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ABSTRACT: We present the maximally supersymmetric three-dimensional gauged
supergravities. Owing to the special properties of three dimensions — especially
the on-shell duality between vector and scalar fields, and the purely topological
character of (super)gravity — they exhibit an even richer structure than the gauged
supergravities in higher dimensions. The allowed gauge groups are subgroups of the
global Fgg) symmetry of ungauged N = 16 supergravity. They include the regular
series SO(p,8 — p) x SO(p,8 — p) for all p = 0,1,...,4, the group FEgs itself, as
well as various noncompact forms of the exceptional groups FE;, Eg and Fj; X Gs.
We show that all these theories admit maximally supersymmetric ground states,
and determine their background isometries, which are superextensions of the anti-de
Sitter group SO(2,2). The very existence of these theories is argued to point to a
new supergravity beyond the standard D = 11 supergravity.
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In this article we explain in detail the construction of maximal gauged supergravities

in three dimensions, recently announced in [1]. While maximal gauged supergravities

in higher dimensions have been known for a long time, starting with the gauged N = 8

theory in four dimensions [2], and subsequently for dimensions 5 < D < 8 [B]-[a],

the results on gauged supergravities in three dimensions and below have remained

somewhat fragmentary until now. The results presented in this paper close this gap.

In addition they open up new perspectives: unlike maximal gauged supergravities



in higher dimensions, the maximal AdSs; supergravities, which we obtain here, are
neither contained in nor derivable by any known mechanism from the known maximal
supergravities in higher dimensions. The new, and purely field theoretic, evidence
for a theory beyond D = 11 supergravity [§] and type-I1IB supergravity [@, 10] that
we have thus obtained is perhaps the most important consequence of the present
work.

Topological gauged supergravities in three dimensions were first constructed
in [11]; these theories are supersymmetric extensions of Chern-Simons (CS) theo-
ries with (np,ng) supersymmetry and gauge group SO(ny) x SO(ng), but have no
propagating matter degrees of freedom (see also [12] for earlier work on D = 3 super-
gravity). Matter coupled gauged supergravities can, of course, be obtained by direct
dimensional reduction of gauged supergravities in D > 4 to three dimensions and
below, but these do not preserve the maximal supersymmetry [13]. Another matter
coupled theory with half maximal supersymmetry, obtained by compactifying the
ten-dimensional N = 1 supergravity on a seven-sphere, has been discussed in [14]
(however, [14] deals only with the bosonic part of the lagrangian). In a different
vein, [15] constructs an abelian gauged supergravity by deforming the D = 3, N = 2
supergravity whose matter sector is described by an SO(n,2)/SO(n) x SO(2) coset
space sigma model. This model bears some resemblance to the present construction
in that the vector fields appear via a CS term rather than a Yang-Mills term, unlike
the matter-coupled theories mentioned before. However, the construction is limited
to the abelian case, whereas the present construction yields non-abelian CS theories,
thereby providing the first examples of a non-abelian duality between scalars and
vector fields in three space-time dimensions.

Gauged supergravities have attracted strong interest again recently in the context
of the conjectured duality between AdS supergravities and superconformal quantum
field theories on the AdS boundary [16]. For instance, classical supergravity domain
wall solutions are claimed to encode the information on the renormalization group
flow of the strongly coupled gauge theory [17]. The theories admitting AdS; ground
states are expected to be of particular interest for the AdS/CFT duality due to the
rich and rather well understood structure of two-dimensional superconformal field
theories. However, a large part of the recent work dealing with the conjectured
AdS/CFT correspondence in AdS; has been based on the BTZ black hole solution
of [I§], which has no propagating matter degrees of freedom in the bulk. We will see
that the gauged N = 16 theories yield a rich variety of supersymmetric groundstates,
virtually exhausting all the possible vacuum symmetries of AdS type listed in [1Y],
and thus an equally rich variety of superconformal theories on the boundary.

As is well known [20)], the scalar fields in the toroidal compactification of D = 11
supergravity [8] on a d-torus form a coset space sigma model manifold G/H with the
exceptional group G' = Ey4) and H its maximally compact subgroup; in particular,
for d = 8 one obtains a theory with global Egg) symmetry and local SO(16) [21, 22].



The complete list of ungauged matter coupled supergravities in three dimensions
(which unlike topological supergravities only exist with N < 16 supersymmetries)
has been presented in [23]. Gauging any of these theories corresponds to promoting
a subgroup Gq of the rigid G symmetry group to a local symmetry in such a way
that the full local supersymmetry is preserved. The latter requirement engenders ad-
ditional Yukawa-like couplings between the scalars and fermions, as well as a rather
complicated potential for the scalar fields. As we will demonstrate by explicit con-
struction, the possible compact and non-compact non-abelian gauge groups, all of
which are subgroups of the global Eg) symmetry of the ungauged maximal super-
gravity theory and preserve the full local N = 16 supersymmetry, are more numerous
in three dimensions than in higher dimensions.

There are essentially two properties which distinguish the three dimensional
models from all their higher dimensional relatives. First, the gravitational sector does
not contain any propagating degrees of freedom such that the theories without matter
coupling may be formulated as CS theories of AdS supergroups [11]; see also the
classic article [24] for a description of the peculiarities of gravity in three space-time
dimensions. In fact, pure quantum gravity [25, 26] and quantum supergravity [27] are
exactly solvable in three space-time dimensions. Second, in three dimensions scalar
fields are on-shell equivalent to vector fields. At the linearized level, this duality is
encapsulated in the relation

€uvp apgom = 8@3,47"’. (1.1)

This relation plays a special role in the derivation of maximal N = 16 supergravity
in three dimensions [21;, 22, 28, 29]: in order to expose its rigid Egs) symmetry, all
vector fields obtained by dimensional reduction of D = 11 supergravity [8] on an
8-torus must be dualized into scalar fields. Vice versa, the duality (1.1)) allows us to
redualize part of the scalar fields into vector fields, such that the ungauged theory
possesses different equivalent formulations which are related by duality [2§].

As explained there, the replacement of scalar fields by vector fields breaks the
exceptional Fg(g) symmetry; when attempting to gauge this theory while maintaining
its Egg) structure and thus keeping all the scalars, it is therefore a priori not clear
how to re-incorporate the vector fields necessary for the gauging without introducing
new and unwanted propagating degrees of freedom. We will circumvent this appar-
ent problem by interpreting (1.1) as defining up to 248 vector fields as (nonlocal)
functions of the scalar fields. This freedom in the choice of the number of vector
fields is at the origin of the large number of possible gauge groups that we encounter
in three dimensions.

In higher dimensions, the gauge group is to a large extent determined by the
number and transformation behavior of the vector fields under the rigid G symmetry
of the ungauged theory. As a necessary condition for gauging a subgroup G, C G,
the vector fields or at least a maximal subset thereof must transform in the adjoint



representation of Gy. In the latter case there may remain additional vector fields
which transform nontrivially under the gauge group. Upon gauging, these charged
vector fields would acquire mass terms and thereby spoil the matching of bosonic and
fermionic degrees of freedom; to avoid such inconsistencies one needs some additional
mechanism to accommodate these degrees of freedom. Altogether, this does not leave
much freedom for the choice of the gauge group. In D = 4 and D = 7 one must
make use of the full set of vector fields transforming in the adjoint representation
of the gauge groups SO(8) and SO(5), respectively. The situation is more subtle in
dimensions D = 5, 6 where only a subset of the vector fields transforms in the adjoint
representation of the gauge groups SO(6) and SO(5), respectively. The problem of
coupling charged vector fields is circumvented in D = 5 by dualizing the additional
vector fields into massive self-dual two forms [4, €]; in D = 6 they are absorbed by
massive gauge transformations of the two forms [7].

By contrast the proper choice of gauge group is much less obvious in three
dimensions. With (11), we may introduce for any subgroup Gy C Egs) a set of v =
dim G vector fields transforming in the adjoint representation of Go. A priori, there
is no restriction on the choice of Gy; however, demanding maximal supersymmetry
of the gauged theory strongly restricts the possible choices for G. It is one of our
main results that the entire set of consistency conditions for the three-dimensional
gauged theory may be encoded into a single algebraic condition

]P)27000 @ - 0, (12)

where O is the embedding tensor characterizing the subgroup Gy, and P a projector
in the Fjgg) tensor product decomposition (248 x 248).,m = 1 + 3875 + 27000.
Solutions to (1.2) may be constructed by purely group theoretical considerations.
Having formulated the consistency conditions of the gauged theory as a projector
condition for the embedding tensor of the gauge group allows us to construct a
variety of models with maximal local supersymmetry. As a result, we identify a
“regular” series of gauged theories with gauge group SO(p,8 — p) x SO(p,8 — p),
including the maximal compact gauge group SO(8) x SO(8) as a special case. In
addition, we find several theories with exceptional noncompact gauge groups, among
them an extremal theory which gauges the full Eg) symmetry. These theories have
no analog in higher dimensions.

