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1. Introduction

In recent years strong-interaction processes characterised by two large and disparate

energy scales, which are typically the squared parton center-of-mass energy ŝ and the

squared momentum transfer t̂, with ŝ� t̂, have been analysed. These processes can
be divided into two categories: (a) inclusive processes, such as dijet production in

hadron collisions at large rapidity intervals [1, 2], forward jet production in DIS [3,

4, 5], and γ∗γ∗ collisions in double-tag events, e+ e− → e+ e−+ hadrons [6]; (b)
diffractive processes, such as dijet production with a rapidity gap between the tagging

jets, either in hadron collisions [7, 8, 9] or in photoproduction [10].

The interest in these processes stems from the possibility that their descrip-

tion in terms of perturbative-QCD calculations at a fixed order in the coupling

constant αs might not be adequate, and that a resummation to all orders of αs
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of large contributions of the type of ln(ŝ/|t̂|), performed through the BFKL equa-
tion [11, 12], might be needed. An additional motivation for the analysis of pro-

cesses in the limit ŝ � t̂, and in particular for dijet production in hadron colli-
sions at large rapidity intervals, inclusive or with a rapidity gap, is to use it as

a test ground for the production of a Higgs boson in association with jets at the

LHC. A Higgs boson is mainly produced via gluon fusion, g g → H , mediated by
a top-quark loop. If the Higgs-boson mass is above the threshold for vector-boson

production, the Higgs boson decays mostly into a pair of W- or Z-bosons. The sig-

nal, though, is likely to be swamped by the W W , QCD and t t̄ backgrounds. A

Higgs boson of such a mass is also produced in q q → q q H via electroweak-boson
fusion, W W and Z Z → H , though at a smaller rate [13]. However, this would
have a distinctive radiation pattern with a large gap in parton production in the

central rapidity region, because the outgoing quarks give rise to forward jets in op-

posite directions [14, 15], with no colour exchanged between the parent quarks that

emit the weak bosons [16, 17]. Accordingly, the topology of the final state has

been used to reduce the overwhelming W W + 2-jet background [21]. In fact, re-

quiring in W W + 2-jet production two forward jets in opposite directions, which

implies a large dijet invariant mass, leads to the parton sub-processes being domi-

nated by gluon exchange in the crossed channel, with the W’s produced forward in

rapidity.

In this paper, we analyse forward W production in association with jets as a

natural extension of dijet production at hadron colliders and forward-jet production

in DIS, and as a process that for large dijet invariant masses shares the same dynam-

ical features (i.e. gluon exchange in the crossed channel) as W W + 2-jet production

with forward jets, but is considerably simpler to analyse. There are additional rea-

sons to consider this process: firstly, it could be experimentally easier to pick up

forward W-bosons that decay leptonically than forward jets; once a forward lepton

has triggered the event, one observes the jets that are associated with it, with no

limitations on their transverse energy. Conversely, in a pure jet sample one usually

triggers the event on a jet of relatively high transverse energy, thus the triggering jet

cannot be too forward. Secondly, W production in association with jets lends itself

naturally to extensions to the high-energy limit, since it favours configurations with

a forward W-boson, as we shall see in section 2.2. We limit our analysis to W-boson

production, however we expect the same kinematical and dynamical considerations

we make in this work to apply to Z-boson production as well.

In section 2 we examine the exact leading-order inclusive rapidity distributions

for W + 1-jet and W + 2-jet production, for each parton subprocess, as well as the

rapidity distribution of the W-boson when the rapidity interval between the two jets

is large. In section 3 we review the high-energy factorisation and the derivation of

the impact factor for jet production, and we calculate the impact factor forW +1-jet

production. In section 4 we consider the rate for W + 2-jet production in several
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high-energy approximations, and in section 5 we review the BFKL Monte Carlo

event generator. In section 6 we analyse several distributions and candidate BFKL

observables, such as the production rate as a function of the rapidity interval between

the two jets, the azimuthal angle decorrelation and the mean number of jets. Finally,

in the last section we draw our conclusions.

2. Kinematics of W + 1-jet and W + 2-jet production

In this section we analyse in detail the kinematics of W production in association

with one or two jets, and we show that in p p colliders asymmetric configurations

with a forward W-boson are naturally favoured.1 The results presented here have

been obtained using tree-level matrix elements generated by MADGRAPH [22].

2.1 W + 1-jet production

We consider the hadroproduction of a W-boson with an associated jet. At lead-

ing order (LO), the parton subprocesses are q q̄ → W g and q g → W q. The

momentum fractions of the incoming partons are given through energy-momentum

conservation by

xa =
|pj⊥|√
s
eyj +

m⊥√
s
eyW ,

xb =
|pj⊥|√
s
e−yj +

m⊥√
s
e−yW , (2.1)

with pj⊥ the jet (and the W ) transverse momentum and m⊥ =
√
m2W + |pj⊥|2 the

W transverse mass.

What are the typical distributions in yj and in yW? At proton-antiproton collid-

ers, the subprocess q q̄ →W g is leading; since the incoming quark and antiquark are
valence quarks and the up and the down quark distribution functions have different

shapes, this implies an asymmetry in the rapidity distribution of W+ versus W−

bosons, both in fully inclusive (Drell-Yan) W-boson production [23] and in W + 1-

jet production, and accordingly a large plateau for the rapidity distribution of the

W-boson as a whole.

Also at proton-proton colliders, the W-boson may be produced abundantly in

the forward rapidity region. As in the W± rapidity asymmetry, the physical mech-
anism is the difference in the shape of the p.d.f.’s of the incoming partons. In fact,

to be definite let us consider the subprocess q g → W q, which at proton-proton
colliders is dominant, and suppose that the incoming gluon enters from the negative-

rapidity direction while the quark enters from the positive-rapidity direction, so we

1Unless stated otherwise, we always understand W to include both W+ and W− production.
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Figure 1: Rapidity distributions of the W-boson for the subprocesses (a) q g → W q and
(b) q q̄ →W g at the LHC centre-of-mass energy √s = 14TeV and with pj⊥min = 30GeV.

Figure 2: Rapidity distributions of the jet for the subprocesses (a) q g → W q and (b)
q q̄ →W g at the LHC centre-of-mass energy √s = 14TeV and with pj⊥min = 30GeV.

can identify xa as the gluon and xb as the quark momentum fractions. The gluon

distribution function is very steep, so it pays off to have xa as small as possible, which

can be achieved by taking yW negative. That increases considerably the value of xb,

however, because of the shape of the valence-quark distribution function, it can be

achieved without paying a high price. In figure 1, we consider the rapidity distribu-

tion of the W-boson in W +1-jet production, broken up into its parton components.

The renormalisation and factorisation scales, µR and µF , are taken to be equal to

(|pj⊥| +m⊥)/2. In figures 1–6 we have taken the W mass to be mW = 80.44GeV,
we have used the p.d.f.’s of the package MRST99cg and evolved αs accordingly [24].

Applying the argument above to both the gluon incoming directions for q g → W q,
yields a broad rapidity distribution of the W-boson, figure 1a. The picture above

applies to the subprocess q q̄ →W g too, figure 1b, since the antiquark is in this case
a sea quark.

4



J
H
E
P
0
5
(
2
0
0
1
)
0
4
8

In case the W-boson is produced forward in rapidity, with which rapidity is

the jet typically produced? If the jet is produced in the opposite hemisphere with

respect to the W-boson, the rapidity interval |yW−yj | is large, however we know that
in this case W + 1-jet production is strongly suppressed (at LO), since its parton

subprocesses can only have quark exchange in the crossed channel, and thus the

related production rate falls off with the parton centre-of-mass energy ŝ. Thus this

configuration is dynamically disfavoured. On the other hand, jet production in the

same hemisphere as the W-boson or centrally in rapidity keeps xa small without

substantially increasing xb. However, whether the jet is produced in the central

region or in the same hemisphere as the W-boson depends on the detailed shape of

the p.d.f.’s, namely on how large we can afford to make xb while keeping xa small.

In figure 2 we plot the rapidity distributions of the jet at LHC energies.

