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1. Introduction

The large-N limit of Chern-Simons theory on S3 has been conjectured to be equiv-

alent to topological strings on the blown up conifold geometry [1]. The implications

of this conjecture for the Wilson loop observables have been formulated in [2] and

checked for the case of the unknot. In particular, this conjecture implies that the

knot invariants of Chern-Simons theory can be formulated in terms of new integer

invariants [2]. The requisite Wilson loop observables for torus knots were computed

in [3] and found to be in agreement with the predictions of this large-N conjecture.

The large-N conjecture has also been checked for some other knots in [4].

The structure of the large-N result suggests that arbitrary Wilson loop observ-

ables are related on the closed topological string side, to considering the propagation

of topological strings in the blown up conifold geometry with a background non-
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compact D-brane. Thus the results of this duality can be turned around and be used

for computations of topological strings with boundaries — a subject which is not

very well understood at the present.

The aim of this paper is to extend these results in a number of directions. First we

wish to gain a deeper understanding of the structure of the new integer invariants. In

particular the results of [3] show that there are some universal regularities in these

numbers that requires explanation. We explain these universal properties in this

paper by studying the problem of counting degeneracy of D2-branes ending on D4-

branes. Moreover this leads to a refinement of the basic integer invariants introduced

in [2]. Secondly we wish to extend these results to links. This involves, on the Chern-

Simons computational side, a careful treatment of link invariants consistent with the

large-N expansion. The results are found to agree with predictions of the large-N

duality. Thirdly, we construct the relevant lagrangian D-brane on the topological

string side, for a large class of algebraic knots.

The organization of this paper is as follows: in section 2 we review the large-

N Chern-Simons/topological string duality, including the incorporation of Wilson

loop observables. In section 3 we analyze the BPS structure of D2-branes ending

on D4-branes which leads us to a refinement of the integer invariants associated

to knots and links. In section 4 we formulate the link invariants in the context

of large-N Chern-Simons theory. In section 5 we construct the relevant lagrangian

submanifold associated to a large class of algebraic knots, needed for the closed string

dual. Finally, in section 6 we present many explicit results for the refined integer

invariants for some knots and links.

2. Chern-Simons theory and topological strings

It was conjectured in [1] that SU(N) Chern-Simons gauge theory on S3 at large N is

equivalent to topological strings on the non-compact Calabi-Yau threefold, with local

geometry given by theO(−1)+O(−1) bundle over P1. This conjecture was motivated
by considering topological D3-branes for which the worldvolume theory gives rise to

SU(N) Chern-Simons theory [5]. Namely one considers the conifold geometry

z21 + z
2
2 + z

2
3 + z

2
4 = µ ,

where zi are complex parameters. If we decompose the complex coordinates to real

coordinates, i.e. if we write

zj = xj + ip
j

then one can see that the above equation has the geometry of T ∗S3 where S3 is
given by pi = 0, and the pi denote the cotangent directions. If we consider N

topological D3-branes wrapped on the S3, then on S3 we get an effective string

theory which is an SU(N) Chern-Simons theory [5], at level k, where the string
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coupling is gs = 2πi/(k+N) (the shift in the denominator k → k+N is the familiar

quantum correction in the context of CS theory). The action is

S =
k

4π

∫
M

Tr

(
A ∧ dA+ 2

3
A ∧ A ∧A

)
, (2.1)

where A is a gauge connection on some SU(N) vector bundle over a three-manifold

M , which in this case we take to be S3.

The conjecture of [1] is that at large N the D-branes disappear, and instead the

conifold undergoes a transition where S3 shrinks to zero size (µ→ 0) and a P1 grows
whose Kähler parameter t is given by

t = Ngs =
2πiN

k +N
.

This conjecture has been checked for the free energy on both sides to all orders in

the 1/N expansion. The answer for the partition function on the Chern-Simons side

was derived in [6] and on the closed string side the topological string amplitude was

computed using M-theory [7] and also using the mathematical definition of topolog-

ical strings in [8]. This duality has been recently been embedded in the context of

type-IIA superstrings with N = 1 supersymmetry in 4 dimensions [9] and it provides

a new context where a background involving a large number of D-branes is equivalent

to another background without any D-branes.

There is more to the Chern-Simons theory than just the partition function. In

particular there is a rich set of observables associated to links in S3 and representa-

tions of the gauge group SU(N) [6]. In particular, from the holonomy of the gauge

field around a closed loop γ in M ,

U = P exp

∮
γ

A , (2.2)

one can construct a natural class of observables, the gauge-invariant Wilson loop

operators, which are given by

W γ
R(A) = TrR U , (2.3)

where R denotes an irreducible representation of SU(N). Some of the standard

topological invariants that have been considered in the context of Chern-Simons

gauge theory are vevs of products of these operators:

〈W γ1
R1
· · ·W γn

Rn
〉 = 1

Z(M)

∫
[DA]

(
n∏
i=1

W γi
Ri

)
eiS , (2.4)

where Z(M) is the partition function of the theory. These vevs are functions of

the variables

q = egs = exp
[ 2πi
k +N

]
, λ−1 = q−N = e−t . (2.5)

3
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In the context of topological strings, i.e. with N D3-branes on S3 embedded in

the conifold background, it is natural to ask how these observables can arise. This

was answered in [2]: consider a number of γα ∈ S3, α = 1, . . . , L. Then to each one
of them one associates a lagrangian submanifold Dα which intersects S

3 on γα. This

is obtained by appending to each point of γα a 2-dimensional subspace R
2 which

is the set of momentum vectors p orthogonal to the velocity vector dγα/ds. Note

that the topology of each Dα is R
2 × S1. We consider placing Mα branes on the

cycle Dα. Since these are non compact we can consider them as non dynamical.

In particular on each of them lives an SU(Mα) gauge field which we consider as

classical. Let Vα denote the holonomy of this gauge field along the γα ∈ Dα. As

far as the Chern-Simons gauge theory on S3 is concerned we get additional massless

fields living on the γα corresponding to open strings stretched between branes on Dα
and S3. Integrating them out leads (as discussed in [2]) to the operator

Z(Uα, Vα) = exp

[
L∑
α=1

∞∑
n=1

1

n
Tr Unα Tr V

n
α

]
. (2.6)

In this operator the trace is taken over the fundamental representation.1

If one can evaluate the expectation value 〈Z(Uα, Vα)〉 = exp(F (Vα)) for all links,
then effectively one can compute all the topological observables of Chern-Simons

theory (2.4) by rewriting the holonomy in representation R, TrR U in terms of the

trace of powers of holonomy in fundamental representation, appearing in Z(Uα, Vα).

It is natural then to ask how these correlators behave at largeN . Since according

to the conjecture [1] we should be effectively ending up with topological strings

on the blown up conifold geometry where the D-branes wrapped around S3 have

disappeared, we need to know what happens to the other D-branes wrapped over

the non-compact Dα cycles after this transition. Geometrically it is clear that they

cannot disappear (as the only thing that shrinks is the S3) and so they should

manifest themselves as some lagrangian submanifolds on the other side. Let us

continue to denote the corresponding lagrangian submanifold byDα. Moreover, there

should be a distinguished S1 on the lagrangian submanifold after the transition, for

which we consider the holonomy Vα. Thus the statement of the conjecture would be

that F (Vα) can be computed by considering the topological strings on the blown up

geometry with extra D-branes Dα. In particular

F (Vα) =

∞∑
g=0

∞∑
h=1

∑
α,n1,...,nh

g2g−2+hs F αg;n1,...,nh Tr V
n1
α1
· · ·Tr V nhαh , (2.7)

where F αg;n1,...,nh denotes the topological string amplitude on the blown up geometry

with genus g and with h holes, where the i-th hole is mapped to the Dαi brane and

1In what follows, when no representation is indicated in a trace, it should be understood that it

must be taken in the fundamental representation.
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winds around the corresponding circle ni times. The computation of these amplitudes

is very difficult, and no techniques are currently available to do a direct computation.

However, some general features of topological amplitudes can be deduced. This

was done in [2] following the idea of [7, 10], which relates the degeneracy of D2-

branes, including both their charge (wrapping around 2-cycles) and spin, to the

topological string amplitudes. The novel feature in the case at hand is that one has

to consider branes ending on the lagrangian submanifold. Moreover, in addition to

the “bulk” charge and spin, the D2-brane also forms a representation of SU(M).

