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Université de Tours

Parc Grandmont, 37200 Tours,France

E-mail: nicolis@celfi.phys.univ-tours.fr

Abstract: We establish the phase diagram of the five-dimensional anisotropic

abelian Higgs model by mean field techniques and Monte Carlo simulations. The

anisotropy is encoded in the gauge couplings as well as in the Higgs couplings.

In addition to the usual bulk phases (confining, Coulomb and Higgs) we find

four-dimensional “layered” phases (3-branes) at weak gauge coupling, where the lay-

ers may be in either the Coulomb or the Higgs phase, while the transverse directions

are confining.

Keywords: Field Theories in Higher Dimensions, Lattice Quantum Field Theory,

Lattice Gauge Field Theories, Brane Dynamics in Gauge Theories.

mailto:pdimop@central.ntua.gr
mailto:kfarakos@central.ntua.gr
mailto:kutsubas@central.ntua.gr
mailto:altes@cpt.univ-mrs.fr
mailto:nicolis@celfi.phys.univ-tours.fr
http://jhep.sissa.it/stdsearch?keywords=Field_Theories_in_Higher_Dimensions+Lattice_Quantum_Field_Theory+Lattice_Gauge_Field_Theories+Brane_Dynamics_in_Gauge_Theories
http://jhep.sissa.it/stdsearch?keywords=Field_Theories_in_Higher_Dimensions+Lattice_Quantum_Field_Theory+Lattice_Gauge_Field_Theories+Brane_Dynamics_in_Gauge_Theories


J
H
E
P
0
2
(
2
0
0
1
)
0
0
5

Contents

1. Introduction 1

2. Formulation of the model 2

3. Mean field approach 6

4. Monte Carlo results 13

4.1 Fixed ζ 13

4.2 Running ζ 16

5. Conclusions 19

1. Introduction

The phase structure of theories with only global symmetries turns out to be insen-

sitive to anisotropies in their couplings — e.g. the Ising model has the same critical

properties on a square as well as on a rectangular lattice. For gauge theories, how-

ever, anisotropy turns out to lead to radical changes in the phase diagram. In four

dimensions this implies breakdown of Lorentz invariance and is therefore physically

uninteresting; for theories in higher dimensions, however, this objection no longer

holds. Since all attempts towards unification involve theories defined in more than

four dimensions, it is of interest to explore the phase structure of such theories in

order to find four dimensional theories that are physically interesting. Until now

the general approach has been a (4+n) dimensional space-time with n compactified

dimensions; the vacuum is of the form M1,3×Xn, where M1,3 is four-dimensional
Minkowski space-time and Xn is an internal compact space. Four-dimensional grav-

ity exists as long as the volume of the internal space is finite. The models with

non-compact internal spaces usually suffer from naked singularities. However, there

are also cases, where such singularities have a physical interpretation as is the case

of delta-function singularities whose physical meaning invokes extended structures,

such as domain walls and strings. This is the case in the Randall-Sundrum (RS)

model, where the singularities may be interpreted as a four-dimensional domain
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wall, a three-brane, embedded in a five dimensional bulk [1]. In that case, although

the internal space may be non-compact, a four-dimensional graviton exists and it is

localized at the three-brane. However there are interesting subtleties to this picture

that have recently been the topic of intense study [2].

The question one would now like to answer is, whether localization on the 3-

brane exists for other fields, like gauge fields, fermions and scalars. In searching for

localized four-dimensional fields, the equations of motion of the bulk fields which are

coupled to the background geometry are solved [3]. These equations have solutions

which represent localized four-dimensional massless and/or massive fields for scalars

and fermions. For gauge fields things are more complicated — cf. the recent paper

by Kehagias and Tamvakis in ref. [3].

In our study we wish to explore non-perturbative features, so we define our the-

ory on the lattice and use Monte Carlo simulations to study the phase diagram of

gauge fields coupled to scalars in five dimensions. In order to acquire an intuitive

understanding we shall also use mean field theory. Both have already shed consid-

erable light for the case of pure gauge theories [4]–[7] as well as when fermions are

included [6]. A new phase has been discovered in the pure U(1) gauge theory in 5 di-

mensions, where four dimensional “layers” in the Coulomb phase are separated from

each other by a confining force. In particular, the transition from the five-dimensional

confining phase to the layered phase turns out to be of second order [7, 8], implying

the existence of new continuum theories (for suggestions in these directions cf. [9]).