This collection of maximal admissible gauge groups is presented in table 1I; all
the gauge groups — apart from the theory with local Fgg)y — have two simple
factors with a fixed ratio of coupling constants. As a by-product of our construction
we can understand and re-state the corresponding consistency conditions for the
higher dimensional gauged supergravities of [2, 6] in very simple terms; in particular,
the derivation of the T-identities for the D = 4,5 theories can now be simplified
considerably by reducing it to purely group theoretical condition analogous to (1.3).
Remarkably, and even though the rigid G = Ey(4) symmetry of the ungauged theory



‘ gauge group Gg ‘ ratio of coupling constants ‘

| SO(p,8 — p) x SO(p,8 — p) | 91/92 = —1 |
G2(2) X Fyu
Gy X Fy_ap)
E6(6) X SL(3)
Ee@2) x SU(2,1) 9a,/9Bs = —2
E6(,14) X SU(3)
E7(7) X SL(2)
E7(,5) X SU(2)
Eg(s) 9By

gG2/gF4 = _3/2

gA1/gE7 = -3

Table 1: Regular and exceptional admissible gauge groups.

is broken, the construction and proof of consistency of the gauged theory makes
essential use of the properties of the maximal symmetry group Eyq) in all cases.

This paper is organized as follows. In section 2 we review the ungauged N = 16
theory and in particular discuss the full nonlinear version of the duality (1.1) between
scalar and vector fields. In section 8 we present the lagrangian of the gauged theory.
It is characterized by a set of tensors A; 5 3 which are nonlinear functions of the scalar
fields and describe the Yukawa-type couplings between fermions and scalars as well
as the scalar potential. We derive the consistency conditions that these tensors must
satisfy in order for the full N = 16 supersymmetry to be preserved, and show that
Aj 53 combine into a “T-tensor” analogous to the one introduced in [2], but now
transforming as the 1 + 3875 of Fg). In section 4 we show that these consistency
conditions imply and may entirely be encoded into the algebraic equation (1.3) for
the embedding tensor of the gauge group, which selects the admissible gauge groups
Go C Eg). In turn, every solution to (1.2) yields a nontrivial solution for A; 3
in terms of the scalar fields which satisfies the full set of consistency conditions.
Maximal supersymmetry of the gauged theory thus translates into a simple projector
equation for the gauge group Gy.

In section § we analyze equation (1.2) and its solutions among the maximal
subgroups of SO(16) and Fg), respectively. We find the maximal compact ad-
missible gauge group Gy = SO(8) x SO(8) as well as its noncompact real forms
SO(p,8 —p) x SO(p,8 — p) for p=1,...,4. In addition, we identify the exceptional
noncompact gauge groups given in table 1. Each of these groups gives rise to a
maximally supersymmetric gauged supergravity. Section & is devoted to an analysis
of stationary points of the scalar potential which preserve the maximal number of
16 supersymmetries. We show that all our theories admit a maximally symmetric
ground state and determine their background isometries. Finally we speculate on a
possible higher dimensional origin of these theories.



2. The ungauged N = 16 theory

We first summarize the pertinent results about (ungauged) maximal N = 16 super-
gravity in three dimensions. The complete lagrangian and supersymmetry transfor-
mations were presented in [22], whose conventions and notation we follow throughout

1 The physical fields of N = 16 supergravity constitute an irreducible

this paper.
supermultiplet with 128 bosons and 128 fermions transforming as inequivalent fun-
damental spinors of SO(16). In addition, the theory contains the dreibein e,* and
16 gravitino fields ¢£, which do not carry propagating degrees of freedom in three
dimensions. As first shown in [21], it possesses a “hidden” invariance under rigid
FEg(s) and local SO(16) transformations. Consequently, the scalar fields are described
by an element V of the non-compact coset space Fgg)/SO(16) in the fundamental

248-dimensional representation of Egg), which transforms as
V(z) — gV(z)h (2), g € Egiy, h(z) € SO(16), (2.1)

(see appendix A& for our Eggg) conventions). The scalar fields couple to the fermions
via the currents

V1o,V = Q”X” + Py 4. (2.2)

The composite SO(16) connection Qf;’ enters the covariant derivative D, in

1
Dﬂ%{ =94, + Wuab Yab Py, + Q”W

1 .
W™ Yo XA + < Q”FABX (2.3)

D
uX uX ‘1‘4

Definition (2.4) implies the integrability relations:

1
2

where the SO(16) field strength is defined as

QY =0,QY —0,Q +2QKIQ)

The full supersymmetry variations read [22]

A pB
I PARE =0,  D,Pi=0, (2.4)

I a 1.,
de, > = iely fL, 51% = D, — il e’ XTy.,x,
VoY =T xtev4, SxA = 3 L ke T P,j‘, (2.5)

with the supercovariant current

]3;4 PA o ¢1 AFI

n particular we use the metric with signature (+ — —) and three-dimensional gamma matrices

with e y#¥? = —ie"”P  where €912 = €410 = 1, and e = det e,” is the dreibein determinant.



As shown in [22], they leave invariant the lagrangian 2

1 1 1y
L=—eR+ ZePﬂAP;1 +3 Pl Dl —

P A D
—5 X DXt = SeX Y U T B -
1/ o _ g
—ge(xvpf”x( TPy — AP RT) + Xx by wi) +
1 1_ _
+e(§(><x)(><x) — 55T x wa”x) : (2.6)

The invariance is most conveniently checked in 1.5 order formalism, with the torsion
T p_l'EK 0¢K+1'—A py A (2.7)
' = 1070 + X X :

A central role in our construction is played by the on-shell duality between scalar
fields and vector fields in three dimensions, which we shall now discuss. The scalar
field equation induced by (2:6) is given by

— ; 1 — 1
D, (e (P — BT ) = L, PP + Liexar DI BE L (28)

Upon use of the Rarita-Schwinger and Dirac equations for wi and XA, respectively,
this equation may be rewritten in the form

9" (e T, M) =0, (2.9)

where J,™ is the conserved Noether current associated with the rigid Fg(s) symme-
try [81]:

JH = QVMBﬁ“B - %VMIJ X T x —
—2etem (VA Plyd —iTh v Bl ) (2.10)

In writing this expression we have made use of the equivalence of the fundamental
and adjoint representations of Egs) which yields the relation (see also appendix iA)

1
VM, = ) Tr(t" Ve, V1),

The existence of the conserved current (2.10) allows us to introduce 248 abelian
vector fields B,™ (with index M =1,...,248), via
P B, M = e JHM (2.11)

2Note that the factor in front of the last term (xv,['/7/x)? differs from the one given in [2-2_:} as
was already noticed in [30].




where B, = 9,B, — 9,B,™ denotes the abelian field strength. This equation
defines the vector fields up to the [U(1)]**® gauge transformations

B,M — B,M + 8,AM. (2.12)

In accordance with (2.1) these vector fields transform in the adjoint representation of
rigid Fgs) and are singlets under local SO(16). The supersymmetry transformations
of the vector fields have not been given previously; they follow by “Egs) covarianti-
zation” of the supersymmetry variations of the 36 vector fields obtained by direct
dimensional reduction of D = 11 supergravity to three dimensions [32]

0B, = =2V &y + il VA eyt (2.13)

This transformation must be compatible with the duality relation (2.1T). To check
this, it is convenient to rewrite the latter in terms of the supercovariant field strength

B,UJ/M = B,uVM +2 VMIJ Eiw;’ — 2 F,I4A MA E[I“WV}XA ’

whose supercovariance is straightforwardly verified from (2.13). The duality rela-
tion (2.11) then takes the following supercovariant form

e‘“’pé,,pM = 2e VMAlg“A — %eVMU XTI y (2.14)

Equation (2.14) consistently defines the dual vector fields as nonlocal and non-
linear functions of the original 248 scalar fields (including the 120 gauge degrees of
freedom associated with local SO(16)), provided the latter obey their equations of
motion. We emphasize that in this way we can actually introduce as many vector
fields as there are scalar fields, whereas the direct dimensional reduction of D = 11
supergravity to three dimensions produces only 36 vector fields. The “Ejg() covari-
antization” alluded to above simply consists in extending the relevant formulas from
these 36 vectors to the full set of dim Gy < 248 vector fields in a way that respects
the Fg(s) structure of the theory. In the ungauged theory the vector fields have been
introduced merely on-shell; there is no lagrangian formulation that would comprise
the scalar fields as well as their dual vector fields. However, we shall see that the
gauged theory provides a natural off-shell framework which accommodates both the
scalars and their dual vectors.

From (2.14) we can also extract the equation of motion of the dual vectors:
acting on both sides with ¢,,,0” and making use of the integrability relations (2.4),
we obtain

1
8, BM — -3 e tery M iz + fermionic terms. (2.15)

Also the fermionic terms still depend on the original scalar fields. This is obvious
from the fact that we need the scalar field matrix V to convert the SO(16) indices on



the fermions into the Eg) indices appropriate for the Lh.s. of this equation. (Let us
note already here that in the gauged theory, the r.h.s. of this equation will acquire
additional contributions containing B,,™ in order of the coupling constant). We
recognize an important difference between the “dual formulations” of the theory:
whereas the vectors disappear completely in the standard formulation of the theory,
the vector equations of motion in general still depend on the dual scalar fields. It is
only under very special circumstances, and for special subsets of the 248 vector fields,
that one can completely eliminate the associated dual scalars. This is obviously the
case for the version obtained by direct reduction of D = 11 supergravity to three
dimensions where only 92 bosonic degrees of freedom appear as scalar fields while
36 physical degrees of freedom appear as vector fields. As shown in 28], the latter
are associated with the 36-dimensional maximal nilpotent commuting subalgebra of
FEgs), but there are further intermediate possibilities.