It was shown in [2] that by relating the topological string amplitudes to type-IIA

superstring amplitudes in 2 dimensions with background D4-branes, and considering

the contribution of D2-branes ending on D4-branes to topological string amplitudes,

one can deduce the following structure for the partition function:

F (V ) =
∞∑
d=1

∑
R

fR(q
d, λd) TrR

V d

d
, (2.8)

where

fR(q, λ) =
∑
s,Q

NR,Q,s

q1/2 − q−1/2λ
Qqs . (2.9)

Here, the NR,Q,s are integers and denote the degeneracy of D2-branes of bulk charge

Q with 2d spacetime spin s and SU(M) representation R. The Q, for a given repre-

sentation R, denotes an element of the relative homology H2(X,D) where X is the

CY O(−1) + O(−1) over P1 and D is the lagrangian submanifold. The difference
of two Q’s is an integer for any fixed R. In the examples we will deal with it turns

out that Q’s are integer or half-integer. Here we have written the partition function

for the case of a single D-brane, but that can be easily generalized. The integrality

properties of NR,Q,s are rather non trivial and this gives a strong constraint on any

proposed answer for the topological string amplitudes involving D-branes.

To check the large-N conjecture for the Wilson loop observables one has to

overcome a number of obstacles. On the gauge theory side we have to compute the

Chern-Simons observables for arbitrary links and representations. On the gravity

side (i.e. after the transition) we need to construct the Dα’s. Finally we have to

find a way to compute the topological string amplitudes in the presence of these

D-branes, which is equivalent to computing the degeneracy numbers NR,Q,s.
2

These questions were answered in [2] for a very simple observable, namely the

unknot, which is just a single γ which is not knotted. The lagrangian submanifold

after the transition side was identified for this case (by identifying it as the invariant

locus of an anti-holomorphic involution). In particular it intersected the P1 on an

2By analytic continuation one can also express the topological string amplitudes in terms of the

conjugate quantum numbers by flipping the sign, i.e. NR∗,−Q,−s = −NR,Q,s, where R∗ denotes the
conjugate representation.
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equator. It was shown in that case that the geometry of D2-branes is particularly

simple and there are only two D2-branes ending on the lagrangian submanifold: one

corresponding to the D2-brane wrapped over the northern hemisphere, and the other

over the southern hemisphere. These have Q charge ±1/2 and spin s = 0, and are
in the fundamental representation, namely N ,±1/2,0 = ±1 and the rest of the NR,Q,s
are zero.

To further test the above predictions at large N , more interesting knots were

considered in [3]. In particular a class of knots known as (n,m) torus knots were

studied. Already the Chern-Simons computation is very non trivial for these knots,

as one has to find a way to compute arbitrary number of product of the trace of

the holonomy observable in all representations of SU(N). Moreover one has to

relate this with the particular combinations of observables given in (2.8) and (2.9).

For this comparison it turns out natural to reexpress the Chern-Simons observables

in terms of powers of U in the fundamental representation. In particular if R is a

representation of SU(N) with ` boxes then TrR U is a universal polynomial in TrU
k in

the fundamental representation of total degree `. Then the question of computation

gets transformed to the computation of product of various powers of TrUk. At the

end of the day, what one finds is that if one knows the expectation value of the single

〈TrR U〉 for any representation R of SU(N) with up to ` boxes, one can find fR′
for representation R′ of SU(M) with up to ` boxes. This gives a recursive way to
compute the fR′ organized in increasing order in terms of the number of boxes. Let

us review this in a little more detail.

As shown in [3], to compare the large-N topological string predictions (2.8)

and (2.9) with the Chern-Simons computation, it is convenient to introduce the

following basis on the space of Wilson loop operators:

Υ~k(U) =

∞∏
j=1

(Tr U j)kj , (2.10)

which are labeled by a vector ~k of non-negative integers, and U is the holonomy (2.2).

Given such a vector, we define:

` =
∑

j kj , |~k| =
∑

kj . (2.11)

We can associate to any vector ~k a conjugacy class C(~k) of the permutation group

S`. This class has k1 cycles of length 1, k2 cycles of length 2, and so on. The number

of elements of the permutation group in such a class is given by [11]

|C(~k)| = `!∏
kj!
∏
jkj

. (2.12)

Notice that the vectors ~k with
∑
j jkj = ` are in one-to-one correspondence with the

partitions of `. We also define generalized connected vevs as follows: first, associate

6
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to any ~k the polynomial p~k(x) =
∏
j x
kj
j in the variables x1, x2, . . . We then define

the “connected” coefficients a
(c)
~k
:

log

(
1 +

∑
~k

|C(~k)|
`!

a~kp~k(x)

)
=
∑
~k

|C(~k)|
`!

a
(c)
~k
p~k(x) . (2.13)

We also introduce the following notation for the vevs of the operators in (2.10):

G~k = 〈Υ~k(U)〉 . (2.14)

Using (2.8) and (2.9) one deduces the following relation [3]:

G
(c)
~k
(U) =

∑
n|~k

n|~k|−1
∑
R

χR(C(~k1/n))fR(q
n, λn) , (2.15)

where χR(C(~k)) denotes the character of the representation R of the symmetric group

for the conjugacy class C(~k) specified by the vector ~k. In this equation, the vector
~k1/n is defined as follows. Fix a vector ~k, and consider all the positive integers that

satisfy the following condition: n|j for every j with kj 6= 0. When this happens, we
will say that “n divides ~k”, and we will denote this as n|~k. We can then define the
vector ~k1/n whose components are:

(~k1/n)i = kni . (2.16)

The vectors which satisfy the above condition and are “divisible by n” have the struc-

ture (0, . . . , kn, 0, . . . , 0, k2n, . . .), and the vector ~k1/n is then given by (kn, k2n, . . .).

One can extract the generating functions fR(q, λ) from the connected vevs in

Chern-Simons theory, using the relation (2.15). This was done in [3] to check, for

the torus knots, the structure predicted in [2] for the large-N behavior of the Wilson

loop observables. In particular the integrality properties of the topological string

amplitudes were verified. The results of [3] strongly suggest that for non-trivial

torus knots, the integer invariants NR,Q,s are non vanishing for all representations.

Moreover for each representation R, there are a finite number of values of Q, s for

which theN ’s are non vanishing. These NR,Q,s would give the number of D2-branes in

the blown up geometry which end on the D-branes wrapping around the lagrangian

submanifold corresponding to torus knots after the transition. These lagrangian

submanifolds were not constructed in [3], but we will present a proposal for them in

section 5 of this paper. Even knowing the lagrangian submanifold is not sufficient

to give the integer invariants, since there are no known techniques in complicated

enough cases as we are encountering to directly compute NR,Q,s’s. So this large-

N computation of Chern-Simons knot invariants should be viewed as a powerful

technique for computing degeneracies of branes in this geometry.

7
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Even though all the predicted aspects of the large-N theory were checked for

torus knots in [3], more structure was found in [3] which needed further explanation.

In particular it was noted there that the topological string answer predicts certain

surprising universal relations among the BPS degeneracies. For example a simple

(inductive) reformulation of the results in [3] shows that

NR,Q,s = (−1)`−1NRt,Q,−s . (2.17)

where Rt denotes the SU(M) representation which has the transposed Young tableau

of the one corresponding to R, and ` is the number of boxes in the Young tableau.

In fact this follows by checking the agreement of the large-N expansion encoded

in terms of the topological closed string amplitude (2.7) with that given in (2.8)

and (2.9). To see this notice that, after performing an analytic continuation to a

series involving only positive ni, (2.7) can be written as

F (V ) =
∑
~k

∞∑
g=0

Fg,~k(λ)g
2g−2+|~k|
s Υ~k(V ) , (2.18)

where ki is the number of i’s in the h-uple (n1, . . . , nh), so that |~k| = h. In the

context of Chern-Simons theory, (2.18) is nothing but the usual 1/N expansion of

the connected vevs of Wilson loops. Note that the parity of the power of gs in (2.18)

correlates with the number of holes, and translating this to (2.8) and (2.9) using

Frobenius relation and

χRt(C(~k)) = (−1)|~k|+`χR(C(~k)) , (2.19)

yields the above relation among NR,Q,s’s. There were also additional vanishing rela-

tions noted in [3] from comparing (2.18) and (2.8) and (2.9) which were also in need

of explanation. In this paper we will be able to explain all those relations (using

some plausibility assumptions) by studying more carefully the degeneracy of D2-

branes ending on D4-branes and in particular we will have a reformulation of NR,Q,s
in terms of other more basic integer quantities N̂R,Q,g which are not restricted.

Further checks for the large-N predictions of Wilson loop observables, involving

certain knots up to nine crossings, were recently done in [4] using the techniques

of [12].