These features survive when fermions are introduced as well [6, 8].

In what follows we shall present evidence for the existence of a new layered phase:

the layers may be in the Higgs phase, separated from each other by a confining force.

A preliminary, three-dimensional, version of this model has already appeared in [10]

in connection with a possible application to condensed matter 2-D systems in strong

magnetic fields.

The plan of the paper is as follows: in section 2 we write down the model and we

recall the phase diagram for the pure U(1) gauge theory. In section 3 we use mean

field theory to map out the phase diagram and study the order of the transitions

between the different phases when scalar matter is included; in section 4 we use Monte

Carlo simulations to go beyond the limitations of the mean field approximation and

to characterize the possible phase transitions more precisely.

2. Formulation of the model

The model under study is the abelian Higgs model in the five-dimensional space.

Direction 5̂ will be singled out by couplings that will differ from the corresponding

ones in the remaining four directions.
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We proceed with writing down the lattice action of the model.

S = β
∑
x

∑
1≤µ<ν≤4

(1− cosFµν(x)) + β ′
∑
x

∑
1≤µ≤4

(1− cosFµ5(x)) +

+βh
∑
x

Re[4ϕ∗(x)ϕ(x)−
∑
1≤µ≤4

ϕ∗(x)Uµ̂(x)ϕ(x+ µ̂)] +

+βh
′∑
x

Re[ϕ∗(x)ϕ(x)− ϕ∗(x)U5̂(x)ϕ(x+ 5̂)] +

+
∑
x

[(1− 2βR − 4βh − βh′)ϕ∗(x)ϕ(x) + βR(ϕ∗(x)ϕ(x))2] , (2.1)

where

Fµν(x) = Aµ(x) + Aν(x+ µ̂)− Aµ(x+ ν̂)−Aν(x) , 1 ≤ µ < ν ≤ 4 ,
Fµ5(x) = Aµ(x) + A5(x+ µ̂)−Aµ(x+ 5̂)− A5(x) , 1 ≤ µ ≤ 4 .

We have allowed for different couplings in the various directions: the ones per-

taining to the fifth direction are primed to distinguish them from the “space-like”

couplings. The fifth direction will also be called “transverse” in the sequel.

The link variables Uµ̂(x) are defined as e
iaSAS(x) or eiaTAT (x) respectively, where

AS(x), AT (x) are the continuum fields and aS, aT are the lattice spacings in the

space-like and the transverse-like dimensions respectively. The lattice fields are

AS(x) ≡ aSAS(x) , AT (x) ≡ aTAT (x) .

In addition, the scalar fields are also written in the polar form ϕ(x) = ρ(x)eiω(x). The

order parameters that we will use are the following:

Space− like Plaquette : PS ≡
〈
1

6N5

∑
x

∑
1≤µ<ν≤4

cosFµν(x)

〉

Transverse − like Plaquette : PT ≡
〈
1

4N5

∑
x

∑
1≤µ≤4

cosFµ5(x)

〉

Space− like Link : LS ≡
〈
1

4N5

∑
x

∑
1≤µ≤4

cos(ω(x+ µ̂) + Aµ̂(x)− ω(x))
〉

Transverse − like Link : LT ≡
〈
1

N5

∑
x

cos(ω(x+ 5̂) + A5̂(x)− ω(x))
〉

Higgs field measure squared : ρ2 ≡ 1

N5

∑
x

ρ2(x) . (2.2)

In the above equations N is the linear dimension of a symmetric N5 lattice.

3



J
H
E
P
0
2
(
2
0
0
1
)
0
0
5

The näıve continuum limit of the lattice action (2.1) may be obtained as follows

(where an overbar is used for the continuum fields):

ϕ = ϕ

√
2a2SaT
βh

,

Aµ = aSAµ , 1 ≤ µ ≤ 4 ,
A5 = aTA5 .