To conclude this section, we recall that the three dimensional Einstein-Hilbert
term can be rewritten in Chern-Simons form as

1 1
_ZGR =1 e, Fypa, (2.16)
by means of the dual spin connection
1
AZ — _ieabcwubcy

with field strength F}j, = 28@/13} + €% AZAIC,. When gauging the theory the Minkow-
ski background space-time will be deformed to an AdSs3 spacetime characterized by

R,uu = 2m2gyy’ (217)

with (negative) cosmological constant A = —2m?. The Lorentz-covariant derivative
is accordingly modified to an AdS; covariant derivative

1
Df =0, + 1a( 4" £me,), (2.18)

with commutator

1
[Dljf, Df] = ii’Ya(F;wa + m26“bceubeyc) )

We will return to these formulas when discussing the conditions for (nr,ng) super-
symmetry in AdSs in section .
3. Gauged N = 16 supergravity

The lagrangian (2.6) is invariant under rigid Eg(s) and local SO(16). To gauge the
theory, we now select a subgroup Gy, C FEjgi) which will be promoted to a local



symmetry. The resulting theory will then be invariant under local Gy x SO(16),
such that (2:1) is replaced by

V(z) — go(z) V(z) h (z), go(x) € Gy, h(z) € SO(16), (3.1)

However, it should be kept in mind that the local symmetries are realized in dif-
ferent ways: as before, the local SO(16) is realized in terms of “composite” gauge
connections, whereas the gauge fields associated with the local Gy symmetry are in-
dependent fields to begin with. Restricting to semisimple subgroups, Gy is properly
characterized by means of its embedding tensor ©,,, which is the restriction of the
Cartan-Killing form 7,,, onto the associated algebra gy. The embedding tensor will
have the form

Oun = Z €j 77533\/ ) (3'2)

j
where n*V nj(\?,)c project onto the simple subfactors of Gy, and the numbers ¢; cor-
respond to the relative coupling strengths. It will turn out that these coefficients
are completely fixed by group theory, so there is only one overall gauge coupling
constant g. Owing to the symmetry of the projectors n) the embedding tensor is

always symmetric:

As discussed in the introduction we introduce a subset of ¥ = dim Gy vector fields,
obtained from (2.14) by projection with ©,,,. For these we introduce special labels
m,n, ..., with the short hand notation

B, "tm = B,M OtV etc. (3.4)

Note that we do not make any assumption about G, at this point; in particular,
our ansatz allows for compact as well as noncompact gauge groups. The possible
choices for Gy will be determined in section §. The first step is the covariantization
of derivatives in (2.2) according to

_ _ S 1
VIDY=V1'9V+gB "V V=PV + igffx”, (3.5)
with gauge coupling constant g. The non-abelian field strength reads
B,™ =0,B" —0,B," +gf"n B,"B.}" . (3.6)

The integrability relations (2.4) are modified to

1
1J 1J ApB m n
QNV_'_EFABPIJ'PV :gB“V @mnv 1J>

2D, P = 9B Omn V"4 . (3.7)

10



With the hidden g dependent extra terms in the definition of the currents in (3.5),
their supersymmetry variations become

1 —A m n
6Q)7 = 3 (TT") P XA + 9(6B,™) OV

573/14 - F,I4A DM(YAGI) + 9(0B,") OmaV"y (3.8)

with the variation of the vector fields given in (2713).

Both modifications violate the supersymmetry of the original lagrangian. In
order to restore local supersymmetry we follow the standard Noether procedure as
in [2], modifying both the original lagrangian as well as the transformation rules by
g-dependent terms. We will first state the results, and then explain their derivation
and comment on the special and novel features of our construction.

The full lagrangian can be represented in the form

L=LO1 04 @ p6) (3.9)

where £ is just the original lagrangian (276), but with the modified currents defined
in (3:5); thus £© and £ differ by terms of order O(g). The contributions £ and
L are likewise of order g and describe the Chern-Simons coupling of the vector
fields and the Yukawa type couplings between scalars and fermions, respectively:

1 1
[,(1) = _Z ge,uvp Bum (aprm + g gfmnp Buanp> I (310)
Y TNy L ABoi
£ — 5ge A{Jqpi o ¢V‘] + ige AéAXA ~H 1% + 596 A{;‘BXA P, (3.11)

where the tensors A;,3 are functions of the scalar matrix ¥V which remain to be
determined. At order O(g?), there is the scalar field potential W (V):

1 Ui
L9 = oW = 2 e (Al — S Atialt). (3.12)

Besides the extra g dependent terms induced by the modified currents, the super-
symmetry variations must be amended by the following O(g) terms:

Sty =ig A7 yue’ Xt =g APt (3.13)

Of course, the above modifications of the lagrangian and the supersymmetry trans-
formation rules have not been guessed “out of the blue”, but at this point simply
constitute an ansatz that has been written down in analogy with known gauged su-
pergravities, in particular the N = 8 theory of [2]. The consistency of this ansatz
must now be established by explicit computation.

The SO(16) tensors Aj; s 3 depending on the scalar fields V introduce Yukawa-
type couplings between the scalars and the fermions beyond the derivative couplings

11



generated by (2.9), as well as a potential for the scalar fields. As is evident from
their definition, the tensors A/ and A47 are symmetric in their respective indices.
Therefore, A7 decomposes as 1 + 135 under SO(16),® viz.

AT = AO§17 4 AL (3.14)

with A7/ = 0, while for Aé‘B we have the decomposition
AGB = ADGAB 4 AdB (3.15)
where 1

4!
Therefore A3 can contain the representations 1 + 1820 + 6435. However, we will see

AAB AgIJKLFIJKL+ A hds

2. 8! 3I..Is~ AB

that the 6435 drops out. Due to the occurrence of the 1820 in this decomposition,
the tensor A cannot be expressed in terms of A; 5 unlike for D =4 and D = 5. The
independence of Aj is a new feature of the D = 3 gauged theory.

Several restrictions on the tensors A;,3 can already be derived by imposing
closure of the supersymmetry algebra on various fields at order O(g). Computing the
commutator on the dreibein field we obtain an extra Lorentz rotation with parameter

Aap = 29A1 Evapey | (3.16)

while evaluation of the commutator on the vector fields and the scalar field matrix
V yields an extra gauge transformation with parameter

m=2V™ Eel +iB," ey ey . (3.17)

The latter induces a further SO(16) rotation with parameter w!’ = gA,,V"7; on V
(as well as the fermions which transform under SO(16)). For the derivation of this
result we need the relations

vy FXA AJ)A =V AT VT AT (3.18)
AP = ve,0,V7, (3.19)

which give the first restrictions on the tensors A; 3. A peculiarity is that the clo-
sure of the superalgebra on B,™ requires use of the duality equation, whereas the
equations of motion are not needed to check closure on the remaining bosonic fields.

Tracing (3.18) over the indices I and J and using the symmetry of A/ we
immediately obtain

I’ A =0. (3.20)

The tensor AgA thus transforms as the 1920 (traceless vector spinor) representation

of SO(16).

3Here and in the following, representations of SO(16) are written with ordinary numbers, while

representations of Eg(g) are given in boldface numbers.
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To state the restrictions imposed on these tensors by the requirement of local
supersymmetry more concisely, we now define the T-tensor

T= VM VY500 - (3.21)

Clearly T4z = T4 by the symmetry of ©. Unlike the cubic expressions in [2] and [4],
however, the T-tensor is quadratic in } due to the equivalence of the fundamental and
adjoint representations for Fgs), see (A.4). The tensors A; 53 must be expressible in
terms of T if the theory can be consistently gauged. The detailed properties of the
T-tensor will be the subject of the following section.

Let us next consider the consistency conditions for local supersymmetry of (3.9)
step by step. All cancellations that are Gy-covariantizations of the corresponding
terms in the ungauged theory will work as before, and for this reason we need only
discuss those variations which have no counterpart in the ungauged theory. Variation
of LM produces only the contribution

1
oL = —de“”de“mBypm :

because the CS term depends on no other fields but B,™. Inserting (2.13) the above
variation can be seen to cancel against the extra terms in the variation of £ arising
in the integrability conditions, cf. (3.7).