3. Degeneracy of D2-branes ending on D4-branes

As discussed before, there are hints that the numbers NR,Q,s satisfy certain universal

relations. We wish to derive this fact from the viewpoint of counting the degeneracy

of D2-branes ending on D4-branes in the stringy realization of topological strings

with D-branes.

8
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Consider type-IIA strings on a Calabi-Yau threefold (which for most of the ap-

plications we have in mind will be non compact). Suppose we have M D4-branes

wrapping a 3-dimensional lagrangian submanifold of the Calabi-Yau, and filling a

2-dimensional spacetime subspace of R4. Suppose also that for the lagrangian sub-

manifold we have b1 = 1. As discussed in [2] this gives rise, in the R
2 subspace,

to a U(1)M magnetic gauge theory. We will be interested in the degeneracy of D2-

branes ending on D4-branes in this geometry. These can be viewed as having some

U(1)M charge. By the SM permutation invariance of the D4-branes, it follows that

the particles will form representations of U(1)M/SM , which can also be viewed as

linear combination of representations of U(M). Let us label such a representation

with R. The D2-brane will also have some charge Q corresponding to which 2-cycle

(in the sense of relative homology) of the Calabi-Yau it wraps around. It also has

some SO(2) spin S. To define this more precisely, we have to consider the M-theory

description of this geometry [2]. This means that we consider M-theory on CY 3-

fold with M5-branes filling R3 and wrapping over the lagrangian submanifold in the

CY. We relate the SO(2) spin S to the 3-dimensional rotation symmetry on the

non-compact worldvolume of the M5-brane. There is also an SO(2) R-symmetry for

4 supercharges in d = 3. For BPS states a combination of supercharges which is

neutral under SL = S + R annihilates the state, while the other supercharge which

changes SL, but is neutral under SR = S − R, generates the BPS multiplet. This is
very similar to the BPS structure for a theory in 5 dimensions with 8 supercharges

(such as CY 3-fold compactifications of M-theory). In that case one has the rotation

group SO(4) = SU(2)L×SU(2)R and the active supercharge of the BPS states resides
in one of the SU(2)’s. This was in fact strongly used in relating the degeneracy of

D2-branes wrapped around cycles of CY 3-fold with the topological string ampli-

tudes [10]. The SL and SR of the 3d theory we have been discussing correspond to

the J3L and J
3
R of these SU(2)’s, respectively. In fact the presence of the M5-brane

breaks the SO(4) rotation symmetry of 5d theory to SO(2)S × SO(2)R which gives
us the above identification of SL,R with J

3
L,R.

The number of BPS states may change in general, if two short multiplets combine

to a bigger multiplet. There is a way to define an index which is the net number of

BPS states which cannot recombine. Namely, if we take a trace over all BPS states of

a given charge and representation quantum numbers, as well as a fixed SL, weighted

with Tr(−1)2SR , one gets zero for pairs of short multiplets that can combine to a
long multiplet. Thus this combination is invariant under deformation. The number

NR,Q,s refers to this net number where s = SL.

We are now ready to study the net degeneracy of D2-branes ending on D4-branes,

in the sense defined above. Similar to what was done in the context of the closed

string case [10] we first consider the situation where we have a D2-brane of a fixed

genus g with ` holes ending on the D4-brane. We will assume for simplicity that if

there are moduli for these D2-branes the genus and the number of holes does not

9
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change over all of this moduli space. Let us call this moduli space Mg,`. We will

take this to be the moduli space with ` ordered holes (later we will divide by the

action of permutation group S` to find the physical number of states).

As discussed in [10] we have to study the moduli space of D2-branes ending

on D4-branes together with a flat bundle on it. For a genus g surface with ` holes

this gives rise to the jacobian Jg,` = T
2g+`−1. The assumption that there is no

degeneration of the Riemann surface along the moduli, means that the jacobian is

always a constant T2g+`−1 (otherwise we would have complications similar to the
ones discussed in [10, 13] in the context of closed strings). There is only one more

ingredient: for each boundary we should decide which of the M-branes it lives on.

Thus we naturally get, for the Hilbert space, a tensor product of F⊗`, where F is
the fundamental representation of SU(M). Therefore, the Hilbert space associated

naturally to the above geometrical configuration is given by

F⊗` ⊗H∗(Jg,`)⊗H∗(Mg,`) . (3.1)

An important point is that this Hilbert space is associated with the moduli space of

` distinguished holes, which is not physical, and we have to mod out by the action

of the permutation group S`. We can factor out the cohomology of the jacobian

T2g of the “bulk” Riemann surface, H∗(T2g), since the permutation group does not
act on it. The projection onto the symmetric piece can be easily done using the

Clebsch-Gordon coefficients CRR′ R” of the permutation group S`:

Sym
(
F⊗` ⊗H∗((S1)`−1)⊗H∗(Mg,`)

)
=

∑
RR′R′′

CRR′ R′′SR(F
⊗`)⊗ (3.2)

⊗SR′(H∗((S1)`−1))⊗ SR′′(H∗(Mg,`)) ,

where the subscripts of the representation of the vector spaces mean projecting the

space to the corresponding subspace. The space SR(F
⊗`) is nothing but the vector

space underlying the irreducible representation R of SU(M). In other words, even

though to begin with R labels representations of S` the projection also leads to a def-

inite representation of the SU(M) group, due to the relation between representation

of symmetric groups and that of SU(M). So in this sense the same Young tableau

will denote also the representation content of SU(M). We will thus use the label R

in both senses.

We have to be more specific about the action of the permutation group on the

cohomology elements. Let’s denote by H = H∗(S1) the cohomology of the circle.
Although the permutation group S` acts in a natural way on a Riemann surface with

` boundaries, there are only `−1 independent one-forms associated to the boundary.
This is because the one-forms dθi, i = 1, . . . , `, which are Poincaré dual to the holes

in the Riemann surface, satisfy
∑
i dθi = 0. The procedure to construct the Hilbert

space SR(H
`−1) is then as follows. We consider the Hilbert space H` generated

10
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by ` fermion fields ψi, i = 1, . . . , ` acting on the vacuum |0〉 and we decompose it
with respect to the different representations R by using the Young symmetrizers of

the corresponding tableaux, and taking into account the Grassmann nature of the

fermions. Finally, we impose the linear constraint
∑
i ψi = 0. It is instructive to

consider the simple case ` = 2 in some detail. This would for example arise for

the D2-brane with the topology of annulus. The space H2 is spanned by the four

states |0〉, ψ1,2|0〉 and ψ1ψ2|0〉. The relevant permutation group S2 corresponds to
permuting ψ1 ↔ ψ2. Projecting onto the symmetric and antisymmetric subspaces,

we find:

: |0〉 , (ψ1 + ψ2)|0〉 ; : (ψ1 − ψ2)|0〉 , ψ1ψ2|0〉 . (3.3)

Using that ψ1 + ψ2 = 0, the spectrum turns out to be:

: |0〉 , : ψ1|0〉 . (3.4)

To assign spins to these states, first we note from the discussion above that the

relevant notion of spin is SL, and with respect to SL the fermions associated to the

choice of the flat connection on Riemann surface carry spin 1/2. In other words, ψi
have spin 1/2. However this does not fix the spin assignment of all the states, as we

have to choose a spin for the ground state. It is natural to choose the spin for the

ground state in such a way that in a given multiplet the average spin is zero. This is

what we will assume (and is consistent with the choice which naturally arises from

the duality with knots in Chern-Simons theory). In the case at hand the two states

differ in spin by 1/2, and so the symmetric choice of spin assignment is spin ∓1/4.
With our choice of normalization we call this s = ∓1/2. The same procedure gives
for ` = 3:

: |0〉 , : (ψ1 + ψ2)|0〉 , : ψ1ψ2|0〉 , (3.5)

with spin assignments −1/2, 0, 1/2, i.e. s = −1, 0, 1.
It is clear how to proceed to find the spin content of various representation that

arise in this way, when we have more holes. The symmetric spectrum, corresponding

to a Young tableau with ` boxes and only one row, is given by the vacuum |0〉,
and we assign it spin −(` − 1)/2. Let’s now consider the states that are obtained
acting with one fermion ψi on the vacuum. There are ` of them, forming a reducible

representation (`) of S` which decomposes in irreducible representations as follows:

(`) = (`− 1)⊕ (1) . (3.6)

The first summand corresponds to the standard representation V of S`, with a Young

tableau of the form:

(3.7)

with ` − 1 boxes in the first row. The second summand corresponds to the trivial
representation generated by (