Then the transverse-like field strength

Fµ5 ≡ Aµ(x) + A5(x+ µ̂)− Aµ(x+ 5̂)−A5(x) , (1 ≤ µ ≤ 4)

goes over to:

−aS [aT∂5Aµ(x)] + aT [aS∂µA5(x)] = aSaT (∂µA5 − ∂5Aµ) .

Thus

F 2µ5 → a2Sa2TF 2µ5 , 1 ≤ µ ≤ 4 (Fµ5 ≡ ∂µA5 − ∂5Aµ) .
The space-like field strength is treated in a very similar way with the result:

F 2µν → a4SF 2µν , F µν ≡ ∂µAν − ∂νAµ , 1 ≤ µ < ν ≤ 4 .

This means that the transverse-like part of the pure gauge action is rewritten in

the form:

1

2

β ′aT
a2S

∑
a4SaT

[ ∑
1≤µ≤4

F
2

µ5

]
→ 1
2

β ′aT
a2S

∫
d5x

[ ∑
1≤µ≤4

F
2

µ5

]
.

On the other hand the space-like part is:

1

2

β

aT

∑
a4SaT

[ ∑
1≤µ<ν≤4

F
2

µν

]
→ 1
2

β

aT

∫
d5x

[ ∑
1≤µ<ν≤4

F
2

µν

]
.

If we define

βg ≡ aT
g2S
, β ′ ≡ a2S

g2TaT
, (2.3)

the resulting continuum action reads:

1

2

∫
d5x

[
1

g2S

∑
1≤µ<ν≤4

F µν
2
+
1

g2T

∑
1≤µ≤4

F µ5
2

]
.

Defining γg ≡ (β ′/β)1/2 and using the definitions of β, β ′ we find that

γg =
gS

gT

aS

aT
.
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We denote by ξ the important ratio aS/aT of the two lattice spacings (the correlation

anisotropy parameter) and finally derive the relation:

γg =

√
β ′

β
=
gS

gT
ξ .

Along the same lines, one may rewrite the scalar sector of the action in the form:∫
d5x

[ ∑
1≤µ≤4

|Dµϕ|2 +
γ2ϕ

ξ2
|D5ϕ|2 +m2ϕ∗ϕ+ λ(ϕ∗ϕ)2

]
, (2.4)

where Dµ ≡ ∂µ − iAµ, 1 ≤ µ ≤ 5.
We have used the notations:

γϕ ≡
√
βh
′

βh
,

m2aS
2 ≡ 2
βh
(1− 2βR − 4βh − βh′) , λ

aS
=
4βR
β2hξ
.

In this paper we don’t touch the problem of quantum corrections to the depen-

dence of the space-like and transverse-like couplings on the lattice spacings aS and aT ,

but we just consider the tree level relations derived above. Moreover, we choose a

common value for the gauge coupling constants: gS = gT ≡ g, (so that γg = ξ,) and
assume that all the covariant derivatives in equation (2.4) have the same factor in

front: γφ = ξ, in accordance with the tree-level relations. Notice that the quantum

corrections give in general a ξ-dependence in the effective gS, gT couplings [11]. We

note that in some runs we will vary the quantities β, β ′, βh, βh′ in such a way that
we have

γϕ = γg ≡ ζ , β ′ = βζ2 , β ′h = βhζ
2 , (2.5)

while the parameter βR is found from the equation βR = xβ
2
h/(4β), using the fixed

value x = 2 for the parameter x ≡ λ/g2. It should be noted that our choice of
parameters does not necessarily lead to an isotropic continuum theory, unless ξ = 1.

Let us now recall the salient features of the pure U(1) phase diagram with

anisotropic couplings (more details may be found in [4, 6, 7]). For large values for

β and β ′, the model lies in a Coulomb phase in five dimensions. There is a Coulomb
force between two test charges in this phase. Now consider what will happen when

one keeps β constant, but lets β ′ take smaller and smaller values. Nothing will change
in the four directions that have to do with β, so the force will still be Coulomb-like;

however, the force between the test charges in the fifth direction will increase and

will eventually become confining when β ′ becomes small enough. It is well known
that the potential between heavy test charges is closely connected with the Wilson

loops. According to the above description, the Wilson loops behave as follows:
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1. Wµν(L1, L2) ≈ exp(−σL1L2) (strong coupling) for small values of β and β ′.
2. Wµν(L1, L2) ≈ exp(−τ(L1 + L2)) (Coulomb phase, 1 ≤ µ, ν ≤ 5), for β > 1
and β ′ > 0.4.