2.2 W + 2-jet production

Let us consider the hadroproduction of a W-boson with two associated jets. At LO

the parton subprocesses are

(a) g g −→ W q q̄ ,
(b) q q̄ −→ W g g +W q q̄ ,
(c) q q −→ W q q ,
(d) q g −→ W q g . (2.2)

The momentum fractions of the incoming partons are given through energy-momen-

tum conservation by

xa =
|pj1⊥|√
s
eyj1 +

|pj2⊥|√
s
eyj2 +

m⊥√
s
eyW ,

xb =
|pj1⊥|√
s
e−yj1 +

|pj2⊥|√
s
e−yj2 +

m⊥√
s
e−yW , (2.3)

with pj1,2⊥ the jet transverse momenta andm⊥ =
√
m2W + |pj1⊥ + pj2⊥|2 theW trans-

verse mass. For the four subprocesses of eq. (2.2), the total cross section for the

production of a W-boson in association with two jets is given in table 1.

What are the typical rapidity distributions of the W-boson and of the two jets?

In figures 3–6 we plot the rapidity distributions of the W and of the two jets in

W + 2-jet production. The renormalisation and factorisation scales, µR and µF , are

taken to be equal to (|pj1⊥|+ |pj2⊥|+m⊥)/2. The subprocess g g →W q q̄ is perfectly
symmetric, thus the W-boson and the two jets are produced mostly in the central

rapidity region. However, in the other subprocesses that is not the case: looking

at the distributions in yW (figure 3) we see that as we move from (a) to (d) the

W-boson tends to be produced more and more forward in rapidity. Examining the

distributions in yj2 (figure 4), where j2 is the jet that is closest to the W , we see
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subprocesses σ(W+) σ(W−)

g g →W q q̄ 170 170

qq̄ → W g g +W q q̄ 580 400

q q →W q q 400 300

q g →W q g 3300 2200

Table 1: Total cross sections (pb) for the production of W± boson in association with
two jets with transverse momentum pj1,2⊥ ≥ 30GeV and interjet distance R(j1, j2) =√
(yj1 − yj2)2 + (φj1 − φj2)2 ≥ 0.4 on the rapidity-azimuthal angle plane.

Figure 3: Distributions in yW for the subprocesses of eq. (2.2) at the LHC centre-of-mass

energy
√
s = 14TeV and with pj⊥min = 30GeV.

that this jet tends to follow the W in rapidity. From the distributions in yj1 − yj2
(figure 5), we see that in (a) and (b) jet 1 tends to be produced more centrally; in (d)

it follows the W-boson and jet 2, thus emphasizing the kinematical features already

noted in W + 1-jet production (the twin peaks observed in figure 5 in (a), (b) and

(d) are due to requiring two jets with interjet distance R(j1, j2) ≥ 0.4); finally in (c)
it tends to be produced far in rapidity from the W-boson and jet 2.

To understand how these configurations come about, we consider q g → W q g
and follow the analysis of section 2.1, i.e. we identify xa as the gluon and xb as

6
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Figure 4: Distributions in yj2, where j2 is the jet that is closest to the W , for the

subprocesses of eq. (2.2) at the LHC centre-of-mass energy
√
s = 14TeV and with pj⊥min =

30GeV.

the quark momentum fractions. To make xa as small as possible at the price of

increasing xb, the W-boson is produced forward (figure 3). Note that with respect

to section 2.1 this is made easier by the presence of two jets, which let the W-boson

have a transverse momentum as small as kinematically possible: ultimately, when

the jets are balanced in transverse momentum, the W transverse mass reduces to the

mass, m⊥ → mW . In addition, one jet, say j2, is always linked to the W-boson via a
quark propagator as in W +1-jet production, so it tends to follow the W in rapidity,

as in figure 4, however the position of the other jet is a dynamical feature peculiar

of W +2-jet production: thanks to the gluon exchanged in the crossed channel, that

jet can be easily separated in rapidity from the W-boson. In qq̄ → W g g +W q q̄,
the kinematical mechanism is the same as in q g → W q g since the antiquark has a
sea quark p.d.f., however only qq̄ →W q q̄ can have a gluon exchanged in the crossed
channel. For g g → W q q̄, which has equal p.d.f.’s for the incoming particles and no
gluon exchanged in the crossed channel, we obtain a central distribution, as expected.

Note, however, that in figure 3 and following the contribution of g g → W q q̄ to
W + 2-jet production is quite small. The q q → W q q channel is peculiar, since
the largest contribution comes from valence-quark distributions, which tend to have

rather large x’s. In addition, at the dynamical level it features only diagrams with

7
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Figure 5: Distributions in yj1 − yj2 for the subprocesses of eq. (2.2) at the LHC centre-
of-mass energy

√
s = 14TeV and with pj⊥min = 30GeV.

gluon exchange in the crossed channel. Thus to make one x large, it tends to have

the W-boson and a jet slightly forward in rapidity, while to make the other x large,

it has the second jet well forward (and opposite) in rapidity.

Next, we require that the two jets are produced with a sizeable rapidity interval,

|yj1 − yj2| ≥ 2, and look at the rapidity distribution of the W-boson with respect to
the jet average, yW − (yj1 + yj2)/2 (figure 6). Now the requirement that the rapidity
interval between the jets is large makes the subprocesses with gluon exchange in

the crossed channel stand out even more, and the W-boson, which is linked to one

of the jets by quark exchange in the crossed channel, to follow that jet in rapidity.

This is stressed by the double peaks in (b), (c) and (d). Note that the dip between

the peaks is maximal for q q → W q q, which features only diagrams with gluon

exchange in the crossed channel. Conversely g g → W q q̄ yields the W-boson in the
central rapidity region and approximately equidistant from the two jets, however it

is strongly suppressed since it can only have quark exchange in the crossed channel.

The plots of figure 6 are characterised by the dominance of the subprocesses fea-

turing gluon exchange in the crossed channel. The same feature is exhibited by events

where we select the jet, say j1, that in rapidity is furthest away from the W , require

that |yW − yj1| ≥ 2, and examine the distribution in yW − yj2. Since in this case j2 is
always linked to the W-boson by quark exchange, the distributions are all centered

8
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Figure 6: Distributions of the rapidity of W-boson with respect to the jet average, yW −
(yj1 + yj2)/2 at |yj1 − yj2| ≥ 2 for the subprocesses of eq. (2.2) at the LHC centre-of-mass
energy

√
s = 14TeV and with pj⊥min = 30GeV. The dashed line has been generated by

taking the amplitudes in the high-energy limit, as explained after eq. (4.3).

about zero. The leading subprocesses factorise then naturally into two scattering

centres: an impact factor for W +1-jet production, and an impact factor for jet pro-

duction. The two impact factors are connected by the gluon exchanged in the crossed

channel. Accordingly, the dashed lines of figure 6 have been obtained by taking the

high-energy limit of the amplitudes featuring crossed-channel gluon exchange (see

eq. (4.3)). On these amplitudes we can then insert the universal leading-logarithmic

corrections of O(αns lnn(ŝ/|t̂|)), and resum them through the BFKL equation. The
impact factor for jet production is known, and we shall summarise its derivation in

section 3.2. The impact factor for W + 1-jet production is derived in section 3.3.

Next, we summarise jet production at hadron colliders in the high-energy limit.

3. Impact factors

In order to show how to extract the LO impact factor for W + 1-jet production, we

use as a paradigm parton-parton scattering, and the derivation of the LO impact

factor for jet production.

9
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3.1 Dijet production at hadron colliders

In the high-energy limit ŝ� t̂, the BFKL theory assumes that any scattering process
is dominated by gluon exchange in the crossed channel, which for a given scattering

occurs at O(α2s). This constitutes the leading-order (LO) term of the BFKL resum-
mation. The corresponding QCD amplitude factorizes into a gauge-invariant effective

amplitude formed by two scattering centers, the LO impact factors, connected by the

gluon exchanged in the crossed channel. The LO impact factors are characteristic

of the scattering process at hand. The BFKL equation resums then the universal

leading-logarithmic (LL) corrections, of O(αns lnn(ŝ/|t̂|)), to the gluon exchange in
the crossed channel. These are obtained in the limit of a strong rapidity ordering of

the emitted gluon radiation,

y1 � y2 � · · · � yn−1 � yn . (3.1)

For an arbitrary scattering, the LO term of the BFKL resummation is contained

in the higher-order terms of the expansion in αs. For dijet production in hadron

collisions, the LO term of the BFKL resummation is already included in the LO term

of the expansion in αs. In this respect, dijet production in hadron collisions at large

rapidity intervals is the simplest process to which to apply the BFKL resummation,

and thus we shall use it as a paradigm.