∑
i ψi)|0〉, which we are putting to zero. To generate

11
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the rest of the spectrum, we have just to take the antisymmetrized tensor products

∧d V (since V is fermionic). These are irreducible representations of S` and are called
hook representations, since their Young tableau is of the form

(3.8)

with ` − d boxes in the first row. We have then obtained the spin/representation

content of the spectrum: the Hilbert spaces SR(H
`−1) are non empty only for hook

representations of the form (3.8), and in this case they contain one state of statistics

(−1)d and total spin −(`− 1)/2 + d, which is equal to the spin of the vacuum plus
d units of the d fermionic fields that appear in ∧d V .
It is useful to encode the spectrum associated to a Hilbert spaceH in a generating

function TrH(−1)F qs. The degeneracy and the spin content of the contribution
of a Riemann surface with ` boundaries in representation R is summarized in the

generating function:

SR(q) = TrSR(H`−1)(−1)F qs . (3.9)

In fact that is precisely the contribution of the boundary states to fR. As we have ar-

gued, the generating function corresponding to the hook representation R is given by,

SR(q) = (−1)dq− `−12 +d , (3.10)

and SR(q) = 0 for the rest of the representations. For example for the case of two

holes one has that S (q) = q−1/2 and S (q) = −q1/2, while for ` = 3 one has

S (q) = q−1 , S (q) = −1 , S (q) = q , (3.11)

in agreement with (3.4) and (3.5).

The generating functions SR(q) have two properties that will be needed later.

First of all, they satisfy

SR(q
−1) = (−1)`−1SRt(q) , (3.12)

which is a direct consequence of the explicit expression (3.10). The second property

that they have is the following. Define the following polynomials, which are labeled

by a conjugacy class C(~k) of S`:

P~k(q) =
∑
R

χR(C(~k))SR(q) , (3.13)

which can be understood as the graded trace of the element C(~k) on the total Hilbert

space H`−1:
TrH`−1(−1)FC(~k) qs . (3.14)
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If C(~k) is the trivial permutation, we just get the generating function for H`−1:

q−
`−1
2 (1− q)`−1 = (q

−1/2 − q1/2)`
q−1/2 − q1/2 . (3.15)

For non-trivial conjugacy classes, with k1 one-cycles, k2 2-cycles, and so on, the

above trace can be computed on H` by grouping the fermions as indicated by the

conjugacy class:

ψµ1 · · ·ψµk1ψµ1 ν1 · · ·ψµk2 νk2 · · · , (3.16)

where ψµi νi ··· = ψµiψνi · · · are “composites” which for a cycle of length j have spin
j, and there are kj of them. It is then easy to show that

P~k(q) =

∏
j(q
−j/2 − qj/2)kj

q−1/2 − q1/2 , (3.17)

where we have factored out a q−1/2− q1/2 which comes from imposing the constraint∑
i ψi = 0. This expression will be useful later on.

We can now give the expression of fR(q, λ) in terms of the structure we have

analyzed. Note that since the cohomology ofMg,` is represented by fermions which

only carry “right” spin SR = S − R [10] we do not need to know their actual coho-
mology degree in connection with the topological amplitudes which are only sensitive

to SL = S +R. Define the integers

N̂R,g,Q = χ(SR(H
∗(Mg,`))) . (3.18)

Then collecting the results from our discussion above, we have

fR(q, λ) =
∑
g≥0

∑
Q

∑
R′,R′′

CRR′ R′′SR′(q)N̂R′′,g,Q(q
−1/2 − q1/2)2g−1λQ , (3.19)

where (q−1/2 − q1/2)2g comes from the bulk of the Riemann surface, as in [10], and
the extra (q−1/2 − q1/2)−1 comes from the Schwinger computation [2]. It is useful to
introduce the generating functions:

f̂R(q, λ) =
∑
g≥0

∑
Q

N̂R,g,Q(q
−1/2 − q1/2)2g−1λQ . (3.20)

We then have the relation:

fR(q, λ) =
∑
R′

MRR′(q)f̂R′(q, λ) , (3.21)

where the matrix MRR′(q) is given by

MRR′(q) =
∑
R′′

CRR′ R′′SR′′(q) =
∑
~k

|C(~k)|
`!

χR(C(~k))χR′(C(~k))P~k(q) . (3.22)
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To obtain this expression, we have taken into account that the Clebsch-Gordon co-

efficients are given by:

CRR′ R′′ =
∑
~k

|C(~k)|
`!

χR(C(~k))χR′(C(~k))χR′′(C(~k)) . (3.23)

The matrix (3.22) is invertible, and it is easy to show that the inverse is given by the

last line of (3.22) but after substituting P~k(q) by 1/(P~k(q)). This means that, once

we have computed all the fR for a fixed `, we can obtain the new generating functions

f̂R(q, λ) using the explicit expression for M
−1
RR′(q). Clearly, from the Chern-Simons

point of view it is highly non trivial that the polynomials obtained in this way have

the structure (3.20).

So far we have analyzed the representation and spin content arising from a D2-

brane whose moduli can change in a Calabi-Yau manifold, but we have assumed that

its topology (the genus g and the number of holes) does not change. This is not the

most general situation. However as was shown in the closed string case [10], by a

physical reasoning in target space, studying D2-branes as if they have a fixed genus

gives a structure for the topological string answer that is in fact the generic case.

This has also been understood more directly by studying the degeneration structure

of Riemann surfaces in the moduli space of D2-brane [13]. It is plausible to assume

that the same holds true for the open string case and that the expression we have

found for fR(q, λ) in terms of integers N̂R,g,Q is more generally valid. It would be

interesting to verify this. Note, for example, that when we write g in N̂R,g,Q we do not

strictly mean a genus g surface. More precisely this can arise from a D2-brane with

genus bigger than or equal to g, which at some points along the moduli degenerates

to a genus g surface, as in [13]. Also the number of holes on the Riemann surface is

greater than or equal to the number of boxes in R.

On the physics side we will have to develop what these integers directly com-

pute. In particular the notion of the “bulk spin” g must have an intrinsic physical

meaning in the target space description. Moreover one should be able to under-

stand directly from target space reasoning how the SR(H
`−1) arises and how the

Clebsch-Gordon coefficients CRR′R′′ arise. At any rate we will find further evidence,

from the computations of link invariants of Chern-Simons theory that this picture

is correct.

One important advantage of the formulation (3.19) is that the relation (2.17)

is now manifest. From (3.23), it follows that CRR′t R′′t = CRR′ R′′ , and using (3.12),

one easily derives (2.17). Notice that, in contrast to the integers NR,Q,s, the new

integers N̂R,g,Q are all independent. This shows that, although the generating func-

tions (3.20) and (3.19) are equivalent (since they are related by an invertible matrix),

the invariants introduced in (3.18) are more fundamental than the integers appearing

in (2.9).
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Before exploring further consequences of the structure result (3.19), let’s write

it in some detail for representations with ` = 1, 2, 3. For ` = 1, we have:

f (q, λ) =
∑
Q

∑
g≥0

N̂R,g,Q(q
−1/2 − q1/2)2g−1λQ , (3.24)

where we have taken into account that S (q) = 1. Since f (λ, q) is just the unnor-

malized HOMFLY polynomial of the knot [3], the above result is in perfect agreement

with the fact that the HOMFLY polynomial can be written in terms of even powers

of the variable q−1/2 − q1/2 [14, 15]. For ` = 2, we have

f (q, λ) =
∑
Q

∑
g≥0

(
q−1/2N̂ ,g,Q − q1/2N̂ ,g,Q

)
(q−1/2 − q1/2)2g−1λQ,

f (q, λ) =
∑
Q

∑
g≥0

(
−q1/2N̂ ,g,Q + q

−1/2N̂ ,g,Q

)
(q−1/2 − q1/2)2g−1λQ . (3.25)

Finally, for ` = 3, we find:

f (q, λ) =
∑
Q

∑
g≥0

(
q−1N̂ ,g,Q − N̂ ,g,Q + qN̂ ,g,Q

)
(q−1/2 − q1/2)2g−1λQ ,

f (q, λ) =
∑
Q

∑
g≥0

(
−N̂ ,g,Q + (q + q

−1 − 1)N̂ ,g,Q − N̂ ,g,Q

)
×

× (q−1/2 − q1/2)2g−1λQ , (3.26)

f (q, λ) =
∑
Q

∑
g≥0

(
qN̂ ,g,Q − N̂ ,g,Q + q

−1N̂
,g,Q

)
(q−1/2 − q1/2)2g−1λQ .