3. Wµν(L1, L2) ≈ exp(−τ(L1 + L2)), Wµ5(L1, L2) ≈ exp(−σ′L1L2) (layered
phase, 1 ≤ µ, ν ≤ 4, ) for β > 1 and β ′ < 0.4.

The quantities σ, τ, σ′ are positive constants. Let us remark here that there is no
layered phase with the roles of β and β ′ reversed, since the two parameters enter in
a quite different way in the action. The layered phase is due to the simultaneous

existence of Coulomb forces in the space-like directions and confining forces in the

fifth direction.

3. Mean field approach

Our starting point is the action (2.1). We shall fix the gauge by imposing U4̂(x) = I

and use the translation-invariant Ansatz [4]–[6], Uµ̂(x) = v, 1 ≤ µ ≤ 3; U5̂(x) = v′.
We also introduce the variables for the Higgs field,

φ(x) = ρ(x)vχ(x) (3.1)

and have also assumed a translationally invariant Ansatz, ρ = ρ(x), vχ = vχ(x). The

free energy, which should be minimized to get the mean field solution, reads:

F = −3βv2a
(
v2a + 1

)− β ′v′a′2 (3v2a + 1)− (3βhva + βh + β ′hv′a′)ρ2v2χ + (1− 2βR)ρ2 +
+βRρ

4 − 1
2
log[ρ2] + 3ava − 3 log[I0(a)] + a′v′a′ − log[I0(a′)] + χvχ − log[I0(χ)] .

(3.2)

The parameters a, a′ and χ are conjugate to va, v′a′ and vχ respectively. There
are three space-like plaquettes which do not contain U4̂ and three others that do

contain it; this explains the first line of expression (3.2). The second line contains

the expressions for the transverse-like plaquettes: three of them contain U4̂ and one

does not. The third line refers to the three space-like links along directions 1̂, 2̂, 3̂,

the one along 4̂, and the transverse-like link. The fourth line contains terms that

do not refer to directions at all; in particular the logarithmic last term comes from

the measure of the Higgs field. Finally, the last line has the contributions of the

integration of the Haar measure: three ava − log[I0(a)] terms from the space-like
links, one similar term with primed quantities from the transverse-like links and one

more from the angle of the Higgs field.

Among the results of the minimization one may single out the relations:

va
v′a′
vχ


 = u





a

a′

χ




 , (3.3)

6
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Figure 1: ρ2 versus βh for ζ = 1.0 (upper curve) and ζ = 0.1 (lower curve) for β = 4.0.

where

u(z) = [log u0(z)]
′ =
u′0(z)
u0(z)

=
I1(z)

I0(z)
(3.4)

and Ik(z) is the modified Bessel function of order k :

Ik(z) =
1

π

∫ π
0

dθ cos(kθ)ez cos θ. (3.5)

One may use these relations to eliminate variables va,v
′
a′ and vχ in favour of a, a

′

and χ, getting an alternative form for the free energy.

We start our exploration using mean field theory sticking to the value β = 4.0 for

the gauge coupling within the layers, i.e. they’re at weak gauge coupling. For strong

gauge coupling (β < 1.0) preliminary results indicate a different picture, which will

be set forth elsewhere, in order to keep the presentation clear. x has been set to 2.0

and βh is running. The parameters β
′ and βh′ vary according to equation (2.5) (the

value of ζ is kept at some fixed value) and we choose βR = xβ
2
h/(4β).