Since the cross section for dijet production in the high-energy limit is dominated

by gluon exchange in the crossed channel, the functional form of the QCD amplitudes

for gluon-gluon, gluon-quark or quark-quark scattering at LO is the same; they differ

only by the colour strength in the parton-production vertices. We can then write the

cross section,

dσ = xaf(xa, µ
2
F ) xbf(xb, µ

2
F ) dσ̂ , (3.2)

in the following factorised form [25, 26, 27]

dσ

d2pa′⊥d
2pb′⊥dya′dyb′

= x0afeff(x
0
a, µ

2
F ) x

0
bfeff(x

0
b , µ

2
F )

dσ̂gg
d2pa′⊥d

2pb′⊥
, (3.3)

where

x0a =
|pa′⊥|√
s
eya′ , x0b =

|pb′⊥|√
s
e−yb′ , (3.4)

are the parton momentum fractions in the high-energy limit, a′ and b′ label the
forward and backward outgoing jet, respectively, and the effective parton distribution

functions are

feff(x, µ
2
F ) = G(x, µ

2
F ) +

4

9

∑
f

[
Qf(x, µ

2
F ) + Q̄f (x, µ

2
F )
]
, (3.5)

10
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where the sum is over the quark flavours. In the high-energy limit, the gluon-gluon

scattering cross section becomes [25]

dσ̂gg

d2pa′⊥d
2pb′⊥

=

[
CAαs

|pa′⊥ |2
]
f(qa⊥ , qb⊥,∆y)

[
CAαs

|pb′⊥|2
]
, (3.6)

with ∆y = ya′ − yb′ and qi⊥ the momenta transferred in the t-channel, with qa⊥ =
−pa′⊥ and qb⊥ = pb′⊥, and where CA = Nc = 3. The quantities in square brackets
are proportional to the impact factors for jet production. We shall analyse them in

section 3.2. The function f(qa⊥ , qb⊥,∆y) is the Green’s function associated with the

gluon exchanged in the crossed channel. It is process independent and given in the

LL approximation by the solution of the BFKL equation. Its analytic form is,

f(qa⊥, qb⊥ ,∆y) =
1

(2π)2|qa⊥ ||qb⊥|
∞∑

n=−∞
einφ

∫ ∞
−∞
dν eω(ν,n)∆y

( |qa⊥ |2
|qb⊥|2

)iν
, (3.7)

with φ the azimuthal angle between qa and qb, and ω(ν, n) the eigenvalue of the

BFKL equation with maximum at ω(0, 0) = 4 ln 2CAαs/π. Thus the solution of

the BFKL equation resums powers of ∆y, and rises with ∆y as f(qa⊥ , qb⊥,∆y) ∼
exp(ω(0, 0)∆y).

3.2 Impact factors for jet production

In the high-energy limit, ln(ŝ/|t̂|) � 1, the LO QCD amplitudes for gluon-gluon,
gluon-quark and quark-quark scattering all factorise into two impact factors for jet

production. In order to determine explicitly the impact factors for gluon-jet and for

quark-jet production, we shall consider here two of the subprocesses above.

The cross section for the scattering of two gluon into two gluons, ga gb → ga′ gb′,
at LO in the high-energy limit, ŝ = x0ax

0
bs� |t̂|, can be written as

dσ̂gg =
1

ŝ

[
dya′d

2pa′⊥
4π

δ
(√
sx0a − |pa′⊥|eya′

)]×
×
[
dyb′d

2pb′⊥
4π

δ
(√
sx0b − |pb′⊥|e−yb′

)]
δ2(pa′⊥ + pb′⊥) |Mg g→g g|2 , (3.8)

where |Mg g→g g|2 is the squared tree amplitude, summed (averaged) over final (ini-
tial) helicities and colours. The amplitude for gluon-gluon scattering, ga gb → ga′ gb′
with all external gluons outgoing, can be written as [33, 34]

Maa
′bb′

νaνa′νb′νb = 2ŝ
[
ig faa

′cCgg(pνaa , p
νa′
a′ )
] 1
t̂

[
ig f bb

′c Cgg(pνbb , p
νb′
b′ )
]
, (3.9)

where the ν’s label the helicities and the LO vertices g∗ g → g are given by

Cgg(p−a , p
+
a′) = 1 , Cgg(p−b , p

+
b′) =

p∗b′⊥
pb′⊥
, (3.10)
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where we represent the transverse momentum p⊥ on the complex plane, p⊥ = px+ipy.
The functions C transform into their complex conjugates under helicity reversal,

C∗({kν}) = C({k−ν}). The helicity-flip function C(p+, p′+) is subleading in the
high-energy limit. Thus each function, Cgg, has only the two helicity configurations

of eq. (3.10) allowed in the high-energy limit.

We define the impact factor, I(pa, pa′) or I(pb, pb′), as the square of each term

in squared brackets in eq. (3.9), summed (averaged) over final (initial) helicities and

colours. Thus the LO impact factor for a gluon jet is

Ig(pj, pj′) =
1

2(N2c − 1)
[
ig f jj

′cCgg(p
νj
j , p

νj′
j′ )
] [
−ig f jj′c′ [Cgg(pνjj , p

νj′
j′ )]

∗
]

= g2
CA
N2c − 1

δcc
′
, (3.11)

with j = a, b and with implicit sums over repeated indices.

From eqs. (3.9) and (3.11), the squared amplitude for gluon-gluon scattering is

|Mg g→g g|2 = 4ŝ
2

t̂2
Ig(pa, pa′) I

g(pb, pb′)

=
4C2A
N2c − 1

g4
ŝ2

t̂2
=
9

2
g4
ŝ2

t̂2
. (3.12)

Analogously, the quark-gluon qa gb → qa′ gb′ scattering amplitude in the high-energy
limit is [34]

Maa
′bb′

νaνbνb′ = 2ŝ
[
g λca′āC

q̄q(pνaa , p
−νa
a′ )

] 1
t̂

[
ig f bb

′cCgg(pνbb , p
νb′
b′ )
]
, (3.13)

with LO vertices g∗ q → q,

C q̄q(p−a , p
+
a′) = −i ; C q̄q(p−b , p

+
b′) = i

(
p∗b′⊥
pb′⊥

)1/2
. (3.14)

Again, each function, C q̄q, has two helicity configurations allowed. The LO impact

factor for a quark jet is2

Iq(pa, pa′) =
1

2Nc

[
g λca′āC

q̄q(pνaa , p
−νa
a′ )

] [
g λc

′
āa′
[
C q̄q

(
pνaa , p

−νa
a′
)]∗]

=
g2

2Nc
δcc

′
. (3.15)

The squared amplitude for quark-gluon scattering is then

|Mq g→q g|2 = 4ŝ
2

t̂2
Iq(pa, pa′) I

g(pb, pb′)

=
2CA
Nc
g4
ŝ2

t̂2
= 2 g4

ŝ2

t̂2
. (3.16)

2We use the standard normalization of the SU(Nc) matrices, tr(λ
cλc

′
) = δcc

′
/2.
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Since eqs. (3.12) and (3.16) only differ by the colour factor 9/4, to calculate the

dijet production rate, eq. (3.3), it suffices to consider one of them, such as gluon-

gluon scattering, and include the others through the effective p.d.f. in eq. (3.5).

Using eq. (3.12) and replacing t̂2 → |p2a′⊥||p
2
b′⊥
|, the cross section for gluon-gluon

scattering (3.8) becomes

dσ̂0gg
d2pa′⊥d

2pb′⊥
=

[
CAαs

|pa′⊥ |2
]
1

2
δ2(pa′⊥ + pb′⊥)

[
CAαs

|pb′⊥|2
]
. (3.17)

At higher orders, powers of ln(ŝ/|t̂|) arise, which can be resummed to all orders
in αs ln(ŝ/|t̂|) through the BFKL equation. The term between square brackets in
eq. (3.17) is the LO term of the BFKL resummation. Since in performing the re-

summation the factorization formula (3.3) holds unchanged, to obtain the resummed

parton cross section it suffices to replace the LO term of the BFKL ladder in eq. (3.17)

with the full ladder, thus obtaining eq. (3.6).