One important consequence of (3.19) is that it encodes the structure of the large-

N expansion (2.18). To show this, it is very convenient to transform the fR functions

to the ~k-basis. We then define:

f~k(q, λ) =
∑
R

χR(C(~k))fR(q, λ) . (3.27)

Notice that, in terms of these functions, eq. (2.15) reads

G
(c)
~k
(q, λ) =

∑
n|~k

n|~k|−1f~k1/n(q
n, λn) . (3.28)

This implies that the functions f~k(q, λ) are given by the connected Green functions,

corrected by some lower order terms that involve f~k′ with `
′ ≤ `. Since

|C(~k)|
`!

G
(c)
~k
(U) =

∞∑
g=0

Fg,~k(λ) g
2g−2+|~k|
s , (3.29)

to prove that (3.19) explains the relations between the NR,Q,s observed in [3], one

has to show that the r.h.s. of (3.28) has an expansion in gs of the form (3.29).
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The proof goes as follows. Define the following integers:

n~k,g,Q =
∑
R

χR(C(~k))N̂R,g,Q . (3.30)

Using again the expression (3.23), (3.13) and (3.17), it is easy to prove that the

f~k(q, λ) have the following structure:

f~k(q, λ) =

(∏
j(q
−j/2 − qj/2)kj

(q−1/2 − q1/2)2
)∑

Q

∑
g≥0

n~k,g,Q(q
−1/2 − q1/2)2gλQ . (3.31)

We can now show that this target space prediction gives the 1/N expansion (2.18)

for the connected vevs. Notice first that

f~k(q
−1, λ) = (−1)|k|f~k(q, λ) . (3.32)

If we expand in gs, the leading power comes from the overall fraction in (3.31):∏
j(q
j/2 − q−j/2)kj

(q1/2 − q−1/2)2 = g|~k|−2s + · · · . (3.33)

Since f~k(q, λ) has parity (−1)|~k| under gs ↔ −gs, the powers of gs in the expansion
are 2n + |~k| − 2, with n ≥ 0. This is precisely the structure of (2.18). Using the
definition of ~k1/n, it is easy to see that the terms f~k1/n(q

n, λn) in (3.28), for n > 1,

have the same perturbative expansion in gs, and this finally shows that the structure

of the expansion (2.18) is a consequence of (3.31). We conclude that the structure

theorem (3.19) encodes all the relations between the integers NR,Q,s found in [3].

As a final remark, it is interesting to give the geometric interpretation of the

integers defined in (3.30). If the symmetric group S` is acting on a manifold M ,

the fixed points of the action will be labeled by the conjugacy classes C(~k). We will

denote them by M
~k. One can then consider the invariant part of the cohomology of

M under the Young symmetrizer cR. The fixed point theorem then tells us that

χ(SR(H
∗(M))) =

∑
~k

|C(~k)|
`!

χR(C(~k))χ(M
~k) . (3.34)

This is just the expression of the fact that if the group G acts on M , the number

of cohomology elements of M in the representation R of G are given by the sum of

cohomologies of subspaces of M fixed by each element of h ∈ G, weighted by the

character of h in representation R, χR(h)/|G|. In our context, M =Mg,`, and the

symmetry group acts by permutation of the boundaries. The integer n~k,g,Q is then

interpreted as the Euler characteristic of the fixed point subset of Mg,` labeled by
~k = (k1, k2, . . .). In this subset we have k1 simple boundaries, k2 double boundaries,

and in general kj boundaries made up of j boundaries that have collided. Therefore,

this geometric configuration has effectively h =
∑
j kj boundaries, as in the 1/N

expansion (2.18).
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4. Links and topological strings

4.1 Generalization to links

In this section, we will generalize the construction of [2, 3] and of the above sections

to links. Let’s consider a link L with L components γα, α = 1, . . . , L. As explained
in section 2, the BPS states will be classified now by the quantum numbers Q, the

spin s and the representations R1, . . . , RL associated to the D2-branes ending on the

lagrangian submanifolds Dα. The integers associated to these BPS states will be

denoted by N(R1,...,RL);Q,s. The free energy is then given by

F (Vα) =
∞∑
n=1

∑
R1,...,RL

∑
Q,s

N(R1,... ,RL);Q,s

qn/2 − q−n/2
qnsλnQ

n

L∏
α=1

TrRα V
n
α . (4.1)

The main conjecture is then that

〈Z(U1, . . . , UL;V1, . . . , VL)〉 =
〈
exp

[
L∑
α=1

∞∑
n=1

1/nTr Unα Tr V
n
α

]〉
= expF (Vα) . (4.2)

The generalization of (2.15) is straightforward. The basis of operators is labeled

now by vectors ~k(α), α = 1, . . . , L, and we define the vev G~k(1),...,~k(L)(U1, . . . , UL)

as follows:

G~k(1),...,~k(L)(U1, . . . , UL) =

〈
L∏
α=1

Υ~k(α)(Uα)

〉
, (4.3)

where Uα is the holonomy around γα. Using Frobenius formula, we can obtain the

representation basis for the Wilson loop operators:

TrR1(U1) · · ·TrRL(UL) =
L∏
α=1

χRα(C(
~k(α)))Υ~k(α)(Uα) . (4.4)

The connected vevs are defined, as usual, by taking the logarithm of the generating

function. More precisely, associate to any ~k the polynomial p~k(x) =
∏
j x
kj
j in the

variables x1, x2, . . .. We then define the “connected” coefficients a~k(1),...,~k(L) as follows:

log

(
1 +

∑
L

∑
~k(α)

a~k(1),...,~k(L)

L∏
α=1

|C(~k(α))|
`α!

p~k(α)(x
(α))

)
=
∑
L

∑
~k(α)

a
(c)
~k(1),...,~k(L)

× (4.5)

×
L∏
α=1

|C(~k(α))|
`!

p~k(α)(x
(α)) .

It is again convenient to group the numbers N(R1,...,RL);Q,s into the polynomials

f(R1,R2,...,RL)(q, λ) =
∑
Q,s

N(R1,...,RL);Q,s

q1/2 − q−1/2 q
sλQ . (4.6)
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A simple generalization of the arguments of [3] gives the following relation for links:

G
(c)
~k(1),...,~k(L)

(U1, . . . , UL) =
∑
n|~k(α)

n
∑
α |~k(α)|−1

∑
R1,...,RL

L∏
α=1

χRα

(
C
(
~k
(α)
1/n

))
×

× f(R1,...,RL)(q, λ) . (4.7)

In the first sum, the vector ~k1/n is defined as in (2.15). In (4.7), the n have to divide

all the vectors ~k(α), α = 1, . . . , L. As in [3], it is easy to see that, given the connected

vevs, eq. (4.7) determines the generating functions f(R1,...,RL)(q, λ) in a unique way

by a recursive procedure. For every vector (`1, . . . , `L) (which specifies the “order”)

we can solve for the f ’s in terms of the connected vevs and the f ’s of lower order

(i.e. with `′α ≤ `α).

Let us now give some examples of this procedure. The simplest case of (4.7) is

for R1 = · · · = RL = . In this case, one also has ~k(1) = · · ·~k(L) = (1, 0, . . .), and

f( ,..., ) = G
(c)
(1,0,...),...,(1,0,...)(U1, . . . , UL) . (4.8)

Notice that the connected vacuum expectation value contains information also about

the vevs for the components of the link, and for all the possible sublinks that can be

formed with these components. For example, for links with two components, one has

f( , ) = 〈Tr U1 Tr U2〉 − 〈TrU1〉〈TrU2〉 , (4.9)

where the second piece is the right hand side is the product of the vevs for the two

knots, γ1 and γ2, that form the link.

Let us now focus on links with two components. The next order is specified by

(`1, `2) = (2, 1) and (`1, `2) = (1, 2). We have, for example,

f( , ) =
1

2

(
G
(c)
(2,0,...),(1,0,...) +G

(c)
(0,1,0,...),(1,0,...)

)
,

f( , ) =
1

2

(
G
(c)
(2,0,...),(1,0,...) −G(c)(0,1,0,...),(1,0,...)

)
. (4.10)

Of course, for (`1, `2) = (1, 2) we have the same equations but with the labels

exchanged.

The next level is labeled by (1, 3), (3, 1) and (2, 2). For (3, 1), (4.7) gives:

f( , ) =
1

6
G
(c)
(3,0,...),(1,0,...) +

1

2
G
(c)
(1,1,0,...),(1,0,...) +

1

3
G
(c)
(0,0,1,...),(1,0,...) ,

f( , ) =
1

3

(
G
(c)
(3,0,...),(1,0,...) −G(c)(0,0,1,...),(1,0,...)