A first set of results is given in figure 1. We have calculated ρ2 for two values

of ζ by mean field methods: the upper curve in the figure corresponds to ζ = 1.0,

the isotropic model, and the lower curve to a highly anisotropic model with ζ = 0.1

(this means that β ′ = 0.01β, βh′ = 0.01βh). The results suggest that we have Higgs
transitions since ρ2 grows large in both curves. The fact that ρ2 does not have the

tendency to increase significantly as a function of βh after some point is not hard

to explain: it is due to the fact that βR is not constant, but it increases with βh
according to the relation βR = xβ

2
h/(4β). The result is that ρ

2 increases as soon as

the system passes to the Higgs phase and keeps increasing for not too large values

7
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Figure 2: Transverse-like plaquette versus βh for ζ = 0.1 (lower curve) and ζ = 1.0 (upper

curve) for β = 4.0.

of βh. When βh grows to even bigger values, the resulting large value of βR forces ρ
2

to smaller values. We see that the isotropic model has the Higgs phase transition at

βh ' 0.22, while the anisotropic model at βh ' 0.27.
We should now comment on the nature of each phase; to this end we show the

behaviour of the transverse-like plaquette, PT , in figure 2. For the isotropic model the

transverse-like plaquette is the same as the space-like plaquette and it has a (fairly

constant) big value. This means that all five directions of the model communicate

with one another and we have a genuine five-dimensional system. In addition, PT
has a (small) jump for βh = 0.22, as ρ

2 does in figure 1 (although here it is difficult

to see due to the scale of the present figure) and we pass from a Coulomb to a

Higgs phase. On the other hand, for the model with ζ = 0.1 the transverse-like

plaquette is very small as compared with its space-like partner. The picture is that

the model is effectively four-dimensional, since communication between the layers

is very difficult, as signalled by the small values of the relevant quantities, such as

PT . Combining the conclusions drawn from figures 1 and 2 we see that for ζ = 1.0

we have found a transition at βh ' 0.22 separating a five-dimensional Coulomb
phase (denoted by C5) from a five-dimensional Higgs phase (denoted by H5). On

the other hand, for ζ = 0.1, we have an effectively four-dimensional system, so that

the transition at βh = 0.27 separates a four-dimensional Coulomb phase (denoted by

C4) from a four-dimensional Higgs phase (denoted by H4). This “world” consists of

four-dimensional layers, in which the symmetry is broken, connected with each other

with confining forces (β ′ is small, so we are in the confining phase of QED in this
direction).
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Figure 3: Transverse-like plaquette for β = 4.0 and for βh = 0.23 (lower curve) and

βh = 0.29 (upper curve).

Returning to figure 1 we observe that the region between its two curves contains

the curves with 0.1 < ζ < 1.0. A good means to study the behaviour of the model as

a function of ζ would be to fix βh at some value and let ζ run from 0.0 to 1.0. The

system will go through several phases, depending on the value of βh. If βh < 0.22 the

system will start from C4 and at some point it will move to C5. For 0.22 ≤ βh ≤ 0.27
the system will start with C4 and will end up at H5. It may pass through C5 as

an intermediate step or go over directly to H5. Finally, if βh is fixed to some value

bigger than 0.27, the system will move from H4 to H5.

In figure 3 we have plotted the transverse-like plaquette PT versus ζ. In the lower

curve we have βh = 0.23, which lies in the interval (0.22,0.27) refered to above. A

transition is clearly visible at ζ ' 0.25 : PT is strictly zero for ζ < 0.25 and then grows
large, so we have a four-dimensional system going over to a genuine five-dimensional

one. A look at the lower curve in figure 4, showing the corresponding variation of ρ2

informs us that ρ2 is small around this value of ζ, signalling that the gauge symmetry

is not broken at this transition. We conclude that in figure 3 we see a transition from

a four-dimensional Coulomb phase (C4) to a five-dimensional Coulomb phase (C5).

Another, even stronger, phase transition, takes the system into the H5 phase. We

see this in figure 4, where ρ2 has a discontinuity at ζ ' 0.8.
The upper curves of figures 3 and 4 show the corresponding behaviours for βh =

0.29, where we expect a transition from H4 to H5. The transverse-like plaquette in

figure 3 shows a smooth transition starting at ζ ' 0.20. PT is very small for ζ < 0.20
but not strictly zero as happens with the βh = 0.23 case. This is not possible to show

9
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curve).
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Figure 5: Phase diagram for β = 4.0 and βh
′ = 0.001.

in a figure, so we just mention that the typical values of PT are of the order of 10
−6

in the βh = 0.29 case for ζ < 0.20. This behaviour is consistent with the variation

of ρ2, shown in figure 4; its value varies from about 8 to about 22, both of which

characterize a Higgs phase. In addition, ρ2 is constant for the interval 0 < ζ < 0.20,

for which PT has been small.