3.3 The impact factor for W + 1-jet production

In W + 2-jet production in the limit |yj1 − yj2| � 1 (see section 2.2), the parton
subprocesses q q → W q q and q g → W q g and q q̄ → W q q̄ all feature gluon ex-
change in the crossed channel. Thus the functional form of the corresponding QCD

amplitudes is the same. They differ only by the colour strength in the impact factor

for jet production, separated from the impact factor for W-boson and the other jet

by the gluon in the crossed channel. It suffices then to consider only one of the

subprocesses above. We shall take q g → W q g and we shall suppose, for the sake
of clarity, that the W-boson is produced in the positive-rapidity hemisphere. The

subprocesses above factorise according to the kinematics

yW ' yq � yg , |pW⊥| ' |pq⊥| ' |pg⊥| . (3.18)

In the high-energy limit, the cross section for q g →W q g scattering is

dσ̂Wqg =
1

ŝ

[
dyWd

2pW

4π(2π)2
dyqd

2pq⊥
4π

δ
(√
sx0a − |pq⊥|eyq −m⊥eyW

)]×
×
[
dygd

2pg⊥
4π

δ
(√
sx0b − |pg⊥|e−yg

)]×
× δ2(pW⊥ + pq⊥ + pg⊥) |Mq g→W q g|2 , (3.19)

with the W transverse mass as in eq. (2.3). If we include the subsequent decay of

the W-boson into a lepton pair, the kinematics in the high-energy limit becomes

ye ' yν ' yq � yg , |pe⊥| ' |pν⊥| ' |pq⊥| ' |pg⊥| . (3.20)

13



J
H
E
P
0
5
(
2
0
0
1
)
0
4
8

The cross section for q g → q g (W →)e ν scattering can be obtained from eq. (3.19),
replacing the W-boson with the lepton pair and using the amplitudes calculated in

refs. [35, 36, 37]. In the notation of ref. [38] the colour decomposed amplitude is

A6(1q, 2, 3, 4q̄; 5ē, 6e) = g2Wg2PW (s56)
∑
σ∈S2
(λaσ(2)λaσ(3))ī4i1 ×

×A6(1q, σ(2), σ(3), 4q̄; 5ē, 6e) , (3.21)
where legs 1, 4 are the qq̄ pair, legs 2, 3 are the gluon legs, and legs 5,6 are the lepton

pair; gW is the weak coupling and PW (s) the W propagator

PW (s) = 1

s−M2W + iΓW MW
, (3.22)

where MW and ΓW are the mass and width of the W . The colour ordered subampli-

tudes are

A6(1
−
q , 2

−, 3+, 4+q̄ , 5
+
¯̀ , 6

−
` ) =

2

s23

[
[1 3] 〈2 1〉 [5 4] 〈6|(1 + 2)|3〉

[2 1] t123
−

− [4 3] 〈2 4〉 〈6 1〉 〈2|(3 + 4)|5〉〈4 3〉 t234 −

− 〈2|(3 + 4)|5〉 〈6|(1 + 2)|3〉
[2 1] 〈4 3〉

]
,

A6(1
−
q , 2

+, 3−, 4+q̄ , 5
+
¯̀ , 6

−
` ) =

2

s23

[
−〈3 1〉

2 [5 4] 〈6|(1 + 3)|2〉
〈2 1〉 t123 +

+
[4 2]2 〈6 1〉 〈3|(2 + 4)|5〉

[4 3] t234
+

+
〈3 1〉 [4 2] 〈6 1〉 [5 4]
〈2 1〉 [4 3]

]
, (3.23)

with the spinor products defined in appendix A. The subamplitudes (3.23) are

symmetric under the exchange [38]

1←→ 4 , 2←→ 3 , 5←→ 6 , 〈ij〉 ←→ [ji] . (3.24)

In eq. (3.23) we have neglected the subamplitudes with like-helicity gluons because

they are subleading in the high-energy limit.

Next, we make the correspondence p4 ≡ pa, p1 ≡ pa′ , p2 ≡ pb and p3 ≡ pb′
and according to eq. (3.23) we always identify (5)6 as the (anti)lepton momentum.

The amplitude for qa gb → qa′ gb′ (W →)e ν scattering (3.21) in the high-energy limit,
yq ' ye ' yν � yb′, is obtained by computing the sub-amplitudes (3.23) in the
corresponding kinematics (appendix B)

Aqa gb→qa′ gb′ e ν = 2ŝ
[
g λca′āC

q̄q(pνaa , p
−νa
q , pe, pν , q)

] 1
t̂

[
ig f bb

′c Cgg(pνbb , p
νb′
b′ )
]
, (3.25)
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with pb′ ≡ pg, and q⊥ the momentum transferred in the crossed channel, q⊥ = pb′⊥,
and t̂ ' −|q⊥|2, and the vertex g∗ d→ u e− ν̄ given by

C d̄ u(p+a , p
−
q , pe, pν , q) =

igW PW (sνe)√
(p+q + p

+
W )p

+
ν

(
〈pqpe〉

p+ν q
∗
⊥ −

(
p+q + p

+
W

)
p∗ν⊥

tabb′
+

+

√
p+q
p+e
p∗ν⊥
pW⊥p

+
e + p

+
q pe⊥

ta′bb′

)
, (3.26)

with

ta′bb′ = (pa + pW )
2 ' −p+q p−W − |pW⊥|2 ,

tabb′ = (pq + pW )
2 , (3.27)

and with pW = pe+pν. In the argument of the vertex in the l.h.s. of eq. (3.26) we do

not write explicitly the helicity of the lepton pair, since that is uniquely fixed by the

helicity of the quark pair and of the W-boson. The vertex g∗ u→ d e+ ν is obtained
from eq. (3.26) by exchanging (pν ↔ pe)

C ū d(p+a , p
−
q , pe, pν, q) = C

d̄ u(p+a , p
−
q , pν , pe, q) . (3.28)

Using the symmetry (3.24) of the vertex (3.26), we obtain the vertex g∗ d̄→ ū e+ ν

Cd ū(p−a , p
+
q , pe, pν , q) = −

[
C d̄ u(p+a , p

−
q , pe, pν, q)

]∗
. (3.29)

The vertex g∗ ū→ d̄ e− ν̄ is then obtained from eq. (3.29) by exchanging (pν ↔ pe)

Cu d̄(p−a , p
+
q , pe, pν, q) = C

d ū(p−a , p
+
q , pν , pe, q) . (3.30)

The impact factor forW+1-jet production, IqW , can be obtained by squaring any

of the effective vertices (3.26)–(3.30) and by integrating out the lepton pair; however,

by using eqs. (3.21) and (3.23) we have computed directly the squared amplitude for

q g → q gW scattering, and compared it to ref. [39]. Taking then the high-energy
limit (3.18), the squared amplitude summed (averaged) over final (initial) colours

and helicities, reduces to

|Mq g→W q g|2 = 4ŝ
2

t̂2
IqW (pa, pq, pW , q)I

g(pb, pb′) , (3.31)

with

IqW (pa, pq, pW , q) = − δcc
′

2Nctabb′ta′bb′
g2
g2W
2
×

×
[
m2W
tabb′

ta′bb′

(
z +
ta′bb′

tabb′

)2
− t̂ (1 + z2)

]
, (3.32)
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where we have defined the momentum fraction

z =
p+q

p+q + p
+
W

. (3.33)

Using eq. (3.27) and t̂ ' −|q⊥|2, we can rewrite the impact factor (3.32) as,

IqW (pa, pq, pW , q) = − δcc
′

2Nctabb′ta′bb′
g2
g2W
2
×

×
[
m2W
(−z|q⊥|2 + |pq⊥|2 − |pW⊥|2)2

tabb′ta′bb′
+ |q⊥|2

(
1 + z2

)]
. (3.34)