)
,

f
( , )

=
1

6
G
(c)
(3,0,...),(1,0,...) −

1

2
G
(c)
(1,1,0,...),(1,0,...) +

1

3
G
(c)
(0,0,1,...),(1,0,...) . (4.11)
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The equations for the order (1, 2) are again obtained by exchanging the labels. Fi-

nally, for (2, 2) we obtain

f( , )(q, λ) =
1

4

(
G
(c)
(2,0,...),(2,0,...)+G

(c)
(0,1,0,...),(2,0,...) +G

(c)
(2,0,...),(0,1,...) +G

(c)
(0,1,...),(0,1,...)

)
−

− 1
2
f( , )(q

2, λ2) ,

f( , )(q, λ) =
1

4

(
G
(c)
(2,0,...),(2,0,...)+G

(c)
(0,1,0,...),(2,0,...) −G(c)(2,0,...),(0,1,...)−G(c)(0,1,...),(0,1,...)

)
+

+
1

2
f( , )(q

2, λ2) ,

f( , )(q, λ) =
1

4

(
G
(c)
(2,0,...),(2,0,...)−G(c)(0,1,0,...),(2,0,...) +G(c)(2,0,...),(0,1,...)−G(c)(0,1,...),(0,1,...)

)
+

+
1

2
f( , )(t

2, λ2) ,

f( , )(q, λ) =
1

4

(
G
(c)
(2,0,...),(2,0,...)−G(c)(0,1,0,...),(2,0,...) −G(c)(2,0,...),(0,1,...) +G(c)(0,1,...),(0,1,...)

)
−

− 1
2
f( , )(q

2, λ2) . (4.12)

4.2 D-branes and links

A straightforward generalization of the arguments in section 2 goes as follows. If we

have a link of L components, the corresponding lagrangian submanifold D = ∪Dα
after the transition will have b1 = L. We will denote by Yα the non-trivial one-

cycles of D, with α = 1, . . . , L. After performing the analytic continuation, the 1/N

expansion (2.7) can be written as

F (Vα) =
∑

~k(1),...,~k(L)

∞∑
g=0

g2g−2+
∑L
α=1 |~k(α)|

s Fg;~k(1),...,~k(L)(λ)Υ~k(α)(Vα) , (4.13)

where ~k(α) denotes the number of holes, together with their wrappings which end

on Dα.

The D-brane derivation of this expansion proceeds as in section 3. We have

to consider Riemann surfaces with ` =
∑L
α=1 `α boundaries in such a way that `α

boundaries end on Yα. The relevant symmetry group is now S`1 × · · ·× S`L , and the
starting point is again (3.1). Projecting onto symmetric configurations under the

action of
∏L
α=1 S`α, one finds:∑

R1,...,RL

(
SR1(F

`1)⊗ · · · ⊗ SRL(F `L)
)
⊗ SR1,...,RL(H∗((S1)`−1)⊗H∗(Mg,`)) . (4.14)

The first factor is simply the tensor product of the irreducible representations R1, . . . ,

RL of SU(N), while the second factor can be further decomposed as∑
R′1,R′′1 ,...,R′L,R

′′
L

CR1R′1R′′1 · · ·CRLR′LR′′L SR′1,...,R′L(H∗((S1)`−1))⊗

⊗ SR′′1 ,...,R′′L(H∗(Mg,`)) . (4.15)
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The generating functions associated to SR′1,...,R′L(H
∗((S1)`−1)) are given by a straight-

forward generalization of the arguments for the L = 1 case. The result is:

TrSR1,...,RL (H∗((S1)`−1))(−1)F qs = (q−1/2 − q1/2)L−1
L∏
α=1

SRα(q) . (4.16)

The new integer invariants will then be, in the case of links,

N̂(R1,...,RL),g,Q = χ(SR1,...,RL(H
∗(Mg,`))) , (4.17)

and the generating functions (4.6) have the structure:

f(R1,...,RL)(q, λ) =

(q−1/2 − q1/2)L−2
∑
g≥0

∑
Q

∑
R′1,R′′1 ,...,R′L,R

′′
L

L∏
α=1

CRαR′α R′′αSR′α(q)N̂(R′′1 ,...,R′′L),g,Q ×

× (q−1/2 − q1/2)2gλQ . (4.18)

We can also define

f̂(R1,...,RL)(q, λ) = (q
−1/2 − q1/2)L−2

∑
g≥0

∑
Q

N̂(R1,...,RL),g,Q(q
−1/2 − q1/2)2gλQ . (4.19)

We then have the relation:

f(R1,...,RL)(q, λ) =
∑

R′1,...,R′L

MR1,...,RL;R′1,...,R′L(q)f̂(R′1,...,R′L)(q, λ) , (4.20)

where the matrix MR1,...,RL;R′1,...,R′L(q) is given by

MR1,...,RL;R′1,...,R′L(q) =
∑

R′′1 ,...,R′′L

L∏
α=1

CRαR′αR′′αSR′′α(q) (4.21)

=
∑

~k(1),...,~k(L)

L∏
α=1

|C(~k(α))|
`α!

χRα(C(~k
(α)))χR′α(C(

~k(α)))P~k(α)(q) .

The generalization of (2.17) to the case of links is

N(R1,...,RL);Q,s = (−1)
∑L
α=1 `α−1N(Rt1,...,RtL);Q,−s , (4.22)

or, equivalently,

f(R1,...,RL)(t
−1, λ) = (−1)

∑L
α=1 `αf(Rt1,...,RtL)(t, λ) , (4.23)

which are a consequence of (3.12) and (4.18). Again, we can obtain the structure of

the generating functions in the ~k basis, by defining

f~k(1),...,~k(L)(q, λ) =
∑

R1,...,RL

L∏
α=1

χRα(C(
~k(α)))f(R1,...,RL)(q, λ) , (4.24)
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and

n(~k(1),...,~k(L)),g,Q =
∑

R1,...,RL

L∏
α=1

χRα(C(~k
(α)))N̂(R1,...,RL),g,Q . (4.25)

A straightforward generalization of the argument in the case of knots shows that

f~k(1),...,~k(L)(q, λ) =

∏j(q−j/2 − qj/2)∑Lα=1 k(α)j
(q−1/2 − q1/2)2

×
×
∑
Q

∑
g≥0

n(~k(1),...,~k(L)),g,Q(q
−1/2 − q1/2)2gλQ . (4.26)

and this leads to the 1/N expansion (4.13).

4.3 Links in Chern-Simons theory

In the previous section we have generalized the results of [2, 3] and section 3 to the

case of links in a rather straightforward way. The subtlety with links has to do rather

with the computation of the vevs in Chern-Simons theory. It turns out that there are

some ambiguities involved in this computation, and as we will see the appropriate

definition of the vev is different from the standard one in knot theory.

A good starting point to address this issue is the perturbative analysis of vevs

in Chern-Simons theory [16, 17]. Let us consider a link L with L components Kα,
α = 1, . . . , L, and let’s assume for simplicity that all the components carry the

fundamental representation. In Chern-Simons theory the components of a link have

to be framed and the resulting invariants are invariants of framed links. We will

assume that the components are in the vertical framing, which is very natural when

we define the invariant in terms of a plane projection of the link [18]. Vevs computed

in the vertical framing are not ambient isotopy invariants, but rather regular isotopy

invariant (this means that they are not invariant under Reidemeister type-I moves).

However, a perturbative analysis of the vev [16, 17] shows that the corrected quantity

exp[−2πiw(L)h ]〈W (L)〉vf , (4.27)

where w(L) is the writhe of the planar projection of the link, is an ambient isotopy
invariant and in particular gives the unnormalized HOMFLY polynomial of the link.

In this equation, hR is the conformal weight of the WZWmodel for the representation

R. For the fundamental representation it is given by h = (N − 1/N)/(2(k + N)).
The key thing here (which is familiar from the construction of the Kauffman bracket)

is that the variation of 〈W (L)〉vf under type-I moves is compensated by the variation
of the writhe, in such a way that the product is a topological invariant. Notice that

the writhe of the link is given by:

w(L) =
L∑
α=1

w(Kα) + 2 lk(L) , (4.28)
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where lk(L), the total linking number of L, is defined as:
lk(L) =

∑
α<β

lk(Kα,Kβ) , (4.29)

and lk(Kα,Kβ) is the linking number of the two components α, β. These linking
numbers are ambient isotopy invariants of the link. Therefore, in order to obtain a

well-defined invariant of links, it would have been enough to introduce the correc-

tion factor exp[−2πi∑αw(Kα)h ]. From a topological point of view, there is an
important advantage in defining the invariant as in (4.27): with that definition, all

the crossings in the link are treated in the same way, without taking into account

if they belong to the same component or to different components of the link (for a

related discussion, see [19]). This is why the usual HOMFLY polynomial satisfies a

universal skein relation.