Since we treat β = 4.0 it would be useful to construct a phase diagram at β = 4.0

and several values of βh
′. The βh′ coupling is one of the most important couplings,

10
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Figure 6: Transverse-like plaquette versus β′ for β = 4.0, βh = 0.28 and the values 0.001,
0.01 and 0.10 for the parameter β′h.

since it connects the hyperplanes in the transverse direction through the Higgs kinetic

term. The diagram will be given in the (β ′ − βh) plane. In figure 5 we show the
phase diagram for βh

′ = 0.001. We observe the solid horizontal line at βh = 0.27,
which separates the symmetric phases from the broken symmetry phases, along with

the almost vertical dotted line, separating the four-dimensional phases from their

five-dimensional partners. We find first order phase transitions, one separating C4
from H4 and another one separating C5 from H5. An interesting and new transition

is the one from H4 to H5, to which we now turn.

Figure 6 shows the variation of the transverse-like plaquette versus β ′ for β =
4.0, βh = 0.28, x = 2 and three values for β

′
h. For β

′
h = 0.001 it appears that the

system stays in H4 for β
′ < 0.24 and then it moves very quickly to H5. On the

contrary, for β ′h = 0.01 the transition is smooth; it is extremely difficult to locate
precisely the point of the transition. The remnant of the phase transition happens

for smaller values of β ′, so if we constructed the analog of figure 5 for β ′h = 0.01,
the dotted line would move to the left and would represent a higher order transition.

For β ′h = 0.10 there is no region in the figure having the characteristics of H4; the
system appears to be in the H5 phase for all β

′ couplings. The same picture emerges
from figure 7, which depicts the β ′ dependence of ρ2 rather than PT (we only show
the results for β ′h = 0.001 and β

′
h = 0.01, since the curve for β

′
h = 0.10 lies at rather

large values.) It is clear that the transition takes place at β ′ = 0.24 for β ′h = 0.001
and at a somewhat smaller value for β ′h = 0.01.
We have seen that there is a remarkable difference in the behaviour of the system

depending on the value of β ′h, so it is natural to wonder whether there is some phase
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Figure 7: ρ2 versus β′ for β = 4.0, βh = 0.28 and the values 0.001 and 0.01 for the
parameter β′h.
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Figure 8: Transverse-like plaquette versus β′h for β = 4.0, βh = 0.28.

transition when β ′h varies keeping the other couplings constant. In figure 8 we display
the transverse plaquette, PT , vs. βh

′ for fixed values of β = 4.0, βh = 0.28 and two
typical values of β ′ (0.2 and 0.01). While the shape of the two curves seems to
indicate that a step may appear for small β ′, our investigation in this range shows
that a phase transition does not occur.
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Figure 9: ρ2 versus βh for the isotropic model (ζ = 1.0) for a 4
5 lattice with β = 4.0.

4. Monte Carlo results

In this section we will reproduce and corroborate the Mean Field results of the

previous section by Monte Carlo methods. We will find the same qualitative picture,

but the critical points and the orders of the phase transitions will be determined

more precisely. The sequence of the measurements will parallel the corresponding

ones of the previous section.

4.1 Fixed ζ

In this set of measurements we set β = 4.0, x = 2, and let βh run. The remaining

coupling constants depend on the value of ζ, that is (we recall that ζ is the ratio:

ζ =
√
β ′/β =

√
βh
′/βh):

βh
′ = ζ2βh , β ′ = ζ2β , βR =

xβ2h
4β
. (4.1)

Thus these measurements are a Monte Carlo realization of the mean field calculations

depicted in figures 1 and 2, so we expect the same qualitative picture.

