )1
O(2P )k

.

Going backwards, one can read off the spectrum and particles for these mass-

less perturbations. The kinks must be massless, and in all representations µa, and

are either left or right-moving. The vacua correspond to all weights
∑
a caµa with∑

a ca ≤ k − 1. This shift of k → k − 1 indicates the quantum-group parameter q is
different for the massless and massive perturbations, but I do not know the reason

for this. In the coset models Hk×H1/Hk+1 there are two quantum-group symmetries
for both perturbations [43]; presumably the same thing happens here.

6. Conclusion

In this paper I have described how to compute the exact free energy in integrable

two-dimensional sigma models. This definitively establishes that when θ = π, there

are non-trivial fixed points for two sets of sigma models. It also yields the exact free

energy and susceptibility when θ = 0 and when θ = π.

The big open question is if other sigma models are integrable. The grail in

particle physics is probably the CPN−1 = SU(N)/ SU(N − 1)× U(1) models. They
have been widely studied because they allow instantons and are tractable in large N .

(The models studied above have a parameter N and have instantons, but they are

difficult to treat in large N . The reason is that they are matrix fields: the number

of fields at large N grows as N2, not as N .) In particular, the CPN models allowed

Witten to conclude that instantons were not important in real-world QCD [57]. It

would be very interesting to prove Witten’s results directly, instead of relying on

large N .

Virtually all the symmetric-space sigma models have arisen in various condensed-

matter applications [58], but the grail here is the U(2N)/U(N)×U(N) “grassmani-
an” model. The reason is that in the replica limit N → 0, this is believed to describe
the transition between quantum Hall plateaus [3]. This transition is experimentally

realized, and good numerical and experimental measurements have been made of

critical exponents. These critical exponents should arise in some conformal field the-

ory, but it is still not known which one. Solving the sigma model as a function of N

would presumably solve this problem.
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So why are sigma models integrable? In some sigma models (see e.g. [59, 56]),

one can find non-local conserved currents. Although the existence of non-local cur-

rents does not prove integrability, it is a good indicator. Often these non-local

currents are often associated with quantum-group or yangian symmetry algebras. In

the O(N)/O(N − 1) models, one can prove the non-local currents of [59] are the
generators of an infinite-dimensional symmetry algebra called the yangian [60]. This

proves the integrability of these sigma models. Unfortunately, this result has not yet

been extended to other sigma models.

So are other sigma models integrable? An old result (see e.g. [56]) suggested

that the only integrable symmetric-space G/H sigma models are those where H is

a simple Lie group. The reason is that they found that the non-local conserved cur-

rents coming from the classical sigma model (the limit of g small) are not conserved

once loop corrections are included. This certainly does not prove the model is not

integrable, because it is possible that some or all of the classical conserved currents

can be modified so that they are conserved in the full theory.

A simple Lie group has only one factor. Thus the symmetric spaces with H

simple are O(N)/O(N−1), SU(2N)/Sp(2N) and SU(N)/ SO(N), and the principal
chiral models H × H/H . All of these models are indeed integrable. However, the
O(2P )/O(P ) × O(P ) models are also integrable, but H is not simple! Thus the
suggestion of [56] is in not true here. It is not clear whether this is a fluke of this

model, or other symmetric-space sigma models are integrable as well. It would be

most interesting to construct the non-local conserved currents here explicitly, to

understand how they remain conserved even in the full theory. Some interesting

results for the classical model were found in [61], but they await generalization to

the quantum case.

The S matrices described above are all what are known as rational solutions of

the Yang-Baxter equation. This means the S matrices are rational functions of the

rapidity (except for the prefactor). yangians are all associated with rational solutions

of the Yang-Baxter equation, so the results described above certainly imply that there

is a yangian symmetry in all the integrable sigma models. In fact, this is the reason

for the extra particles in the models with O(2P ) symmetry. The representations of

the yangian of O(2P ) are larger than that of its subalgebra O(2P ). The particles

at a given mass are in a reducible representation of O(2P ), but in an irreducible

representation of the yangian. This poses an interesting question: is there any way

of telling which representations of the yangian yield the particles and S matrices

for an integrable field theory? And if so, what are these theories? Unfortunately,

the technology of yangians does not seem developed enough yet to answer these

questions.

The results of [38] discussed in section 5 do suggest an alternate approach to

finding integrability in sigma models. It is much easier to look for conserved currents

in perturbed conformal field theory than it is in sigma models. For example, it was
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noted in [38] that there are (at least to lowest order in perturbation theory) conserved

non-local currents in the SU(N)k/ SU(N −1)k×U(1) coset models perturbed by the
operator Oσ. Thus one expect these currents to persist in the CPN−1 sigma model,
obtained by taking k →∞. Even if these currents do remain in this limit, this does
not prove the CPN−1 models are integrable. However, at the very least it would
indicate that interesting behavior in the sigma models is still lying yonder.
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A. Kernels and identities

A.1 SU(N)

One set of kernels I use comes from the prefactors of the S matrices. These kernels

are defined as

A
(N)
ab (β) = 2πδabδ(β) + i

d

dβ
lnX

(N)
ab (β)

Y
(N)
ab (β) ≡ −i

d

dβ
lnF abGN(β)

Z
(N)
ab (β) ≡ −i

d

dβ
lnF ab(β)

ζ
(N,k)
ab (β) ≡ −i d

dβ
lnF ab;k(β) .