The main conclusion of this analysis is that, in order to obtain the usual knot

invariants, one has to correct the field theory vev in two ways. First, as for knots,

we have to include a non-topological factor to take into account the framing of the

components. The resulting vev is in the standard framing and will be denoted by

〈W (L)〉sf :
〈W (L)〉sf = exp

[
−2πi

∑
α

w(Kα)h
]
〈W (L)〉vf . (4.30)

The second factor is topological and depends on the linking numbers of the

components:

exp

[
−4πih

∑
α<β

lk(Kα,Kβ)
]
. (4.31)

Notice that (4.31) can be written as:

exp

[
2πi

N(k +N)

∑
α<β

lk(Kα,Kβ)
]
λ−
∑
α<β lk(Kα,Kβ) , (4.32)

and the first factor guarantees that the corrected vev is a polynomial in t and λ.

However, this correction has some unpleasant features. It can be easily seen that

the second factor spoils the structure of the 1/N expansion (2.18) of the field-theory

vev. This seems to be a problem in order to find a string interpretation of the

Chern-Simons vevs. On the other hand, the string interpretation makes clear that

the appropriate vevs should be functions of t and λ, so the vev still has to be cor-

rected with the first factor of (4.32) in order to compare it to the string predictions.

Therefore, we propose that the relevant vev that is needed for comparison with the

string predictions is

exp

[
2πi

N(k +N)

∑
α<β

lk(Kα,Kβ)
]
〈W (L)〉sf . (4.33)
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This means, in particular, that the relevant link polynomial is not the HOMFLY

polynomial PL(t, λ), but rather

λlk(L)PL(t, λ) . (4.34)

As we will see, this is crucial in order to find agreement with the string predictions.

In the discussion above, we have assumed that all the components of the links

were in the fundamental representation. We will now consider the general case in

which the components are in arbitrary irreducible representations of SU(N). To do

that, we will introduce some notation. Let R be an irreducible representation, and

let Λ be the highest weight. If we denote by λi, i = 1, . . . , N − 1 the fundamental
weights of SU(N), we can always write

Λ =
N−1∑
i=1

aiλi , (4.35)

where the ai are non-negative integers. We can associate to R a Young diagram in

the usual way, with ` =
∑
i iai boxes. Consider the following integer associated to

Λ, which will be useful later on:

κΛ =
∑
i

(ia2i − i2ai) + 2
∑
i<j

iaiaj . (4.36)

The conformal weight hR is then given by:

hR =
Λ · (Λ + 2ρ)
2(k +N)

, (4.37)

where ρ is the Weyl vector (i.e. the sum of the fundamental weights). Notice that

Λ · (Λ + 2ρ) = N`− `2

N
+ κΛ . (4.38)

Let’s then consider a “multicoloured” link with L components, with Kα in the repre-
sentation Rα, for α = 1, . . . , L. The number of boxes in the Young tableau associated

to Rα is denoted by `α. The generalization of (4.30) to this situation is simply

〈W (L)〉sf = exp
[
−2πi

∑
α

w(Kα)hRα
]
〈W (L)〉vf . (4.39)

We also propose that the corrected vev which extends (4.33) to the general case is

exp

[
2πi

N(k +N)

∑
α<β

lk(Kα,Kβ)`α`β
]
〈W (L)〉sf . (4.40)

This choice is motivated by the structure of the knot operators for torus knots and

links, that will be reviewed later. Equation (4.40) is the minimal correction that

makes the resulting object a function of t±1/2 and λ±1/2, and it can be easily checked
that it preserves the structure of the 1/N expansion.
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4.4 Rank-level duality for links

Rank-level duality of WZW models [20] implies a certain number of identities for

Chern-Simons vevs [21], which essentially relate the vev of a Wilson loop in the

representation R with the vev in the transposed representation. In this section we

will see that these identities are in fact closely related to the relation (4.23). The

comparison to the results of [21] involves the extra factor (4.40) in an interesting

way, and provides a further consistency check of our procedure.

Using (4.23) and (4.7) one can obtain the following relation for the vevs of a

product of Wilson loops in the representation basis:

〈TrR1(U1) · · ·TrRL(UL)〉(q−1, λ) = (−1)`〈TrRt1(U1) · · ·TrRtL(UL)〉(q, λ) , (4.41)

where ` =
∑
α `α. This relation is in fact a consequence of the usual 1/N expansion

of the Wilson loops in Chern-Simons theory, and of the fact that the vevs can be

written in terms of the variables q, λ. Therefore, for this relation to be true it is

crucial to introduce the correction factors (4.40). To make contact with the rank-level

duality relations obtained in [21], we have to go to the vertical framing. The vevs in

the vertical framing are related to our corrected vevs through (4.30) and (4.40):

〈TrR1(U1) · · ·TrRL(UL)〉vf = exp
[
−2πi

∑
α

w(Kα)hRα−

− 2πi

N(k +N)

∑
α<β

lk(Kα,Kβ)`α`β
]
×

×〈TrR1(U1) · · ·TrRL(UL)〉 . (4.42)

Now we use the fact that taking the mirror image Ũ of a Wilson line U is equivalent

to complex conjugation and sends q, λ→ q−1, λ−1. Finally, using that [21]

hRα |SU(N)k + hRtα|SU(k)N =
`α

2
− `2α
2Nk

, (4.43)

we obtain

〈TrR1(U1) · · ·TrRL(UL)〉vfSU(N)k = exp
[
πi
∑
α

w(Kα)`α−

− 2πi

N(k +N)

∑
α,β

lk(Kα,Kβ)`α`β
]
×

×〈TrRt1(Ũ1) · · ·TrRtL(ŨL)〉vfSU(k)N , (4.44)

where the self-linking number is lk(Kα,Kα) = w(Kα). To write the final result, we
have also taken into account that the vev of TrR1(U1) · · ·TrRL(UL) has the mon-
odromy (−1)` under λ → e2πiλ. We then see that the rank-level duality relations
of [21] are a consequence of both the structure of the 1/N expansion (or its D-brane

version (4.26)) and the monodromy of the vevs under λ→ e2πiλ.
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4.5 Polynomial invariants for torus links

To obtain explicit results for the generating functions f(R1,...,RL), we have to com-

pute vevs of general products of Wilson loops. In general these computations are

technically difficult, but if the components of the links are torus knots, one can use

the formalism of knot operators developed in [22]. Torus knots are labeled by two

coprime integers (n,m), which correspond to winding numbers around the two non-

contractible cycles of the torus. Wilson loops corresponding to a torus knot (n,m),

and in an irreducible representation of highest weight Λ, are represented by the oper-

ator W
(n,m)
Λ . This operator acts on the Hilbert space of Chern-Simons gauge theory

on a torus. It has been shown in [23] that this space has an orthonormal basis |p〉
labeled by weights p in the fundamental chamber of the weight lattice of SU(N), Fl,
where l = k +N . We take as representatives of p the ones of the form p =

∑
i piλi,

with pi > 0 and
∑
i pi < l. The vacuum is the state |ρ〉, where ρ is the Weyl vector.

The action of the loop operator on a state |p〉 is given by [22]:

W
(n,m)
Λ |p〉 =

∑
µ∈MΛ

exp

[
−iπµ2 nm

k +N
− 2πi m

k +N
p · µ

]
|p+ nµ〉 . (4.45)

If we act on the vacuum with L knot operators (n1, m1), . . . , (nL, mL), with repre-

sentations labeled by Λ1, . . . ,ΛL, we will create a link whose α-th component is a

torus knot labeled by (nα, mα) and representation Λα [19]. The resulting state can

be computed from (4.45), and is given by(
L∏
α=1

W
(nα,mα)
Λα

)
|ρ〉 =

∑
µ(α)∈MΛα

exp

[
− 2πi
k +N

(∑
α<β

nαmβ µ
α · µβ

)]
×

× exp
[
− iπ

k +N

(∑
α

nαmα(µ
(α))2

)
− (4.46)

− 2πi

k +N
ρ ·
(∑
α

mαµ
(α)

)] ∣∣∣∣∣ρ+∑
α

nαµ
(α)

〉
.