In the small |q⊥| limit, the jet opposite to the impact factor forW +1-jet production
becomes collinear, and the cross section obtained from the squared amplitude (3.31)

yields an infrared real correction. Since the latter may have at most a logarithmic

enhancement as |q⊥| → 0, the squared amplitude (3.31) cannot diverge more rapidly
than 1/|q⊥|2. This means that in the small |q⊥| limit, the impact factor (3.34) must
be at least quadratic in |q⊥|, IqW ∼ O(|q⊥|2). Using q⊥ = −(pq⊥ + pW⊥), it is
immediate to see that this is the case for eq. (3.34). In addition, as q⊥ → 0 we have
an almost on-shell gluon scattering with a quark, then pq⊥ → −pW⊥ and averaging
over the azimuthal angle of q⊥, eq. (3.34) becomes

lim
q⊥→0

IqW =
δcc

′

2Nc
g2
g2W
2

( |q⊥| z(1− z)
|pW⊥|2 + zm2W

)2
×

×
[
(1 + z2) (|pW⊥|4 + z2m4W ) + 4z2m2W |pW⊥|2

z(|pW⊥|2 + zm2W )2
]

= 4δcc
′
( |q⊥| z(1− z)
|pW⊥|2 + zm2W

)2
|Mq g→W q|2 , (3.35)

which explicitly shows that the impact factor is positive definite and that it factorises

into the squared amplitude for q g → W q scattering [23], as it should.

4. The production rate for W + 2 jets

In the collision of two hadrons A and B, the differential production rate of a W-boson

with two associated jets is given in terms of the rapidities and transverse momenta by

dσ

d2pj1⊥d
2pj2⊥d

2pW⊥dyj1dyj2dyW
=
∑
ij

xafi/A(xa, µ
2
F ) xbfj/B(xb, µ

2
F )
|Mij|2
256π5ŝ2

×

× δ2 (pW⊥ + pj1⊥ + pj2⊥) , (4.1)

with parton momentum fractions (2.3). In eq. (4.1) the dynamics of the scattering

are fully contained in the squared amplitude.
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In the limit |yj1 − yj2| � 1, as discussed in section 3.3, we can identify an

outgoing parton with a (anti)quark, while the other, that we called b′ according to
the notation of section 3.3, can either be a quark or a gluon. The cross section for

W + 2-jet production can be written in the factorised form (3.3), by substituting

eq. (3.31) and using eq. (3.5),

dσ

d2pq⊥d
2pb′⊥d

2pW⊥dyqdyb′dyW
=
∑
i

x0aQi(x
0
a, µ

2
F ) x

0
bfeff(x

0
b , µ

2
F )

IqW Ig

32π5|qa⊥|2|qb⊥ |2
×

×δ
2(qa⊥ − qb⊥)

2
, (4.2)

where qa⊥ = −pq⊥ − pW⊥ and qb⊥ = pb′⊥, and where we have substituted t̂2 with
|qa⊥ |2|qb⊥ |2. In the first p.d.f. the sum is over (anti)quark flavours, and the impact
factors are given in eqs. (3.11) and (3.32). The last term is the LO term of the BFKL

resummation. Thus, to obtain the BFKL-resummed cross section we just need to

replace δ2(qa⊥ − qb⊥)/2 with f(qa⊥ , qb⊥,∆y), as in eq. (3.7).
However, in eq. (4.2) energy and longitudinal momentum are not conserved. The

parton momentum fractions in the high-energy limit, x0a and x
0
b , given in eq. (3.19)

underestimate the exact ones (2.3) and accordingly the p.d.f.’s can be grossly over-

estimated. Thus for numerical applications and for a comparison with experimental

data, it can be convenient to perform the high-energy limit only on the dynamical

part of eq. (4.1), by writing the squared amplitude in the factorised form (3.31),

while leaving the kinematics untouched. This gives

dσ

d2pq⊥d
2pb′⊥d

2pW⊥dyqdyb′dyW
=
∑
i

xaQi(xa, µ
2
F ) xbfeff(xb, µ

2
F )
1

32π5
×

×
[
IqW Ig

t̂2

]
δ2(qa⊥ − qb⊥)

2
. (4.3)

For the invariants t̂ and ta′bb′ , implicit in the square brackets, two options are

possible:3

(a) they are taken to be exact, namely t̂ = 2pb · pb′ and ta′bb′ = (pa′ + pW )2. For
instance, the dashed lines of figure 6 have been obtained from eq. (4.3) with

option (a);

(b) t̂ and ta′bb′ are in the high-energy limit, as defined below eq. (3.25) and in

eq. (3.27), respectively.

Note that eq. (4.3), with the two approximations for the dynamics above, and

eq. (4.2) have the same theoretical validity, however their numerics may be rather

3The invariant tabb′ is the same in the exact and high-energy kinematics.
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Figure 7: TheW +2-jet production rate as a function of the rapidity interval between the

jets ∆y = |yj1−yj2|. The solid curve is the exact production rate (4.1); the dot-dashed curve
is the production rate in the high-energy limit (4.2); the two dashed curves are given by the

production rate (4.3), with the two approximations for the dynamics mentioned in the text.

different. In order to examine that in detail, in figure 7 we consider W + 2-jet pro-

duction as a function of the rapidity interval between the jets ∆y = |yj1 − yj2|. For
the renormalisation and the factorisation scales we keep the same choice as in sec-

tion 2.2. The solid curve is the exact production rate (4.1); the dot-dashed curve is

the production rate in the high-energy limit (4.2); the two dashed curves are given

by the production rate (4.3), with the two approximations listed above: (b) is the

upper dashed curve, and (a) is the lower one. Note that the exact production rate is

contained between curves (a) and (b), with (b) yielding the best numerical approx-

imation to the exact curve, while the high-energy limit on the LO kinematics and

dynamics (the dot-dashed curve) is rather distant from the exact production rate,

unless ∆y is quite large. The range between curves (a) and (b) may be viewed as a

band of uncertainty on the high-energy limit at LO.

5. The BFKL Monte Carlo

In a comparison with experimental data, it must be remembered that the LL BFKL

resummation makes some approximations which, even though formally subleading,
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can be numerically important: (a) The BFKL resummation is performed at fixed

coupling constant, thus any variation in the scale at which αs is evaluated appears in

the next-to-leading-logarithmic (NLL) terms. (b) Because of the strong rapidity or-

dering any two-parton invariant mass is large. Thus there are no collinear divergences

in the LL resummation in the BFKL ladder; jets are determined only at tree-level

and accordingly have no non-trivial structure. (c) Finally, energy and longitudinal

momentum are not conserved, since the momentum fraction x of the incoming par-

ton is reconstructed from the kinematic variables of the outgoing partons only, and

not including the radiation from the BFKL ladder. Therefore, the BFKL theory can

severely underestimate the exact value of the x’s, and thus grossly overestimate the

parton luminosities. In fact, if a W-boson +(n+ 2) partons are produced, we have

xa(b) =
|pj1⊥|√
s
e(−)yj1 +

m⊥√
s
e(−)yW +

n∑
i=1

ki⊥√
s
e(−)yi +

|pj2⊥|√
s
e(−)yj2 , (5.1)

where the minus sign in the exponentials of the right-hand side applies to the sub-

script b on the left-hand side. In the BFKL theory, the LL approximation and the

kinematics (3.1) imply that in the determination of xa (xb) only the first (last) term

in eq. (5.1) is kept. The terms neglected in eq. (3.4) are formally subleading. How-

ever, a comparison of three-parton production with the exact kinematics (5.1) to the

truncation of the BFKL ladder to O(α3s) shows that the LL approximation leads to
sizable violations of energy-momentum conservation [40].

Kinematic cuts and constraints like eq. (5.1) can be implemented in the BFKL

framework by unfolding the BFKL integral equation, resulting in an explicit sum

over the number of emitted gluons. Each term in this sum is then a phase space

integral over the BFKL gluon phase space, which allows for a BFKL Monte Carlo to

be constructed [41, 42]. Since each emitted BFKL gluon enters the calculation with

an explicit phase space integral, this approach allows for the running of the coupling

to be included into the BFKL solution, and also for the gluon radiation to be taken

into account in eq. (5.1).