A second set of g-dependent terms is obtained by varying B,™ in Q, and P,,
cf. (8:8). Expressing the result by means of the T-tensor, we obtain

€ i € ' K _w 1_
g (2 Trowe® ¥ =i Tguia FQBGI%XB> <"¢y Y+ ZX'V“FKLX) -

_ L _ : —A v
—g (TA|KL equﬁ — §1TA|B FI;BGK%XB> (P“A — XAy ! FQA) )

These terms combine with the variations of the fermionic fields from £ and the
new variations (3:13) in £®. Consideration of the e)P and exP terms now repro-
duces (8.19), but in addition requires the differential relations

I 4DA
DMA{J = PMA F;A A2) )
.1 iz 1
DuAft = 5P (T ALP + T AL ) = SPATE Ty (3.22)

Multiplying the second relation by I, ; and invoking (8.20) yields

1 .
Typ = (AY + AP 645 + Tl 4 T (3.23)

Since I'T®T = 0 there is no 6435 of SO(16) in T4 . However, the argument does
not yet suffice to rule out such a contribution in As.
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As in [2)], the supersymmetry variation of the tensors A; 5 is obtained from (3.22)
by replacing P! by I, ;e x*:

AL = TR BT AP

AL = % DX (T A4S 4T A =T8T ) (3.24)
The tracelessness of AL in (3720) in conjunction with (3:29) also implies that Al
and A:())O) are constant. This is consistent with the fact that the trace parts drop out
from the above variations. Observe that the supersymmetry variation of A3 does not
yet enter at this point as it appears only at cubic order in the fermions.

At O(g?) we get two quadratic identities. The first multiplies the g%ie variations
and is straightforwardly obtained

Ui a 1 a i
AJRART — S AR AJY = = 6T (AFPALT - S AFAARY). (3.25)

The second comes from the g?ye variations: performing the O(g) variations in £®?)
we obtain ' . S

0,£0) = grexctel (~3A1 AP+ agP Al
Varying A;» in the potential, on the other hand, and making use of the above
formulas (3.24) together with (8.20), we arrive at:

_- 3 s L pe e
T 1 (A ALE - AL,

By the tracelessness of AéA we can drop the tildes in this expression, and thus obtain
the second relation

BAAJA — AP AJE = %6 (DT 45 (3475 AP — AJ0AFC), (3.26)
which must be satisfied for local supersymmetry to hold.

Thus, at linear order in the fermions, supersymmetry requires the tensors A; 53
to satisfy the identities (8.18), (8:19), and (8:22)—(8.26). However, these do not
yet constitute a complete set of restrictions. In marked contrast to the D > 4
gauged supergravities, we get further and independent conditions at cubic order in
the fermions. This special feature is again related to the algebraic independence
of the third tensor Az. Although the necessary calculations are quite tedious, we
here refrain from giving details and simply state the results, as the relevant Fierz
technology is (or should be) standard by now. Interested readers may find many
relevant formulas in [22].

The analysis of the (Y1) (1e) terms gives

1

IIK 4L|J
T 26 AN 4T (3.27)

IJ|KL =
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The structure of the r.h.s. of this equation thus restricts 17k to the SO(16) com-
ponents 1, 135 and 1820. Demanding the cancellation of (Xx)(¢¢) terms yields three
more constraints:

0 0 8 j(4
A:(a )+ 2A§ = 0, A:(H)l...lg =0, T[IJ\KL] - 2Ai(’>I)JKL7 (3.28)

such that with (8.19), (8:23), and (8.27) the T-tensor (8.21) may be entirely expressed

g

in terms of the tensors A 5 3:

=268, AY y 26 AN 42 AT

TIJ|KL
I J]A
1 -
Typ = —AV6ap + TR ALY (3:29)

2 - 4!
In particular, the two singlets and the two 1820 representations in 17k and Ty p
coincide. Finally, the analysis of the (Xx)(Xe) terms yields

LB
A (3.30)

1 .
In order to derive this condition and to prove the vanishing of the (3x)(Xe) terms,
one needs the additional Fierz identity, which cannot be derived from the relations

given in [22, appendix]

(REFHMNY) (he!) (DITHHM) 5457 =
= 36 (7" x) (x*ye’) Ayt — 4 (0 TR Ex) (0yeh) TERALP +
+48 (xx) (x*€e") AP — 12 (7, D) (x*ye) THL ALP

The tracelessness of AéA is again crucial in obtaining this result.

Let us summarize our findings. The complete set of consistency conditions en-
suring supersymmetry of the gauged lagrangian (8.9) is given by the linear rela-
tions (B:29), the differential identities (3:22), (8:30), the relation (3.18), and the
quadratic identities (8.25), (8.26). The tensors A; 3 can contain only the SO(16)
representations 1,135,1820 and 1920. Equations (8.29) show that likewise the T-
tensor may contain only these representations. The remarkable fact — which even-
tually allows the resolution of all identities — is that these SO(16) representations
combine into representations of Fg). More specifically, we have

135 + 1820 + 1020 = 3875, (3.31)

while the first relation from (3:28) ensures that the two SO(16) singlets originate
from one singlet of Fjg), such that the full Eg) content of the tensors A;3 is
contained in the FEgs) representations 1 + 3875. Apart from the occurrence of an
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extra singlet, this fusion of tensors into representations of the hidden global Eyq)
takes place already in dimensions D = 4 and D = 5, where the Yukawa couplings
are given by tensors transforming in the 912 of Er 7 [B3] and in the 351 of Eg ) [G],
respectively. We shall come back to this point in the next section.

Perhaps the most unexpected feature of our construction is the fact that the
vector fields appear via a CS term (8.10) in order g, rather than the standard Yang-
Mills term. This has no analog in higher dimensions, where the vector fields appear
already in the ungauged theory via an abelian kinetic term. In hindsight this coupling
of the vector fields turns out to be the only consistent way to bring in the dual
vector fields without introducing new propagating degrees of freedom, and thereby
to preserve the balance of bosonic and fermionic physical degrees of freedom.

The emergence of non-abelian CS terms in the maximally supersymmetric the-
ories naturally leads to a non-abelian extension of the duality relation (2.14)

e“"pgw,m =2eV™, Pra — % eV™ xv'T! x, (3.32)

which consistently reduces to (2.I4) in the limit ¢ — 0. However, in this limit,
the vector fields drop from the lagrangian such that the duality relation (2.14) no
longer follows from a variational principle in the ungauged theory but rather must be
imposed by hand. This can be viewed as a very mild form of the gauge discontinuity
encountered for gauged supergravities in odd dimensions [3, 4, 6. In contrast to
those models however, the lagrangian (8.9) has a perfectly smooth limit as g — 0.

Because of the explicit appearance of the gauge fields on the r.h.s. of the non-
abelian duality relation it is no longer possible to trade the vector fields for scalar
fields and thereby eliminate them, unlike in [28]. Vice versa, the explicit appear-
ance of the scalar fields in the potential of (B) also excludes the possibility to
eliminate some of these fields by replacing them by vector fields. In contrast to the
ungauged theory which allows for different equivalent formulations related by duality,
the gauged theory apparently comes in a unique form which requires the maximal
number of scalar fields together with the dual vectors corresponding to the gauge
group Gj.

Note that unlike in (2:14), the nonabelian duality relation (8:32) may be im-
posed only for those vector fields which belong to the gauge group Gy. Having
gauged the theory, we can no longer introduce additional vector fields as was the
case for the ungauged theory. This is because additional vector fields transforming
nontrivially under the gauge group Gy would acquire mass terms in the gauged the-
ory, entailing a mismatch between bosonic and fermionic degrees of freedom. As a
consequence, (3.32) does not imply the full set of bosonic equations of motion, but
just their projection onto the subgroup Go. However, just as in (2.15) we may deduce
the equations of motion for the vector fields from (3.32) by acting on both sides with
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€D and making use of (8.7):
1
D,B*™ = 2 ge Lerve (Vm "1t VmIJ nIJ) Ok Bupk -

— e tenrp 12" QI 7 4 fermionic terms

2
1
(V Tpa+ V" IJ\A) pra — B e A QII/Z +
+fermionic terms. (3.33)

4. T-identities

In the foregoing section we have derived the consistency conditions which must be sat-
isfied by the tensors A; 5 3 and the T-tensor in order to ensure the full supersymmetry
of the gauged action (8.9). It remains to show that these conditions admit nontrivial
solutions A; »3(V). This will single out the possible gauge groups Gy C Egs). Recall
that in the three dimensional model the choice of gauge group is less restrlcted than
in higher dimensions where the gauge group Gy C G is essentially determined by the
fact that a maximal subset of the vector fields of the theory must transform in its
adjoint representation.

Up to this point, we have made no assumptions on the gauge group Gy C Ey),
which is characterized by its embedding tensor O, cf. (8:3). We will now show
that all the consistency conditions derived in the previous section may be encoded
into a single algebraic equation for the embedding tensor.

According to (8.3), © .y transforms in the symmetric tensor product

(248 x 248),,, = 1 + 3875 + 27000 . (4.1)

The explicit projectors of this decomposition have been computed in [34]

1

(Pl)/vwl“ = 248 77/\/1/\/77
1

1
(P3875)MNKL == 5 N ﬁ) — == mw 77K£ - ﬁ pr(KfPNﬁ) )

56
3 1
(]P)27000)MNKL = 5 5£ Tamn 77“ =+ ﬁ fPM(KfPNL) . (4-2)

7 217
Accordingly, © ., may be decomposed as

@MN — HnMN 4+ @3875 4 @27000 , (43)

with
3875 KL 27000 KL
GMN - (P3875)M/\/’ @KL ) GMN = (P27000)MN ®1c£ .

The T-tensor as it has been defined in (8.21) is given by a rotation of ©,,, by the
matrix V. It may likewise be decomposed

T.s =T}

A|B

73875 4 27000 (4.4)
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with

Tjsm = (P3s75) 45

|5 L = VMV, 0387 etc.