These kernels arise in the prefactors of the SU(N) parafermion theories, the SU(N)

Gross-Neveu models, the SU(N)/ SO(N) sigma models, and the SU(N)s/ SO(N)2s
perturbed coset models, respectively. The reason for the extra factor in the defi-

nition of A
(N)
ab will become apparent below. The kernel appearing in vector-vector

scattering is defined as Y (N) = Y
(N)
11 . It is most useful to give the kernels in Fourier

space. To make the equations look a little nicer, I define the Fourier transform with

normalization

f̂(ω) =

∫ ∞
−∞

dω

2π
eNiωβ/πf(β) . (A.1)

I use this definition of Fourier transformation for any kernel in a model with SU(N)

symmetry. A fact useful for obtaining the TBA equations in this paper is that if

f̂(ω) = 1/ cosh(ω) then f(β) = N/(4π cosh(Nβ/2)).

For the Gross-Neveu models, by using the S matrices in [31, 32] one finds after

some after some manipulation [34]

Ŷ
(N)
ab (ω) = δab − e|ω|

sinh((N − a)ω) sinh(bω)
sinh(Nω) sinh(ω)

(A.2)
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for a ≥ b, with Y
(N)
ab = Y

(N)
ba To find the kernels F ab appearing in the SU(N)/ SO(N)

sigma models requires even more work. Using the results of [5] for the S matrices, I

find

Ẑ
(N)
ab (ω) = δab − e−|ω|

4 cosh(ω) sinh((N − a)ω) sinh(bω)
sinh(Nω)

. (A.3)

Notice how the Fourier transforms are related:

Ẑ
(N)
ab (ω)− δab = e−2ω sinh(2ω)

(
Ŷ
(N)
ab (ω)− δab

)
.

This relation is useful in proving various identities. Finally, for the perturbed coset

models, one has

ζ
(N,s)
ab (ω) = δab −

4 cosh(ω) sinh((N − a)ω) sinh(bω) sinh((s− 1)ω)
sinh(Nω) sinh(sω)

.

Note that Z(N) = ζ (N,∞), in accord with the idea in [27, 38] that the sigma models
can be obtained as the limit of perturbed coset models.

The kernel A
(s)
ab arises in several places. The functions X

(N)
ab are the S matrix

elements for the SU(N) parafermion theories, and appears as part of the prefactor

in the Gross-Neveu and SU(N)/ SO(N) sigma models. A
(s)
ab also arises in the Bethe

ansatz diagonalization. It is

Â
(s)
jl (ω) =

2 sinh((s− j)ω) cosh(ω) sinh(lω)
sinh(ω) sinh(sω)

(A.4)

for j ≥ l, with A
(s)
lj ≡ A

(s)
jl . Other kernels arising in the Bethe ansatz diagonalization

are

σ̂
(s)
j (ω) =

sinh((s− j)ω)
sinh(sω)

(A.5)

in the Gross-Neveu models, and

τ̂
(s)
j (ω) =

2 sinh((s− j)ω) cosh(ω)
sinh(sω)

− δj1 (A.6)

in the sigma models. Notice that τ and σ are related via (3.18). Naively, this seems to

imply τ̂
(s)
j (ω) = 2 cosh(ω)σ̂

(s)
j (ω), but this is not quite true. The δj1 appears in (A.6)

after a careful analysis of the Fourier transforms; note that the correct forms vanish

as ω →∞.
The inverses of the matrices A

(s)
jl are very useful. By using the Fourier transforms,

it is simple to derive the identity

s−1∑
k=1

K
(s)
jk ∗ A

(s)
kl (β) = δ(β)δjl ,

where

K̂
(s)
jl (ω) = δjl −

I
(s)
jl

2 cosh(ω)
, (A.7)
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where I
(s)
jl is the incidence matrix for the algebra SU(s), defined in (3.16). More

generally, the incidence matrix for a simply-laced Lie algebra is twice the identity

minus the Cartan matrix, and is conveniently pictured by the Dynkin diagram. I

denote the incidence matrix for SO(2s) as I(s). Other useful identities are
s−1∑
l=1

K
(s)
jl ∗ σ

(s)
l (β) = δj1

N

4π cosh(Nβ/2)

and
s−1∑
l=1

K
(s)
jl ∗ τ

(s)
l (β) = δj2

N

4π cosh(Nβ/2)
.

Useful identities involving the S matrix prefactors are

Ŷ
(N)
ab (ω)− δab = Â

(N)
ab (ω)

(
σ
(∞)
1 (ω)

2 cosh(ω)
− 1
)

and

Ẑ
(N)
ab (ω)− δab = Â

(N)
ab (ω)

(
τ
(∞)
2 (ω)

2 cosh(ω)
− 1
)
.