The first step in this procedure is to transform the relevant Green’s function

f(~qa⊥, ~qb⊥,∆y) of eq. (3.7) to moment space via

f(~qa⊥, ~qb⊥,∆y) =
∫
dω

2πi
eω∆y fω(~qa⊥, ~qb⊥) . (5.2)

We can then write the BFKL equation as

ω fω(~qa⊥, ~qb⊥) =
1

2
δ(~qa⊥ − ~qb⊥) + ᾱs

π

∫
d2~k⊥
k2⊥
K(~qa⊥, ~qb⊥, ~k⊥) , (5.3)

where the kernel K is given by

K(~qa⊥, ~qb⊥, ~k⊥) = fω(~qa⊥ + ~k⊥, ~qb⊥)− q2a⊥
k2⊥ + (~qa⊥ + ~k⊥)2

fω(~qa⊥, ~qb⊥) , (5.4)
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and ᾱs = αsNc/π. The first term in the kernel accounts for the emission of a real

gluon of transverse momentum ~k⊥ and the second term accounts for the virtual
radiative corrections.

We now separate the ~k⊥ integral in (5.3) into “resolved” and “unresolved” con-
tributions, according to whether |~k⊥| lie above or below a small transverse energy
scale µ. The scale µ is assumed to be small compared to the other relevant scales in

the problem (such as the minimum transverse momentum, for instance). The virtual

and unresolved contributions are then combined into a single, finite integral. The

BFKL equation becomes

ω fω(~qa⊥, ~qb⊥) =
1

2
δ(~qa⊥ − ~qb⊥) + ᾱs

π

∫
k2⊥>µ2

d2~k⊥
k2⊥
fω(~qa⊥ + ~k⊥, ~qb⊥) +

+
ᾱs

π

∫
d2~k⊥
k2⊥

[
fω(~qa⊥ + ~k⊥, ~qb⊥) θ(µ2 − k2⊥)−

− q2a⊥ fω(~qa⊥, ~qb⊥)

k2⊥ + (~qa⊥ + ~k⊥)2

]
. (5.5)

The combined unresolved/virtual integral can be simplified by noting that since k2⊥ �
q2a⊥, q

2
b⊥ by construction, the ~k⊥ term in the argument of fω can be neglected, giving

(ω − ω0) fω(~qa⊥, ~qb⊥) = 1
2
δ(~qa⊥ − ~qb⊥) + ᾱs

π

∫
k2⊥>µ2

d2~k⊥
k2⊥
fω(~qa⊥ + ~k⊥, ~qb⊥) , (5.6)

where

ω0 =
ᾱs

π

∫
d2~k⊥
k2⊥

[
θ(µ2 − k2⊥)−

q2a⊥
~k2⊥ + (~qa⊥ + ~k⊥)2

]
' ᾱs ln

(
µ2

q2a⊥

)
. (5.7)

The virtual and unresolved contributions are now contained in ω0 and we are left

with an integral over resolved real gluons. Equation (5.6) is now solved iteratively,

and performing the inverse transform we have

f(~qa⊥, ~qb⊥,∆y) =
∞∑
n=0

f (n)(~qa⊥, ~qb⊥,∆y) , (5.8)

where

f (0)(~qa⊥, ~qb⊥,∆y) =
[
µ2

q2a⊥

]ᾱs∆y 1
2
δ(~qa⊥ − ~qb⊥) ,

f (n≥1)(~qa⊥, ~qb⊥,∆y) =
[
µ2

q2a⊥

]ᾱs∆y { n∏
i=1

∫
d2~ki⊥ dyiFi

}
1

2
δ

(
~qa⊥ − ~qb⊥ −

n∑
i=1

~ki⊥

)
,

Fi = ᾱs
πk2i⊥

θ(k2i⊥ − µ2) θ(yi−1 − yi)
[
(~qa⊥ +

∑i−1
j=1
~kj⊥)2

(~qa⊥ +
∑i
j=1
~kj⊥)2

]ᾱsyi
. (5.9)
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Figure 8: The W + 2-jet production rate as a function of the rapidity interval between

the jets ∆y = |yj1 − yj2|, with acceptance cuts yW , yj2 ≥ 1 and yj1 ≤ −1, or yW , yj2 ≤ −1
and yj1 ≥ 1. The diamonds are the exact production rate (4.1); the dashed curve is the
production rate in the high-energy limit (4.3) with option (a); the dotted curve is the same

with option (b); the solid curve includes the BFKL corrections.

Thus the solution to the BFKL equation is recast in terms of phase space integrals for

resolved gluon emissions, with form factors representing the net effect of unresolved

and virtual emissions. In this way, each f (n) depends on the resolution parameter µ,

whereas the full sum f does not.

The derivation given above only applies for fixed coupling because we have left αs
outside the integrals. The modifications necessary to account for a running coupling

αs(k
2
i⊥) are straightforward [41]. In the rest of this paper, we will however discuss

only the fixed coupling version of the BFKL Monte Carlo with the coupling entering

the BFKL equation set to αs(p
2
j⊥min), and with energy momentum conservation built

in through eq. (5.1). The effects of including the BFKL gluon radiation in the

Bjorken x’s are far bigger than the effects of the running coupling, which amount to

an approximately 10% effect in the cross section of figure 8.
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6. BFKL observables

After having considered several approximations to the high-energy limit and intro-

duced the BFKL Monte Carlo as the tool that we shall use to analyse the BFKL

gluon radiation, we turn now to the analysis of the effects of the BFKL radiation

on some physical observables. From eq. (3.7) we see that in order to detect evi-

dence of a BFKL-type behaviour in a scattering process, we need to obtain ∆y as

large as possible. In the context of dijet production this can be done by minimiz-

ing the jet transverse energy, and maximizing the parton centre-of-mass energy ŝ.

Since ŝ = xaxbs, in a fixed-energy collider this is achieved by increasing the parton

momentum fractions xa,b, and then measuring the dijet production rate dσ/d∆y.

However, in dijet production three effects hinder the characteristic growth of the

BFKL ladder (3.7) with respect to LO production:

as the x’s grow the parton luminosities fall off, making it difficult to disentangle

the eventual BFKL-driven rise of the parton cross section from the p.d.f.’s fall

off [26, 27];

the implementation of the exact x’s (5.1) in the BFKL Monte Carlo [43], rather

than using x0a,b (3.4) as prescribed by the high-energy limit, shifts the p.d.f.’s

toward smaller values, and thus further suppresses the production rate. This

effect is already present at O(α3s) [40];

in dijet production both the tagged jets have typically the same minimum

transverse energy; at NLO, the dijet cross section as a function of the difference

D between the minimum transverse energies of the two jets turns out to have
a slope dσ/dD which is infinite at D = 0 [44, 45]. This hints to the presence
of large logarithms of Sudakov type, which can conceal the logarithms of type

ln(ŝ/t̂) characteristic of the BFKL dynamics.4

The combination of these three effects changes drastically the shape of dijet produc-

tion dσ/d∆y as a function of the rapidity interval between the tagged jets, showing a

depletion [43] rather than the characteristic increase of the BFKL analytic solution.

In figure 8 we consider W + 2-jet production as a function of ∆y, and with

acceptance cuts yW , yj2 ≥ 1 and yj1 ≤ −1, or yW , yj2 ≤ −1 and yj1 ≥ 1. For all
of the curves of figures 8–12, we choose µR1 = pj1⊥ and µR2 = (pj2⊥ + m⊥)/2 as
renormalisation scales, and µF1 = µF2 = (|pj1⊥| + |pj2⊥| + m⊥)/2 as factorisation
scales. We justify the peculiar scale choices above as follows: we note that our

calculations are at LO (from the renormalisation point of view), thus the scale choice

is completely arbitrary, as long as it is physically unambiguous. However, a uniform

4Logarithms of Sudakov type are contained in the BFKL solution (3.7), however they lack the

running of αs and they are not consistently resummed.
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Figure 9: The ratio f(x0, µ2F )/f(x, µ
2
F ) of the p.d.f. as a function of the x

0’s (3.19) in the

high-energy limit versus the p.d.f. as a function of the exact x (5.1); the dashed-dotted curve

is the ratio f(x0a, µ
2
F )/f(xa, µ

2
F ), and the solid curve is the ratio feff(x

0
b , µ

2
F )/feff(xb, µ

2
F ).

choice for all of the curves in the same figure is required for a consistent comparison

between different approximations. In addition, in the high-energy limit the impact

factors for W +1-jet production on one side and for jet production on the other can

be viewed as two almost independent scattering centres linked by a gluon exchanged

in the crossed channel, thus it makes sense to run αs according to the scale set by

each impact factor. Accordingly, in the LO calculation α2s must be understood as

αs(p
2
j1⊥)αs ((pj2⊥ +m⊥)

2/4). In the high-energy limit it is possible (and would make

sense) to choose the factorisation scales equal to the renormalisation scales, however

for the exact production rate this choice would not be physically sensible since no

high-energy factorisation is present, thus for the factorisation scales we keep the

same choice as in the previous figures. In figure 8 the diamonds represent the exact

production rate (4.1); the dashed curve is the production rate in the high-energy

limit (4.3) with option (a); the dotted curve is the same with option (b); the solid

curve includes the BFKL corrections.