In figure 9 we show the behaviour of ρ2 for the isotropic (ζ = 1.0) model. The

isotropic system is seen to undergo a phase transition at βh ' 0.2075 from the five-
dimensional Coulomb phase (C5) to the five-dimensional Higgs phase (H5). We note

that the critical value of βh is quite close to the mean field prediction (βh ' 0.22) for
this quantity. The Monte Carlo result in this figure shows a jump in ρ2, signalling a

first order phase transition.
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Figure 10: Space-like and transverse-like links versus βh for a highly anisotropic model

(ζ = 0.1) for a 45 lattice with β = 4.0.
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Figure 11: ρ2 versus βh for a highly anisotropic model (ζ = 0.1) for a 4
5 lattice with

β = 4.0.

The corresponding transition for the anisotropic model (ζ = 0.1) is shown in

figure 10. It takes place at βh ≈ 0.27 and it seems smoother. In this case the
“transverse-like” coupling constants are ζ2 = 0.01 times smaller than their “space-

like” partners. This presumably means that the transverse-like separation aT of the
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spatial planes is much bigger than the spatial lattice spacing aS. Support to this fact

is provided by the magnitude of the quantities PS and LS that we have measured:

they turn out to be much bigger than PT , LT for the whole range of βh, indicating

that the quantities related to the communication of the planes are negligible as com-

pared against the similar quantities within the layers. On the other hand (compare

figure 11), ρ2 is small in the region βh < 0.27, suggesting that it is a phase with

unbroken symmetry. Based on these data and the mean field results, it seems safe

to assume that the region βh ≤ 0.27 corresponds to a Coulomb phase, where the
layers are decoupled: this is equivalent to the Coulomb phase of the corresponding

four-dimensional model and will be called C4 in the sequel. For βh > 0.27 we have

a Higgs phase for the anisotropic model: ρ2 is large and the quantities related to the

fifth dimension are very small. This presumably means that the layers are decoupled

also in this phase, so the picture is that we have moved effectively to the Higgs phase

of the corresponding four-dimensional model: we will call this phase H4. Thus in

brief the anisotropic model moves from the 4D Coulomb phase (C4) to the 4D Higgs

phase (H4). We remark that the critical parameter for the Higgs phase transition is

of order 1/d, where d is the space-time dimension. Thus, it is not accidental that the

isotropic model has a phase transition at βh ' 0.2075; this is close to the expected
value, 1/d = 0.20, since d = 5. On the other hand, the anisotropic model is effec-

tively four-dimensional, so one should expect a value approximately equal to 1/4,

which is quite close to the value 0.27 given by the simulation. A comparison with

the mean field results is in order: we have found the picture predicted qualitatively

by mean field theory. In particular, we found a C4-H4 transition for the anisotropic

model (Monte Carlo gives it at βh ' 0.27 and mean field also at βh ' 0.27). For
the isotropic model the C5-H5 transition takes place at βh ' 0.2075 according to the
Monte Carlo and at βh ' 0.22 according to the mean field.
We note that the relative position of the transitions means that for βh ≤ 0.2075

the systems lie in the Coulomb phase for both models: the isotropic model in C5 and

the anisotropic one in C4. For βh ≥ 0.27 the systems lie in their respective Higgs
phases, H5 and H4. Finally, for 0.2075 ≤ βh ≤ 0.27 the anisotropic model is in C4,
while the isotropic system lies in H5. An interesting question is how the various

phases transform into one another as ζ varies from zero to one. We recall that the

mean field approach suggests that the transitions take place in the order C4 → C5 →
H5. A reasonable strategy would be to fix βh (as well as β) and vary the parameter ζ ;

this has also been the strategy in the mean field approach. Figures 9, 10, 11 and the

discussion we just made suggest that two possibly interesting values for βh would be

0.23 (to check the transition starting from the phase C4 and ending with the phase

H5 and determine the possible intermediate steps) and 0.29 (to study the transition

from H4 to H5); we point out that we had chosen exactly the same values for the

mean field calculation. The Monte Carlo study at the two fixed values for βh is the

subject of the following subsection.
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Figure 12: Transverse-like link for a 65 lattice with β = 4.0, βh = 0.29.

4.2 Running ζ

In figure 12 we show the transverse-like link LT for the case with βh = 0.29. The

parameter ζ starts from zero, where the results of the previous subsection make us

expect a Higgs phase with fully separated layers, that is a four-dimensional model

with broken symmetry (denoted by H4), to ζ = 1.0, where the full five-dimensional

Higgs phase (H5) is expected on the grounds of the discussion of the previous subsec-

tion. The transition from H4 to H5 is very smooth and takes place at about ζ ' 0.25.
Some order parameters remain almost constant up to this value, and the ones that

change, such as LT shown in the figure, do so very smoothly.