The extra δj1 in (A.6) is crucial to obtaining the right identities.

A.2 O(2P )

The S matrices and prefactors for the O(2P ) Gross-Neveu models are given in [13],

and those for the O(2P )/O(P ) × O(P ) in [5]. The kernels are defined as Y (P )ab and
Z(P )ab respectively. The Fourier transform used below is that of (A.1) with N replaced
with 2P − 2.
For a, b = 1 . . . P −2, the Gross-Neveu kernels are closely related to the SU(2P −

2) kernels, namely

Ŷ (P )ab (ω) = Ŷ
(2P−2)
ab (ω) + Ŷ

(2P−2)
2P−2−ab(ω)

= δab − e|ω|
cosh((P − 1− a)ω) sinh(bω)
cosh((P − 1)ω) sinh(ω)

for a ≥ b, with Ŷ (P )ba = Ŷ
(2P−2)
ab . For those involving the spinor representations s and

s̄ (the nodes labelled P − 1 and P ), the kernels are

Ŷ (P )PP = Ŷ
(P )
P−1P−1 = 1− e|ω|

sinh(Pω)

2 sinh(2ω) cosh((P − 1)ω)

Ŷ (P )P P−1 = −e|ω|
sinh((P − 2)ω)

2 sinh(2ω) cosh((P − 1)ω)

Ŷ (P )aP = Ŷ
(P )
aP−1 = −e|ω|

sinh(aω)

2 sinh(ω) cosh((P − 1)ω) ,

where in the latter a = 1, . . . , P − 2.
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The result of [23, 24] for the Bethe equations for O(2P−2) says that the equation
for the eigenvalue (3.12) and the first Bethe equation (3.13) are

2πPa,0(β) = ma cosh β +

P∑
b=1

Y (P )ab ∗ ρb,0(β)−
∞∑
l=1

σ
(∞)
l ∗ ρ̃a,l(β) . (A.8)

These are virtually identical to those for SU(2P −2), with Y (N)ab replaced by Y
(2P−2)
ab .

In particular, the kernel σ(2P−2) is still given by (A.5). The other Bethe equations
are now

2πρa,j(β) = σ
(∞)
j ∗ ρa,0(β)−

P∑
b=1

∞∑
l=1

A
(∞)
jl ∗ K

(P )
ab ∗ ρ̃b,l(β) , (A.9)

where

K̂(s)jl (ω) =
(
δjl −

I(s)P−j P−l
2 cosh(ω)

)
, (A.10)

where I
(P )
jl is the incidence matrix for the algebra SO(2P ), defined above in (3.10).

The reason for the P − j and P − l indices is that above it was convenient above to
define the spinor nodes as 0 and 1, whereas here I have defined them as P and P −1.
The proof of the TBA equations is now basically identical to that done for the

SU(N) Gross-Neveu model. The reason is that the kernels here satisfy basically the

same identities as the SU(N) case. Namely, one can define the matrix inverse A of
K, just like A is the inverse of K. One finds that

−i d
dβ
lnX ab(β) = δabδ(β)−A(P )ab (β) .

Then

Ŷ (P )ab (ω)− δab = Â
(P )
ab (ω)

(
σ̂
(∞)
1 (ω)

2 cosh(ω)
− 1
)
.

Using this and the identities in the first appendix gives the O(2P ) Gross-Neveu TBA

equations in (3.22).

For the O(2P )/O(P )× O(P ) models, the proof is the same as for the SU(N)/
SO(N) models. The only new identity needed is

Ẑ(P )ab (ω)− δab = Â
(P )
ab (ω)

(
τ̂
(∞)
2 (ω)

2 cosh(ω)
− 1
)
.

From the prefactor given in [5], it follows that this identity holds for a = b = 1.

However, I have not been able to prove it in general. The reason is that the S

matrices for particles in the representations 2µs and 2µs̄ are not known explicitly, so

it has not been possible to work out the prefactors involving these particles. However,

I have checked that if they obey the above identity, then they are consistent with
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the massive TBA. By consistent, I mean that the TBA equations are the same as in

the massive case with only different asymptotic conditions, so that the perturbative

expansion of the free energy is the same for θ = 0 and θ = π. I have also checked

this consistency for the energy at zero temperature in a magnetic field, extending

the analysis of [5] to the particles in representations µs for the massless case and 2µs
in the massive case.

As a tangential note, the O(2P )/O(2P − 1) sigma models are integrable as
well [11]. Their spectrum consists of a single multiplet of 2P particles in the vector

representation, with no bound states. The TBA equations are very similar [38], but

a in ρa0 can only be 1. The other εaj still have a = 1, . . . , P . Because there are

no bound states, the prefactor F11 is not the same is in the Gross-Neveu models:
X (β) needs to be removed from the prefactor [11]. The kernel appearing in the TBA
equations is therefore Y (2P )11 (β)−δabδ(β)+A

(2P )
11 (β). Using this with the above Bethe

equations gives the TBA equations given in [38].
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