In figures 8–12 we have computed the BFKL corrections using eq. (4.3) with

option (b). However, the particular option we choose is immaterial since the uncer-

tainty related to the choice of option in eq. (4.3) is much smaller than the uncer-
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Figure 10: The average azimuthal angle 〈cos∆φ〉, where ∆φ = |φj1 − φj2 | − π, as a
function of the rapidity interval between the jets ∆y = |yj1 − yj2|, with acceptance cuts
yW , yj2 ≥ 1 and yj1 ≤ −1, or yW , yj2 ≤ −1 and yj1 ≥ 1. The diamonds are the exact
production rate (4.1); the dashed-dotted curve is the production rate in the high-energy

limit (4.3) with option (b); the solid curve includes the BFKL corrections.

tainties intrinsic to the BFKL resummation, the latter being due to the leading-log

approximation, the choice of scale of αs and the approximation on the incoming par-

ton momentum fractions. Note that the curve of figure 8 is both qualitatively and

quantitatively different from dσ/d∆y in dijet production: the peak in figure 8 is a

striking confirmation of the dominance of the configurations asymmetric in rapidity,

discussed in section 2.2. In fact the symmetric acceptance cut strongly penalises

the asymmetric configurations when ∆y approaches its minimum value; since the

asymmetric configurations dominate the W + 2-jet production rate, the effect is a

strong depletion of the latter. In addition, the BFKL ladder (solid curve), which

includes energy-momentum conservation (5.1), shows a substantial increase of the

cross section with respect to the LO analysis (dotted and dashed curves), as opposed

to a decrease in the dijet case.

To understand how this comes about, we note that the presence of at least

three particles in the final state makes the threshold configurations, and thus the
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Dotted: the same in the rapidity range −1 < yj < 1.

logarithms of Sudakov type, much less compelling than in the dijet case. Secondly,

the implementation of the kinematic constraint (5.1) in the BFKL Monte Carlo,

rather than using x0a,b (3.19) in the high-energy limit, has a much lesser impact than

in the dijet case. This is due to the fact that the valence quark distribution in q g →
q gW is much less sensitive to x variations than the gluon distribution in g g → g g.
To analyse this more precisely, we consider in figure 9 the ratio f(x0, µ2F )/f(x, µ

2
F )

of the p.d.f. as a function of the x0’s (3.19) in the high-energy limit versus the

p.d.f. as a function of the exact x (5.1). The ratio is calculated for each event in

the Monte Carlo as the ratio of the p.d.f. evaluated at x0 compared to an evaluation

at x, weighted with the contribution of this event to the cross section according

to (4.3) with option (b) and the BFKL ladder added. Finally, this distribution is

binned in ∆y. To be definite, since the high-energy factorisation implies that each

impact factor is associated with one of the two incoming partons, we can term the

ratio f(x0a, µ
2
F )/f(xa, µ

2
F ) as the one associated with the impact factor for W + 1-jet

production, and the ratio feff(x
0
b , µ

2
F )/feff(xb, µ

2
F ) as the one associated to the impact

factor for jet production. As we see from figure 9, the solid curve is much farther away
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Figure 12: The W + 2-jet production rate, including BFKL corrections, as a function of

the transverse momentum qa⊥ , with qa⊥ = −(pq⊥ + pW⊥).

from 1 than the dashed-dotted curve. Since the effective p.d.f. is dominated by the

gluon distribution, this implies that the ratio feff(x
0
b , µ

2
F )/feff(xb, µ

2
F ) is much more

sensitive to variations of the x’s than the ratio f(x0a, µ
2
F )/f(xa, µ

2
F ), which is made by

valence quark distributions. Accordingly, we obtain a smaller depletion of the BFKL

Monte Carlo prediction in W +2-jet production as compared to dijet production. In

addition, both the curves in figure 9 rise as ∆y grows. That means that the BFKL

radiation, which enters the determination of the x’s in the denominator, yields as

expected a contribution which is growing with ∆y.

A variable that has been extensively studied as possibly sensitive to BFKL effects

is the azimuthal angle decorrelation ∆φ = |φj1 − φj2| − π between the most forward
and backward jets in inclusive dijet samples. At LO the jets are supposed to be back

to back, with a correlation which is smeared by gluon radiation induced by parton

showers and hadronization. However, if we look at the correlation also as a function

of ∆y, we expect the gluon radiation between the jets to further blur the information

on the mutual position in transverse momentum space, and thus the decorrelation to

grow with ∆y. From eq. (3.7), we see that the BFKL-induced gluon radiation might

account for that [26, 27, 40, 41, 46]. The decorrelation between the tagging jets has

been analysed, and indeed observed, by the D0 Collaboration in dijet production at
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the Tevatron Collider [1]. However, the BFKL-induced radiation predicts a stronger

decorrelation than the data, even though the BFKL Monte Carlo [41] shows a much

more realistic azimuthal decorrelation than the BFKL analytic solution. The data

are correctly reproduced by the HERWIG Monte Carlo generator [47, 48, 49], which

includes parton showers and hadronization. This suggests that the azimuthal angle

decorrelation ∆φ, picking up preferentially configurations where the tagged jets are

back to back, is sensitive to threshold configurations, and thus to logarithms of

Sudakov type, even more than it is in the inclusive dijet production rate dσ/d∆y [45,

50]. However, as discussed in the paragraph above, inW+2-jet production we expect

the logarithms of Sudakov type to play a much less significant role. Thus, in analogy

with dijet production, in figure 10 we consider the average azimuthal angle 〈cos∆φ〉
as a function of the rapidity interval between the jets ∆y. The acceptance cuts are

the same as for figure 8. The diamonds are the exact production rate (4.1); the

dashed-dotted curve is the production rate in the high-energy limit (4.3) with option

(b); the solid curve includes the BFKL corrections. The average azimuthal angle

being defined as a ratio of production rates is much less sensitive to scale variations

than the curves of figure 8.

In figure 11 we plot the BFKL prediction for the mean number of jets 〈n〉 with
p⊥ > pj⊥min = 30GeV, emitted by the BFKL ladder as a function of the rapidity
interval between the jets ∆y, and the BFKL prediction for the same variable in the

rapidity range −1 < yj < 1. We see that the mean number of jets rises approximately
linearly with ∆y, and accordingly that the mean number of jets in the rapidity range

−1 < yj < 1 stays constant. We can crudely understand this, by noting that for a
very large ∆y the cross section from eqs. (3.7) and (4.2) behaves like

σ|∆y ∼ eω(0,0)∆y =
∞∑
n=0

(ω(0, 0)∆y)n

n!
, (6.1)

with ω(0, 0) = 4 ln 2CAαs/π, and a power of αs for each real correction to, and

therefore for each emitted gluon from, the BFKL ladder. Up to corrections of type

ln(p⊥/pj⊥min) [42], the mean number of jets emitted by the BFKL ladder is then

〈n〉 = (nσ)|∆y
σ|∆y ' ω(0, 0)∆y . (6.2)

For αs(p
2
j⊥min) with pj⊥min = 30GeV, this yields typically a jet each second unit of

rapidity, which is in rough agreement with figure 11.