T, \

where the second equality is due to invariance of the projectors under Eggg). Anal-
ogous tensors have been defined in [2] and [@] for the maximally gauged models in
D =4 and D = 5, respectively. Unlike those T-tensors, however, the T-tensor here
is quadratic in V), as already emphasized before.

4.1 The constraint for the embedding tensor

We have seen that supersymmetry of the gauged lagrangian in particular implies the
set of relations (8.29) for the T-tensor. As discussed above, these relations show that
T may only contain the SO(16) representations contained in the 1 4 3875 of Egg).
It follows that equations (8.29) can be solved for A; 53 if and only if

27000
TA\B

=0 < 02700 =9, (4.5)

This is a set of linear algebraic equations for the embedding tensor ©,,,. We stress
once more the remarkable fact that the equations (8.29) combine into an Eg) covari-
ant condition for the T-tensor which makes it possible to translate these equations
into a condition for the constant tensor ©,,,. In particular, each single equation
from (8.29) yields an SO(16) covariant restriction on the T-tensor (8.21) which al-
ready implies the full set of relations (8.29), if it is to be satisfied for all Eg) valued
matrices V.

We shall show in the following sections that (4.5) not only reproduces the lin-
ear equations (B.29) but indeed implies the complete set of consistency conditions
(including the differential and quadratic ones) identified in the last section.*

4.2 Linear identities
Making use of the explicit form of the projectors (4.2), equation (4.5) takes the form

2

Ok = — Orx Ormms + Ouskr) + 9 §%L
1 L
Or54 = - (CiT*) A Op,Ly
1
Oap = 96 T Ok +00ap, (4.6)

and likewise for 7. These equations contain the complete set of linear identities
among different components of the T-tensor. Once they are satisfied, the T-tensor

“Let us stress once more that in addition to (é -3) O must project onto a subgroup. If that
condition is dropped, further solutions to (4 Q) can be found, but the T-tensor would then fail to
satisfy the quadratic identities of section A 4|
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may be entirely expressed in terms of the tensors A; 23 as found in (8.29) above:

——— 1 -
I[K 4L]J
T — 951l Al] 4+ DIIKL A?B,

IJKL — 64 AB
I JJA
TU‘A = FAA Ay
1 ..
Ty = oipg Tai DA A28 + 06,5 (4.7)

These equations may be inverted and give the solution for the tensors A; , 3 in terms
of the T-tensor:

8 1
IJ
A = 2000+ 2 T e
i 1
Ayt = 7 FixA TIJ\A?
AP =206, + B IR T ks (4.8)

4.3 Differential identities

With the linear identities derived in the last section we may now compute the vari-
ation of the tensors A; 23 when V is varied. Since the matrix V lives in the adjoint
representation, its variation along an invariant vector field ¥4 is given by

6VMIJ — _EFIJ VM
5VMB :fBCAVMC — 52‘4 2 AB B (4 9)
2 . .
0% 5VMB _ _1]:‘1'] M
52A - 4 AB 1J

From (4.8) we then obtain

d A7’ 1 IK JK

554 T 14 (FAB Tryp+ 4B TKI\B) ;

AP 11 (s L pany

S3A = EFBA e TB|C’+ §FAB TIJ\MN )

5‘/4343 — _i I‘\I'J'I(L FKL T

52A 48 AB AB “IJ|B"
Rewriting the expressions on the r.h.s. in terms of the tensors A, 5 3 by means of (4.7)
we get

514{”’ (I 4J)A

STA - FAAA2 ’

5A£A 1 M. AIM o I pAB _pI

I ) aa s a3 T “BATAB)>

5145),43 L CIKMN pKMN 416
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This reproduces equations (8.24) and (8.30) from the last section. In particular, we
obtain the covariant derivatives of the tensors A o

I DA
DAl =T AP P

DA = 5 (DY AP + Tl A2% — T4 Ty ) P (4.11)

which coincide with equations (3:22) found before. The variation (4:10) further allows
to compute the variation of the scalar potential (3.12)
0 IJ AIJ TA fIA 1 m MN 4NA AB AMB
(EA(A Al ——A Al ) =T (3A1 ANA _ A48 y) )
which has also been used in the last section. Together with the quadratic iden-
tity (4-20) to be derived below, this yields the condition for stationary points of the
potential

aw
x4

Obviously, a sufficient condition for stationarity is AéA =0.

=0 < 3AMAMA — AdBYIB (4.12)

4.4 Quadratic identities

So far, we have exploited the projector condition (4.5) to derive linear identities in
T

AlB*
built from projectors onto subgroups, cf. (8.3). This can be used to derive further

However, additional information stems from the fact that the tensor ©,,, is

identities quadratic in the tensors A; 3. As we have seen in the previous section,
identities of this type are also needed to ensure supersymmetry of the gauged theory.
Since © ,,, projects onto a subgroup G, C G, it satisfies:

@K(M fN)KI O =0, (4.13)

which follow from closure of Gy and the antisymmetry of the structure constants.
Invariance of the structure constants then implies

@mn V fCD
Evaluate this expression for (A, B) = ([/M], [KM]):

—0. (4.14)

(A B)|D

m IM~yym
AV Tiynmn +TaB ATKM\B_'_FA V% Ty =0,

where the index m is projected onto the subalgebra go. Inserting (4.7) yields

T A =y AN Ly AN (4.15)

and thus the identity (3.18), required above for closure of the supersymmetry algebra
in the gauged theory. If we contract this equation with V", ;-0,,,,, symmetrize in (I.J)
and once more insert (4.7), we obtain

U oaa 1 1 d i
APRALT — = AR AT = = o1 (AREALE - S AFAARY). (4.16)
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This gives already the quadratic identity (8.25). If on the other hand we con-
tract (4.15) with T'% . V"30,,,, We obtain after inserting (4.7)

_ THSMN AN AKPACD — 39 AINAYA 19 (1) 4 AKY AYP — 160 A4 +
+10 AIBAME — (TITK) ;5 AKCABC (4.17)

Evaluating (4.14) for (A, B) = ([IJ], A) and contracting with I'/ ; leads to

L rMNKL m L MNKLpg m
6 (T )ad ATMN\KL 12 (T I') 44 ATMN|KL -
= 7 (T 44V un TJK|A 7 F V MK|A+
8 K m 1 J m
+ 7 TaiVa TJM|MK + 14 ThiV™a TMN|MN ’ (4.18)

again, if the index m is projected onto the subalgebra gy. To obtain the desired iden-
tity, we contract this equation with V™ ;0,,, and insert (4.7). After some calculation
we arrive at
1 . .
calen " TAE AFPASD = 64 AINANA — 4 (D15 1 ARV AN — 160 ALY —
— 22 ALBALE 4 (TITK) ;5 AKCABC (4.19)

Equating (4.1%) and (4.19), we finally obtain

1

BAI AP — AP AP = — (DY) (3A{KA§<B - AgCAfc) . (4.20)

We have thus shown that the condition (4.5) together with the fact that ©

projects onto a subalgebra implies the quadratic identities (4.16) and (4.20) which

coincide with (3.25), (8.26) found above. Altogether, we recover in this fashion all
the identities required in section B from the single projector condition (4.5) for the

embedding tensor O, .

5. Admissible gauge groups G|

Having reduced the consistency conditions required by local supersymmetry to a set
of algebraic conditions (4.5) for the embedding tensor of the gauge group Gy C G,
we must now ascertain that this condition admits non-trivial solutions and classify
them. This is the objective of the present section. As we will see the variety of
solutions of (4.5), each of which gives rise to a maximally supersymmetric gauged
supergravity, is far richer than in dimensions D > 4.

The power of equation (4.5) is based on its formulation as a single projector
condition in the tensor product decomposition (4.1). This permits the construction
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of solutions by purely group theoretical means. To demonstrate that these methods
also clarify the structure of the T-identities in D > 4, we derive the analog of (4.5)
to re-obtain the results of [2] and [6]. Group theoretical arguments then show im-
mediately that the gauge groups SO(8) and SO(6), respectively, solve the relevant
equations. In particular, this provides a unifying argument for the consistency of all
the noncompact gaugings found subsequently in [3H, 36, .

The analysis for three dimensions turns out to be more involved, but extending
the above arguments we arrive at a variety of admissible gauge groups. There is
a regular series of gauge groups SO(p,8 — p) x SO(p,8 — p) including the maximal
compact SO(8) x SO(8), and several exceptional noncompact gauge groups, summa-
rized in table 2 below. Still this is not a complete classification of admissible gauge
groups, as we restrict the analysis of compact and noncompact gauge groups to the
maximal subgroups of SO(16) and Ejgs), respectively. We leave the exploration of
smaller rank gauge groups to future work.

5.1 T-identities and gauge groups in higher dimensions

As a “warm-up” let us first apply our techniques to the gauged maximal super-
gravities in D = 4,5. This will allow us to shortcut the derivation of the (linear)
T-identities given in the original work.