Figure 13 shows another aspect of the same transition, namely the gradual in-

crease of ρ2 versus ζ ; the value of this quantity is large for the whole range of ζ,

as would be expected for a transition from a Higgs phase to another Higgs phase.

The important characteristic of this quantity is the constancy of ρ2 for ζ < 0.25; the

quantities PS, LS are also constant up to this critical value of ζ.

Next we examine the possibility for a non-trivial phase transition separating the

H4 and H5 phases. In figure 14 we show the susceptibility of the transverse-like link

LT at the H4-H5 transition for three lattice volumes, namely 4
5, 65 and 85. The data

points lie on the same curve; in particular the peak is the same for the three volumes.

Thus the data up to the volume 85 suggest that this transition is a crossover.

The case, where βh = 0.23 is more complicated. The relevant material is pre-

sented in figure 15, where the variation of the transverse-like plaquette PT versus ζ

is shown and figure 16, which contains the variation of ρ2. There are two phase tran-
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Figure 13: ρ2 for a 65 lattice with β = 4.0, βh = 0.29.
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Figure 14: Susceptibility of the transverse-like link for βh = 0.29 and β = 4.0.

sitions taking place as ζ increases. The first one takes place at ζ ' 0.3, as one may
see in figure 15. PT is tiny for small enough ζ, corresponding to large anisotropy;

this indicates that the layers are decoupled for these values of ζ ; on the other hand

the values of ρ2 turn out to be relatively small, characterizing the phase as Coulomb.

Thus we are in the four-dimensional Coulomb phase, C4. After the phase transition,
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Figure 15: Transverse-like plaquette versus ζ for a 45 lattice with β = 4.0, βh = 0.23.
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Figure 16: ρ2 versus ζ for a 45 lattice with β = 4.0, βh = 0.23.

the value of PT is sizable, so the layers communicate with each other. On the other

hand, one may see in figure 16 that ρ2 is still small at this value of ζ. The result is

that the system is in a five-dimensional Coulomb phase (C5) and the transition at

ζ ' 0.3 separates C4 from C5.
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Figure 17: Distribution of the space-like link for a 45 lattice at the C5-H5 phase transition.

If we consider even bigger values of ζ we find out (as we show in figure 16) that ρ2

jumps to big values at ζ ' 0.74. Thus, we see the transition from the five-dimensional
Coulomb phase (C5) to the five-dimensional Higgs phase (H5). Summarizing, the

system moves first from C4 to C5 and then from C5 to H5, in full agreement with

the mean field predictions.

The transition from C5 to H5 is first order. This may be seen from the distri-

butions of the various observables. In figure 17 we show the distribution of the

space-like link LS. A clear two-peak signal is seen at ζ = 0.737, so we confirm a

strong phase transition separating these two phases.

5. Conclusions

We have explored the complicated phase structure for the abelian Higgs model in five

dimensions allowing for anisotropic couplings in the kinetic terms of the Lagrangian.

This study has been done for a typical value of the (space-like) gauge coupling β in

the weak coupling regime. We search for stable four-dimensional layers (3-branes)

embedded in a five-dimensional world. Besides the well known 4-D Coulomb phase

C4 (where the gauge theory is in the symmetric phase with a massless photon lo-

calized on the 3-brane) we have found indications for a new layered phase, denoted

by H4, where the gauge symmetry is broken and the 4-D properties predominate.

The gauge theory is in the confining phase in the bulk. For the range of the quartic

couplings that we used, C4 and H4 are separated by a first order transition. The H4
and H5 (four- and five-dimensional Higgs) phases are separated by a crossover up
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to the lattice volume we have studied, so they appear to be analytically connected;

the realization of a continuum four-dimensional world within a five-dimensional con-

tinuum strongly depends on the parameters of the theory. The Monte Carlo results

confirm qualitatively the predictions we got from the mean field calculations; the

precise characterization of the phase transitions comes exclusively from the Monte

Carlo approach.
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