Finally, in figure 12 we consider W +2-jet production as a function of the trans-

verse momentum qa⊥ = −(pq⊥+pW⊥) exiting from the impact factor IqW forW+1-jet
production. At LO, qa⊥ = qb⊥ = pb′⊥ , thus qa⊥ is bound to be equal to the trans-

verse momentum of the jet opposite to the impact factor IqW (and thus to be always

larger than 30GeV). In presence of the gluon radiation of the BFKL ladder, this is
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not longer true, and qa⊥ is allowed to go to zero. However, a simple power-counting

argument shows that the production rate is finite as qa⊥ → 0. In fact from eq. (3.34)
we know that IqW ∼ O(|qa⊥ |2). Substituting it, and the ladder (3.7) which goes like
O(1/|qa⊥ |), in eq. (4.2), we see that as far as the behaviour in qa⊥ is concerned,

dσ

dq2a⊥
∼ q

2
a⊥
q3a⊥
δ2(qa⊥ + pq⊥ + pW⊥) , (6.3)

and therefore the distribution dσ/dqa⊥ is finite as qa⊥ → 0, in agreement with

figure 12.

7. Conclusions

In section 2 we have examined the exact LO inclusive rapidity distribution forW +1-

jet andW+2-jet production; as for the latter, we have seen that the dominant parton

sub-process q g → q gW produces a great deal of W-bosons forward in rapidity. This
is due to the different shape of the p.d.f.’s of the incoming quark and gluon, and to

gluon exchange in the crossed channel which loosens the bound between the W-boson

and a jet on one (rapidity) side, and the other jet on the other side. In section 3

we have derived the impact factor for W + 1-jet production, both as a function

of the W-boson momentum and including the leptonic decay of the W-boson. In

section 4 we have compared several high-energy approximations at LO to the exact

production rate. The range between the most extreme high-energy approximations

may be considered as the theoretical uncertainty on the high-energy limit at LO.

In section 6 we have considered some BFKL footprints, most notably the rate

dσ/d∆y and the azimuthal angle decorrelation dσ/d∆φ as functions of the rapidity

interval ∆y between two tagged jets. These observables had already been considered

in inclusive dijet production, however because of the dominance of the configurations

asymmetric in rapidity and the presence of at least three particles in the final state,

which makes threshold configurations less relevant, in W +2-jet production dσ/d∆y

and dσ/∆φ take on a completely new light. In addition, we have considered the mean

number of jets, which as expected rises approximately linearly with ∆y. Finally, we

have computed the transverse momentum distribution of the impact factor forW+1-

jet production. At LO this is bound from below by momentum conservation at the

minimum transverse energy of the jet opposite to the W + 1-jet configuration, but

with additional gluon radiation it is allowed to reach zero, where the distribution

is finite.

Finally, we note that one of the leading contributions to theWW +2-jet produc-

tion rate in the high-energy limit is obtained by convoluting two impact factors for

W +1-jet production with a gluon exchanged in the crossed channel. The analysis of

this process, in the exact case, in the high-energy limit and with BFKL corrections

is left for future investigations [51].
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A. Multiparton kinematics

We consider the production of a W (→ eν) and two jets of momenta pa′ and pb′, in
the scattering between two partons of momenta pa and pb (p

0
a < 0 and p

0
b < 0).

5

Using light-cone coordinates p± = p0 ± pz, and complex transverse coordinates
p⊥ = px + ipy, with scalar product 2p · q = p+q− + p−q+ − p⊥q∗⊥ − p∗⊥q⊥, the 4-
momenta are,

pa =

(
p+a
2
, 0, 0,

p+a
2

)
=
(
p+a , 0; 0, 0

)
,

pb =

(
p−b
2
, 0, 0,

−p−b
2

)
=
(
0, p−b ; 0, 0

)
,

pi =

(
(p+i + p

−
i )

2
,Re[pi⊥ ], Im[pi⊥],

(p+i − p−i )
2

)
=
(|pi⊥|eyi, |pi⊥|e−yi; |pi⊥| cosφi, |pi⊥| sinφi) , i = 3(b′), 4(a′), 5(¯̀), 6(`) , (A.1)

where the first notation is the standard representation pµ = (p0, px, py, pz), while in

the second we have the + and − components to the left of the semicolon , and to
the right the transverse components. y is the parton rapidity and φ is the azimuthal

angle between the vector p⊥ and an arbitrary vector in the transverse plane. From
the momentum conservation (i = b′, a′, ¯̀, `),

0 =

6∑
i=3

pi⊥ ,

p+a = −
6∑
i=3

p+i ,

p−b = −
6∑
i=3

p−i , (A.2)

the Mandelstam invariants may be written as,

ŝij = 2pi · pj = p+i p−j + p−i p+j − pi⊥p∗j⊥ − p∗i⊥pj⊥ .
5Conventionally, in the helicity amplitudes all momenta are always taken as outgoing. Partons

which in a physical channel are incoming are then identified by the (negative) sign of their energy.
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so that

ŝ = 2pa · pb =
6∑
i,j=3

p+i p
−
j ,

ŝai = 2pa · pi = −
6∑
j=3

p−i p
+
j ,

ŝbi = 2pb · pi = −
6∑
j=3

p+i p
−
j . (A.3)

The spinor products are defined as

〈pi − |pj+〉 ≡ 〈ij〉 ,
〈pi + |pj−〉 ≡ [ij] ,

〈pi − |/pk|pj−〉 ≡ 〈i|k|j〉 . (A.4)

Using the above spinor representation, the spinor products for the momenta (A.1) are

〈pipj〉 = pi⊥
√
p+j

p+i
− pj⊥

√
p+i
p+j
,

〈papi〉 = −i
√
−p+1
p+i
pi⊥ ,

〈pipb〉 = i
√
−p−b p+i ,

〈papb〉 = −
√
ŝ , (A.5)

where we have used the mass-shell condition |pi⊥|2 = p+i p−i . The spinor products
fulfill the identities (i ≡ pi, j ≡ pj),

〈ij〉 = −〈ji〉 ,
[ij] = − [ji] ,
〈ij〉∗ = sign(p0i p0j ) [ji] ,

(〈i+ |γµ|j+〉)∗ = sign(p0i p0j )〈j + |γµ|i+〉 ,
〈ij〉 [ji] = 2pi · pj = ŝij ,

〈i+ |/k|j+〉 = [ik] 〈kj〉 ,
〈i− |/k|j−〉 = 〈ik〉 [kj] . (A.6)

B. Next-to-leading corrections in the forward-rapidity region

We consider the production of particles p′a, pe, pν in the forward-rapidity region of
parton pa,

yq ' ye ' yν � yb′ ; |pe⊥| ' |pν⊥| ' |pq⊥| ' |pb′⊥| , (B.1)
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Momentum conservation (A.2) simply generalizes to,

p+a ' −(p+q + p+e + p+ν ) ,
p−b ' −p−b′ . (B.2)

and accordingly the Mandelstam invariants (A.3) may be written as,

ŝ = 2pa · pb ' (p+q + p+e + p+ν )p−b′ ,
û = 2pa · pb′ ' −(p+q + p+e + p+ν )p−b′ ,
ûk = 2pb · pk ' −p+k p−b′ , k = q, e, ν ,

t̂k = 2pa · pk ' −(p+q + p+e + p+ν )p−k , k = q, e, ν ,

t̂ = 2pb · pb′ ' −|pb′⊥|2 , (B.3)

to leading accuracy. The spinor products (A.5) become

〈papb〉 = −
√
ŝ ' −

√
(p+q + p

+
e + p

+
ν )p

−
b′ ,

〈papb′〉 = −i
√
−p+a
p+b′
pb′⊥ ' i

pb′⊥
|pb′⊥|

〈papb〉 ,

〈papk〉 = −i
√
−p+a
p+k
pk⊥ ' −i

√
p+q + p

+
e + p

+
ν

p+k
pk⊥ , k = q, e, ν ,

〈pkpb〉 = i
√
−p−b p+k ' i

√
p+k p

−
b′ , k = q, e, ν ,

〈pb′pb〉 = i
√
−p−b p+b′ ' i|pb′⊥ | ,

〈pkpb′〉 = pk⊥
√
p+b′

p+k
− pb′⊥

√
p+k
p+b′
' −pb′⊥

√
p+k
p+b′
, k = q, e, ν .
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