5.1.1 D=4

Like (4.4), the D = 4 T-tensor is obtained from a constant Gy-invariant tensor © by
a field dependent rotation with the matrix V € E;(7) in the fundamental representa-
tion. The constant tensor © there transforms in the product of the adjoint and the
fundamental representation

56 x 133 = 56 + 912 + 6480, (5.1)

of E7(7),5 such that T is cubic rather than quadratic in the matrix entries of V.
Computations similar to those presented in the last section then show that full su-
persymmetry of the gauged lagrangian is equivalent to

T =72 « ©=0°2 (5.2)

providing the analogue of (4.5). It is now straightforward to see that Gy = SO(8)

(4.7
indeed gives a solution to (5.2): consider the decomposition of (5.1) under SO(8):5

56 — 228,
912 - 2-1+2-35,+2-35,4+2-35,+ -,
6480 — 6-28+2-35,+2-35,+2-35,+ - - . (5.3)

5Tt is only for Ejy(s) that the fundamental representation coincides with the adjoint representation
and the tensor © hence coincides with the embedding tensor of the group Gy.
SLiE [:_%ﬁ] has been very helpful to quickly determine these decompositions.
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As the singlets appear only in the 912, any SO(8) invariant tensor in (5.1) automat-
ically satisfies (5.4). The same argument proves the consistency of the noncompact
SO(p, 8 — p) gaugings found in [36]. As shown in [38] equation (5.2) indeed contains
no other solutions than those found in [2, 86].

5.1.2 D=5

For D = 5, the constant tensor © transforms in the product of the adjoint and the
fundamental representation

27 x 78 = 27 + 351 + 1728, (5.4)

of Eg). Rotation by V in the fundamental representation of Eg) converts © into the
T-tensor, cubic in the matrix entries of V. Supersymmetry of the gauged lagrangian
then is shown to be equivalent to

T=T%" — ©0=65%", (5.5)

in analogy with (4.5) and (5.2). Again, it is straightforward to see that Gy = SO(6)
yields a solution to (5:5): under SO(6), (5.4) decomposes as
27 - 2-6+ 15,
351 > 1+2-6+2-10+2-104+4-15+---,
1728 - 10-6+2-10+2-10+9-15+--- . (5.6)
Now the singlet appears only in the 351, hence there is just one SO(6) invariant tensor

in (5.4) which automatically satisfies (b.5). As before, this argument generalizes to
all the noncompact gauge groups found in [6].

5.2 Compact gauge groups

Let us now come back to (4.5). We will first consider compact gauge groups Gy C
SO(16). Their embedding tensors satisfy

O©rj4a=0=045; (5.7)
the only nonvanishing component is Ok, which under SO(16) decomposes as
Orsxr ~ 1+ 135+ 1820 + 5304. (5.8)

According to (3.31), the 5304 is part of the 27000 and must vanish for (4.5) to be
satisfied. From (4.6) it further follows that the 1 and the 1820 coincide with the
corresponding parts in © 4 p and thus must vanish due to (5.7%). Hence, for compact
G, only the 135 representation survives, and the condition (4.5) reduces to

- o 7 -
Orxr = 1k Enys with Zp; = 3 Orxr, Zmr=0. (5.9)

The tracelessness of © in particular rules out any simple compact gauge group.
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In principle, the elementary form of the constraint (5.9) should allow a complete
classification of the possible compact gauge groups; however, in the following, we
restrict attention to the maximal subgroups of SO(16). They are

SO(9), SO(5) xSO(5), SO(3)x USp(8),
and SO(p) x SO(16 —p), for p=0,...,8. (5.10)

A necessary condition for a compact gauge group to be admissible immediately fol-
lows from (5.9): there must exist a Gy-invariant tensor =;; in the 135 of SO(16). In
other words, there must be a singlet in the decomposition of 135 w.r.t. Go. From the
maximal subgroups (5.10) this already rules out the first three. It remains to study
the SO(p) x SO(16 — p). These groups have a unique invariant tensor in the 135:

where 4,7 = 1,...pand i,j = p+1,..., 16 denote the splitting of the SO(16) vector

indices I, and the relative factor between Z;; and =7 is determined from tracelessness.
By (5.9), the tensor Oy, k1, satisfying (4.5) is

ij ij 1
Oijm = (16 —p) by, Om=—poy, O = 5(8 =) 0 07

However, due to the nonvanishing mixed components O 7, this tensor coincides
with the embedding tensor of SO(p) x SO(16 —p) if and only if p = 8. Hence we have
shown that the only maximal subgroup of SO(16) whose embedding tensor satisfies
the condition (4.3) is

Go = SO(8) x SO(8) C SO(16), (5.12)

where the ratio of coupling constants of the two factors is g;/go = —1; in particular
the trace part 6 of ©,,, vanishes. Combining this with the results of the previous
sections, we have thus shown the existence of a maximally supersymmetric gauged
supergravity with compact gauge group Go = SO(8) x SO(8). Under G, the scalar
degrees of freedom decompose as

120 — (1,28) +(28,1) 4+ (8,,8.), 128 — (8,,8,) + (8, 8s), (5.13)
while the spinors split into
16 — (1,8.) + (8,1), 128 — (8,,85) + (8¢, 8,) - (5.14)

Amongst other things we here recognize the standard decomposition of the on-shell
ITA supergravity multiplets in terms of left and right moving string states.
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5.3 Regular noncompact gauge groups

In order to identify the allowed noncompact gauge groups, we first recall that for the
maximal gauged supergravity in D = 4, several noncompact gaugings were found by
analytic continuation [35, B6]. The noncompact gauge groups are thus alternative
real forms of the complexified gauge group SO(8,C), and the consistency of the
noncompact gaugings was basically a consequence of the consistency of the original
theory [2] with compact gauge group. The results of the last section suggest that
analogous gaugings should exist for the different real forms of (5.12).

also contained in Fg(g) are given by
Go=S0(p,8 —p)V xSO(p,8 —p)?®, forp=1,...,4. (5.15)

They are embedded in Egs) via the maximal noncompact subgroup SO(8,8). There-
fore the latter group is the analogue of the subgroups SL(8,R) C Er7;y in D = 4
and SL(6,R) x SL(2,R) C Eg) in D = 5. To further illustrate the embedding, we
have denoted the two factors of Gy by superscripts (1), (2) whereas we denote the
two factors of (5.12) by subscripts r,r. The maximal compact subgroup of (5.15) is
given by

Hy=HY x H®
= (S0} xS0 - i) x (S0 xs0E-p)f),  (5.16)

with

S
N
2]
o
—~
oo
~—
~

HY cS0(p,8 - p)V, SO(p)} x SO(8 — p)
H® c S0(p,8 —p)@, SO(p)y x SO(8 —p)Y € SO(8)z.

The embedding of Hy into SO(8), x SO(8)r is the standard one, without any triality
rotation. In other words, the 8, of SO(8),, decomposes into (p,1) + (1,8 — p) under
SO(p) x SOB — p)?, ete.

Consistency of the gauged theories with noncompact gauge groups (5.15) could
in principle be shown in analogy with [36, B9] by the method of analytic continuation.
Alternatively, their consistency follows from an algebraic argument along the lines
of the last section by use of our form of the consistency condition (4.5). This gives
the analogue of the noncompact gaugings found in higher dimensions [BG, §].

5.4 Exceptional noncompact gauge groups

Next, we discuss noncompact gauge groups which unlike the groups identified in
(5:15) do not share the same complexification with any compact subgroup contained
in Eg(s). Their existence is again a consequence of the absence of any a priori restric-
tion on the number of vector fields in three dimensions.
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These noncompact solutions to (4.5) may be found by a purely group theoretical
argument. As an example, consider the maximal subgroup Gy = G(2) X Fy4). Under
Gy the adjoint representation of Egg) decomposes as

248 — (14,1) + (1,52) + (7, 26) . (5.17)

Accordingly, the symmetric tensor product (4.1) contains three singlets under Gy,
and the Cartan-Killing form of Egg) decomposes into three Gy-invariant tensors:

(14,1)

1,52
Nunv = Maw T 77( )

+ ) (5.18)
More precisely, each of the three terms on the r.h.s. of (4.) contains exactly one
singlet under Gy [37]. Consequently, there is a linear combination

i + aa il + s il

which lies entirely in the 3875. Subtracting a proper multiple of the Ejg) sin-
glet (5.18), we find that

Orn = (o1 — ag) " + (a2 — az) 1y (5.19)
satisfies (4.5). This is the embedding tensor of Gy = G2y X Fyu) with a fixed ratio
of coupling constants between the two factors, which solves (4.5) and (4.13). The
results of the last section then prove the existence of a maximally supersymmetric
gauged theory with gauge group Ga) X Fy.

The same argument may be applied to other noncompact subgroups of Egs). A
closer inspection of the above proof reveals that only two ingredients were needed,
namely (i) that the gauge group G, consists of two simple factors and (ii) that
the Fjg(s) representations 3875 and 27000 each contain precisely one singlet in the
decomposition under G. As it turns out, this requirement is also met by the noncom-
pact groups Er(7) X SL(2), Eg) x SL(3), and all their real forms which are contained
in Egig). The hst of exceptional noncompact subgroups passing this test, together
with their maximal compact subgroups is displayed in table 2.

There are also real forms of these exceptional gauge groups — the compact forms
of By for d = 6,7,8, and the real forms Eg(_s4), E7(—25) and Eg(_26) — which are not
contained in Fg) and thus do not appear in this list. However, every real form
that may be embedded in Fgg) gives rise to a maximally supersymmetric gauged
supergravity. The “extremal” noncompact solution to (4.5) is given by the group
Go = FEgg) itself, in which case O, reduces to the Cartan-Killing form 7,

To complete the construction of the theories with gauge groups given in table 2,
it remains to compute the ratio of coupling constants between the two factors of G
which came out to be fixed to a specific value in (5.19). To this end, let us consider
the general situation of a gauge group with two simple factors Gy = GV x G® | such
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Go=GW x Gg? ‘ maximal compact subgroup Hy = HY x H®) ‘

Go2) X Fya (SU(2)r x SU(2)g) x (SU(2);, x USp(6)r)

G2 X F4(,20) (GQ)L X SO(9)R

FEg(6) % SL(3) USp(8)r x SU(2),
FEg@y x SU(2,1) (SU(6)r x SU(2)g) x (SU(2)r x U(1)1)
Eg(—14y x SU(3) (SO(10), x U(1)g) x SU(3)r

Er7) x SL(2) SU8), x U(1),

Er_5 x SU(2) (SO(12), x SU(2)r) x SU(2)r

Exgs) SO(16);,

Table 2: Exceptional noncompact gauge groups and their maximal compact subgroups.
The subscripts £ and R refer to the AdS supergroups G, x G associated to the maximally
supersymmetric groundstates of these theories, see section 6.

that its maximal compact subgroup likewise factors as Hy = H® x H®. Denote
the embedding tensor of G by

9Onn = G115 + G2 (5.20)

where nM® are the embedding tensors of GV respectively, and assume that
(5.20) satisfies (4.5). Equation (5.19) was a particular case satisfying these assump-
tions. Contracting (5.2(0) with n* yields

g0 dim Eg(g) = g; dim GY + gy dim G? |

where the Lh.s. follows from (4.3). On the other hand, contracting (5.20) with n! <~
over the compact part of Egs) gives

g0 dim SO(16) = g; dim HY + g, dim H® |

where the Lh.s. here follows from (4.6) — and is a consequence of the fact that due
to (4.5) the only SO(16) singlet in ©,,, is given by the first term in (4.3).

From the last two equations one may extract the coupling constants g, g» of the
two factors of the gauge group. Their ratio is

g1 15dimG® — 31dim H®
g2 15dimG® —31dim H® °

(5.21)

With the gauge groups and their compact subgroups given in table 2 we then imme-
diately obtain the ratios of coupling constants for all these groups. In particular, no
degeneration occurs where this ratio would vanish or diverge. In table 1} displayed in
the introduction, we have presented a list of all the noncompact admissible subgroups
Go C Eg) , together with their coupling constant ratios. Remarkably, the ratios
as determined by (5.21) come out to be independent of the particular real form for
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each of these exceptional noncompact groups. This suggests that the theories whose
gauge groups are different real forms of the same complexified group may be related
by analytic continuation, in a similar fashion as the SO(p,8 — p) gaugings of the
D = 4 theory are related via SO(8,C) [B5, 36, 89]. Here, the analytic continuation
would have to pass through the complex group Fg(C).

This concludes our discussion of admissible gauge groups. We note that in ad-
dition to the groups identified in this section there should also exist non-semisimple
gaugings analogous to the theories constructed in [B5, 36, 89, 40]. We leave their
exploration and complete classification for future study.

6. Stationary points with maximal supersymmetry

The point of vanishing scalar fields, i.e. ¥V = I, plays a distinguished role: it is
a stationary point with maximal supersymmetry for all the theories we have con-
structed. Recall that the condition for stationarity was already spelled out in (4.1%).
At V = I, the gauge group Gy is broken to its maximal compact subgroup H,. For
the compact gauge group (5.19), the tensor AZ4 vanishes at this point, since © has
no contribution in the noncompact directions, cf. (4.8) and (5.7). Hence, (4.12) is
satisfied; the compact gauged theory has a G invariant stationary point at V = I.
For the noncompact real forms (5.15), the decomposition (5.14) implies that there is
no Hy-invariant tensor in the tensor product 16 x 128; hence, AéA vanishes also in
these theories at V = I. The same argument works also for the exceptional noncom-
pact gauge groups from table I, In summary, all the three-dimensional theories we
have constructed share the stationary point V = I.

If we denote by v = dim Gy and k£ = dim H|, the dimension of the gauge group and
its maximal compact subgroup, respectively, the field equations (3.33) imply that for
VY = [ the vector fields split into v — k massive self-dual vectors and a Hy-CS theory
of k vector fields which do not carry propagating degrees of freedom. In this way,
the erstwhile topological vector fields corresponding to the noncompact directions
in Gy acquire a mass term by a Brout-Englert-Higgs like effect as observed in [41].
Dropping the massive vector fields as well as the matter fermions, the theory then
reduces to a Hy-CS theory, coupled to supergravity. Since the AdS; (super-)gravity
itself allows the formulation as a CS theory of the AdS group SO(2,2) [11, 25], the
resulting theory is a CS theory with connection on a superextension of Hyx SO(2,2).
We shall determine these supergroups in the following.

In order to analyze the residual supersymmetries at the stationary point V = I in
a little more detail, we consider the Killing spinor equations, derived from (2.5), (3.13)
in absence of the vector fields:

1
0= 8u61 + 3 iy, (A,°6" —2ge,* Al7) €, (6.1)

0=AAe. (6.2)

28



Adapting the arguments of [6] to the present case, it may be shown that (6.1) in fact
implies (6.9). Namely, comparing (6.1) to (2.18) we find that every solution to (6.1)
corresponds to the product of an AdS; Killing spinor and an eigenvector € of the
real symmetric matrix Al/; the eigenvalue a; of Al7 is related to the AdS radius by

2¢g|a;| =m. (6.3)
On the other hand, the Einstein field equations derived from (8:9) imply that
R,uu = 4VVO Guv (64)

where W, is the value of the potential (8:13) at the critical point. From (2:I7) we
infer the relation m? = 2W,. Given the eigenvector €} of Al with eigenvalue «;, we
contract (B:25) with €/ to obtain

(2¢9°cf —Wo) el =g° AéAAgAeo‘]. (6.5)

If «; satisfies (6.3), this equation indeed implies (6.2). As in higher dimensions, the
number of residual supersymmetries therefore corresponds to the number of eigen-
values o; of Al satisfying (6.3). Conversely, equation (535) shows that A4 = 0 is
a sufficient condition for a maximally supersymmetric ground state: all eigenvalues
of the tensor A!7 then satisfy (6.3), splitting into 16 = ny, + np with positive and
negative sign, respectively. Altogether, we have thus shown that all the theories with
noncompact gauge groups from (5.15) and table 1} possess a maximally supersym-
metric ground state at ¥V = I. This is in marked contrast to the higher-dimensional
models, where several of the noncompact gaugings do not even admit any stationary
points [B5, 56, 3.

Not unexpectedly, the background isometries of these groundstates are superex-
tensions of the three-dimensional AdS group SO(2,2). Since SO(2,2) = SU(1,1), x
SU(1, 1)y is not simple, they are in general direct products of two simple supergroups
G xGRr. Accordingly, the sixteen supersymmetry generators split into N = (np, ng),
such that the groups Gp g are ny r superextensions of the SU(1,1). r with bosonic
subgroups

GL,RDH[“RX SU(l,l)LR. (66)

A list of possible factors G, g based on the classification [42, 43] is given in [19].

To determine the AdS supergroups G X Gg corresponding to the maximally
supersymmetric ground state of the theory with gauge group Gy, one must identify
the groups Hp r among the simple factors of its maximally compact subgroup Hy,
such that Hy = Hy X Hg. This basically follows from the decomposition of the
sixteen supercharges under H,. Note that Hj is not necessarily entirely contained
in one of the two factors of the semisimple gauge group Go. Rather we find that in
the two factorizations

HY x H® = Hy = H, x Hg, (6.7)

the subfactors are distributed in different ways among the two factors. This has been
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‘ gauge group Gg ‘ N = (ng,ng) ‘ background supergroup Gy x Gg ‘
SO(8) x SO(8) (8,8) OSp(8|2,R) x OSp(8|2,R)
SO(7,1) x SO(7,1) (8,8) F(4) x F(4)

SO(6,2) x SO(6, 2) (8,8) SU(4[1,1) x SU(4[1, 1)
SO(5,3) x SO(5,3) (8,8) OSp(4*]4) x OSp(4*|4)
SO(4,4) x SO(4, 4) (8,8) [DY(2,1;—1) x SU(2[2)]
Gy % Figa (4.12) | D'(2,,—2/3) x OSp('[6)
Gy x Fy_a0) (7,9) G(3) x OSp(9|2,R)

FEg) x SL(3) 16, OSp(4*|8) x SU(1,1)

(16,0)
Es2) x SU(2,1) (12,4) | SU(6]1,1) x D(2,1;-1/2)
Eg_14) x SU(3) (10,6) | OSp(10[2,R) x SU(3|1,1)
Er(y x SL(2) (16,0) | SU(8|1,1) x SU(1, 1)
(12,4)
)

Er_s) x SU(2) 0Sp(12[2,R) x D(2,1; —1/3)
Ess) (16,0 0Sp(16[2,R) x SU(1, 1)

Table 3: Background isometries of the maximally supersymmetric ground states.

made explicit in (5.16) and table 2, respectively, by designating the simple factors of
H, with the corresponding sub- and superscripts. In fact, the only gauge groups for
which the two factorizations (6.7) coincide are the compact group (5.12), the group
Gy X Fy_90) from table 2, and the gauge group Ejys) itself. For the noncompact gauge
groups Fge) x SL(3), E7(7y X SL(2), and Eg), we find Hy = Hy, i.e. G reduces to
its purely bosonic AdS part SU(1,1)g. Another particular situation arises for the
noncompact gauge group SO(4,4) xSO(4, 4), where the supergroups G, g themselves
are not simple but direct products of two supergroups, respectively.

The complete list is given in table 3, where we have summarized the background
isometries of the maximally supersymmetric stationary point ¥V = I for all the three-
dimensional gauged maximal supergravities constructed in this article.

Let us emphasize that this table presumably represents only the tip of the ice-
berg as we expect there to be a wealth of stationary points with partially broken
supersymmetry for “small” gauge groups Gy C Eg(s). On the other hand, for “large”
gauge groups stationary points will be more scarce. As a special example, consider
the extremal theory with noncompact gauge group Egg), for which the potential
becomes just a (cosmological) constant, and does not exhibit any stationary points
besides the trivial one. In this case ¥V = I may always be achieved by gauge fixing
the local Eg(s) symmetry. Even after this gauge fixing, by which the scalar fields have
been eliminated altogether, there still remains the “composite” local SO(16) invari-
ance rendering 120 vectors out of the 248 vector fields unphysical. Accordingly, the
theory in this gauge may be interpreted as an SO(16) Chern-Simons theory coupled
to 128 massive selfdual vector fields, each of which represents one physical degree of
freedom. In other words, with respect to the ungauged theory, the propagating de-
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grees of freedom have been shifted from the scalar fields to massive selfdual vectors.
This is in fact an extremal case of the mechanism required for gauging higher dimen-
sional supergravities in odd dimensions [44, 8, 4, 6] whereby massless £ — 1 forms in
a 2k + 1 dimensional space-time upon gauging turn into massive selfdual k-forms.
As discussed above, truncating the massive vector fields together with the matter
fermions, the theory reduces to the OSp(16/2,R) theory of [11] and reproduces its
(16, 0) supersymmetric ground state.

It will be most interesting to study the boundary theories associated with the
gauged supergravities. The background isometries given in table & determine the su-
perconformal symmetries of the theories on the AdS; boundary. The chiral algebras
are obtained by hamiltonian reduction of the current algebras based on the AdSs
supergroups G and Gp, respectively (see [45] for a discussion and a translation
table). For instance, the boundary theory of the superextended Chern-Simons theo-
ries [11] is described by a super-Liouville action with SO(n) extended superconformal
symmetry [46, 47]. The maximal gauged supergravities (8.9) then introduce addi-
tional scalar and massive vector degrees of freedom, respectively, which propagate in
the bulk.

7. Outlook: a higher dimensional ancestor?

As already pointed out in the introduction there appears to be no way to obtain
the gauged models constructed in this paper by means of a conventional Kaluza
Klein compactification, because the latter would give rise to a standard Yang-Mills-
type lagrangian with a kinetic term for the vector fields, instead of the CS term
that was required here. Moreover, D = 11 supergravity does not admit maximally
supersymmetric groundstates of the type AdSs; x Mg (see e.g. [48]), and even if it
did, there simply are no 8-manifolds Mg whose isometry groups would coincide with
the gauge groups Gy that we have found (since there are no 7-manifolds with these
isometries either, the arguments a fortiori also excludes type-IIB theory as a possible
ancestor). Nonetheless all these gauged models constitute continuous deformations
of the original N = 16 theory of [22], which itself is derivable by a torus reduction
of D = 11 supergravity. The situation is therefore quite different from the one in
dimensions D > 4 where the gauged theories do emerge via sphere compactifications
of D = 11 supergravity.” This raises the question whether there exists a higher-
dimensional ancestor theory that would give rise to these theories, and if so, what it
might be. While we have no answer to this question at the moment, we would like
here to offer some hints.

"For the AdS, x S7 compactification this was rigorously shown in ['ﬁf{_j], while for the AdS; x S*
a complete proof was given more recently [‘5()‘] By contrast, the full consistency of the AdSs x S°
truncation of IIB supergravity remains an open problem despite much supporting evidence, see |}§-]_:]
and references therein.
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Obviously, a crucial step in our construction was the introduction “by hand” of
up to 248 vector fields B, subject to the transformation rules

B M = =2V ey + il VM eyt

As mentioned before, for the 36 vector fields associated with the 36 commuting
nilpotent directions in the Egg) Lie algebra, this formula can be derived directly
from eleven dimensions [32]. Owing to the on-shell equivalence of vectors and scalars,
vector fields can be added with impunity in three dimensions, but in extrapolating
this step to eleven dimensions we seem to run into an obstacle, because extra vector
fields would normally introduce new and unwanted propagating degrees of freedom.
Nevertheless, the evidence for a generalized vielbein in eleven dimensions presented
in [b2, 53, B2], and the fact that a consistent gauging in three dimensions based
on this extrapolation does exist, prompt us to conjecture that all 248 vector fields
introduced here have an eleven-dimensional origin. In [B2] it was observed that the
physical bosonic degrees of freedom can be assembled into a 248-bein, which is just
the lift of the Fg(s) matrix ) to eleven dimensions. Assuming that there are indeed
248 vector fields, all bosonic fields would thus naturally fit into a (34248)-bein

eﬁa BuMVMA
0 Vot ’
which would also incorporate the three-form degrees of freedom and would replace
the original elfbein of D = 11 supergravity

e, B.Men”
S

The latter is just an element of the coset space GL(11,R)/SO(1,10) in a special
gauge where the tangent space symmetry is broken to SO(1,2) x SO(8). However, an
analogous interpretation of the above (3+248)-bein remains to be found. Amongst
other things, it would require replacing the action of the global Egi) on the 248-
bein V,,* by some new type of general coordinate transformations, in the same way
as GL(11) is replaced by diffeomorphisms in the vielbein description of Einstein’s
theory [32]. The gauge groups found in the compactification to three dimensions
would then emerge as “isometry groups” in a suitable sense. We also note that
for the tangent space group we have the embedding SO(1,2) x SO(16) C OSp(32),
but there is no simple group generalizing GL(11) that would contain GL(3) x Egs)
and yield the right number of (bosonic) physical degrees of freedom upon division
by OSp(32) (see, however, [b4] for an alternative ansatz based on the embedding
OSp(32) C OSp(64[1)).

The challenge is therefore to find a reformulation of D = 11 supergravity in
terms of the above (3+248)-bein and an action, which must still describe no more
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than 128 massless bosonic physical degrees of freedom, despite the presence of new
field components in eleven dimensions. The only way to achieve this appears to
be via a CS-like action in eleven dimensions that would encompass all degrees of
freedom, and thus unify the Einstein-Hilbert and three-form actions of the original
theory.® In making these speculations we are encouraged by the fact that, at least
in three dimensions, the dreibein e,“, the gravitinos ¢£ and the vector fields are all
governed by CS-type actions.

A. Eyi) conventions

The Egi) generators t* are split into 120 compact ones X7/ = —X7! and 128
noncompact ones Y4 with SO(16) vector indices I,J,... € 16, spinor indices
A, B,... € 128, and the collective labels A, B,... = ([IJ], A),.... The conjugate

SO(16) spinors are labeled by dotted indices A, B, ... In this SO(16) basis the totally
antisymmetric Fg(s) structure constants f#°¢ possess the non-vanishing components

1
I[K ¢L|J J, A, B J
lJ, KL,MN __ %) [ ) }N? fI D — ] I!B‘ (Al)

Ey(s) indices are raised and lowered by means of the Cartan-Killing metric

1 1
AB — T tAtB — _ A BCD A2
with components n48 = §48 and n!/ KL = —26L7, . When summing over antisym-

metrized index pairs [IJ], an extra factor of 1/2 is always understood. Explicitly,
the commutators are

[XIJ’XKL] _ 451K x L) ’

1
(X1 ¥ 4 = 5Ty,

1
YA YE] = ZF%BX” : (A.3)

The equivalence of the fundamental and the adjoint representations of Eg) plays
an important role in our considerations; it is expressed by the relation

VIV SV e V= ST (VYT (A.4)

Further formulas concerning the Eg) Lie algebra, which will be used in this paper
can be found in [34, 32].

Let us finally point out that in the main text we use collective labels A, B, ... and
M, N, ... for the Egg) matrix V', defined in (A.2), to distinguish the transformation
of these indices under the left and right action of Egiy and SO(16), respectively,
according to (2.1). Likewise, O,y is an Eg() tensor whereas T, transforms under
the local SO(16), cf. (3.21).

8We are aware that the idea of reformulating D = 11 supergravity as a CS theory is not entirely

new. However, the present ansatz is evidently very different from previous attempts in this direction.
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