The link that has been constructed lives on the surface of a solid torus. To compute

the vev of the product of Wilson loops when this link is in S3, we have to perform an

S-transformation. The final expression for the vev, without including any correction

factor, is [22, 19]

〈ρ|S∏Lα=1W (nα,mα)
Λα

|ρ〉
〈ρ|S|ρ〉 . (4.47)

As explained in [24], the inner products that appear in (4.47) can be computed as

follows. The weight ρ +
∑
α nαµ

(α) is not necessarily in the fundamental chamber,

but it will have a representative in it obtained by the action of an element of the

Weyl group, say w. If this representative has a vanishing component in the Dynkin
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basis, then the corresponding state will be zero, due to the antisymmetry of the

wave function under Weyl reflections. If this is not the case, we will be able to

write the representative as ρ+µ(n1,...,nα), where µ(n1,...,nα) is a weight of non-negative

components. Using Weyl formula and the explicit expression for the S-operator, we

can write
〈ρ|S|ρ+∑α nαµ

(α)〉
〈ρ|S|ρ〉 = ε(w)chµ(n1,...,nα)

[
− 2πi
k +N

ρ

]
. (4.48)

This solves in principle the problem of computing the vev (4.47).

We can now use these results to motivate (4.33). First notice that the exponential

in (4.46) can not be written in terms of t±1/2, λ±1/2. This can be seen as follows.
Let’s denote by µi, i = 1, . . . , N the weights of the fundamental representation of

SU(N), and let Λ be the highest weight of an irreducible representation of SU(N)

whose Young diagram contains ` boxes. It was shown in [3] that the weights in MΛ
can be always written as

k1µi1 + · · ·+ krµir , 1 ≤ i1 < · · · < ir ≤ N , (4.49)

where (kλ) = (k1, . . . , kr) is an ordered partition of `, i.e. an r-tuple that sums up

to `. Using this, and the explicit expression for the inner products µi · µj (see, for
example, [24]), it is easy to show that the second term in the exponential of (4.46)

gives a factor

exp

[
πi

N(k +N)

∑
α

nαmα`
2
α

]
, (4.50)

while the first term gives

exp

[
2πi

N(k +N)

∑
α<β

nαmβ`α`β

]
. (4.51)

None of these factors can be written in terms of t±1/2 and λ±1/2, since they involve
a 1/N factor in the denominator of the exponent. As explained in [19], the writhe

of each of the components of the link constructed in (4.46) is w(Kα) = nαmα. Us-

ing (4.37) and (4.38) it is easy to see that the factor (4.50) will be canceled by the

correction that is needed in order to enforce the standard framing. On the other

hand, the remaining factor (4.51) is due to the linking of the different components,

since lk(Kα, Kβ) = −nαmβ , α < β, in this case [19]. We see that the correction factor

in (4.40) is the minimal one that has to be introduced in order to cancel (4.51). Since

the character involved in (4.48) is a rational function of t±1/2 and λ±1/2, it follows
that the invariant defined in (4.40) is also a rational function of these two variables, at

least in the particular case of links made up of torus knots by the above construction.

A particularly interesting example occurs when all the components of the link

are the same torus knot. In this case, the resulting link is called a torus link. A torus

link of L components is made of L torus knots of type (n,m), and will be labeled
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by (nL,mL), where n and m are relatively prime. For example, the Hopf link is the

(2, 2) torus link. For torus links, the expression (4.46) can be simplified very much. It

is easy to see that when (n1, m1) = · · · = (nL, mL) = (n,m), the action of the string
of operators on the vacuum is exactly that of a single knot operator (n,m) but in the

tensor product representation ⊗Lα=1Rα. This means that the vev can be computed
by decomposing the tensor product and using the results of [3], without further ado.

The decomposition in irreducible representations can be written as follows,

⊗Lα=1Rα =
∑
s

N ΛsΛ1,...,ΛLRs , (4.52)

where the integers N ΛsΛ1,...,ΛL can be easily computed by using repeatedly the Little-
wood-Richardson rule. After taking into account the correction factors (4.33), one

finally obtains the following expression for the vev:〈
L∏
α=1

W
(n,m)
Λα

〉
=
∑
s

N ΛsΛ1,...,ΛLt
mn
2 (
∑L
α=1 κΛα−κΛs)

〈
W
(n,m)
Λs

〉
, (4.53)

where the detailed expression for 〈W (n,m)
Λs
〉 was given in [3], and κΛ has been defined

in (4.36). We will use (4.53) to give some explicit results on the link invariants in

section 6.

4.6 Some predictions for the HOMFLY polynomial of links

The result (4.18) gives a powerful structure theorem about the link invariants derived

from Chern-Simons theory. Even in the case of links in the fundamental representa-

tion (i.e. the HOMFLY polynomial) one can obtain some highly non-trivial results.

To extract the consequences of the above result, it is convenient to introduce some

notation. Let’s consider a link L of L components Kα, α = 1, . . . , L. The usual
HOMFLY polynomial of this link will be denoted by PL(q, λ), and it is related to
the corrected Chern-Simons vev 〈W (L)〉 as follows:

〈W (L)〉 = λlk(L)
(
λ1/2 − λ−1/2
q1/2 − q−1/2

)
PL(q, λ) . (4.54)

The structure theorem (4.18) says that

〈W (L)〉(c) = (q−1/2 − q1/2)L−2
∑
Q

∑
g≥0

N̂( ,..., ),g,Qλ
Q(q−1/2 − q1/2)2g . (4.55)

We will first consider the simple case of a link of two components. Using (4.9), we

find that the HOMFLY polynomial of the link has the following structure:

PL(t, λ) =
∑
g≥0

pL2g−1(λ)(q
1/2 − q−1/2)2g−1 , (4.56)
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i.e. the lowest power of q1/2−q−1/2 is −1, and the powers are congruent to −1 mod 2.
Moreover, if we denote the HOMFLY polynomial of the component knots by

PKα(λ, q) =
∑
g≥0

pKα2g (λ)(q
1/2 − q−1/2)2g , (4.57)

for α = 1, 2, we find

pL−1(λ) = λ
−lk(L)(λ1/2 − λ−1/2)pK10 (λ)pK20 (λ) . (4.58)

The last equation comes from the requirement that there are no powers of (q1/2 −
q−1/2)−2 in 〈W (L)〉(c). The results (4.56) and (4.58) capture completely the algebraic
structure of the HOMFLY polynomial of a two-component link, and reproduce the

results of Lickorish and Millett [15].

We can generalize the above results for links with an arbitrary number of com-

ponents L. We introduce again some notation. Lα1,...,αs will denote the sublink
of s components obtained from the link L by “forgetting” L − s components, and
{α1, . . . , αs} ⊂ {1, . . . , L}. The connected vev 〈W (L)〉(c) is then given by the original
vev together with some corrections involving products of vevs for sublinks:

〈W (L)〉(c) = 〈W (L)〉 −
L∑

αL=1

〈W (Lα1,...,αL−1)〉〈W (LαL)〉+ · · · . (4.59)

By induction on the number of components, and using (4.59) and (4.55), it is very

easy to prove that the HOMFLY polynomial of the link has the following structure:

PL(q, λ) =
∑
g≥0

pL2g+1−L(λ)(q
1/2 − q−1/2)2g+1−L , (4.60)

i.e. the lowest power of q1/2−q−1/2 is 1−L. This has been also proved in [15]. Due to
our correction factor (4.34), it is convenient to introduce the following polynomials

in λ:

p̃
Lα1,...,αs
k (λ) = λlk(Lα1,...,αs)pLα1,...,αsk (λ) . (4.61)

Finally, we will write

〈W (L)〉(c) =
(
λ1/2 − λ−1/2
q1/2 − q−1/2

)∑
g≥0

p̃
(c),L
2g+1−L(λ)(q

1/2 − q−1/2)2g+1−L . (4.62)

The structure theorem (3.31) then states that

p̃
(c),L
1−L (λ) = p̃

(c),L
3−L (λ) = · · · = p̃(c),LL−3 (λ) = 0 . (4.63)

This implies that the polynomials pLk (λ) of the HOMFLY polynomial of a link, for
k = 1−L, 3−L, . . . , L−3, are completely determined by the HOMFLY polynomial of
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its sublinks. As a first consequence, we find that p̃
(c),L
1−L (λ) = 0 gives the generalization

of (4.58) to an arbitrary link:

pL1−L(λ) = λ
−lk(L)(λ1/2 − λ−1/2)L−1

L∏
α=1

pKα0 (λ) . (4.64)

This is easy to prove by induction on the number of components: since p̃
(c),L
1−L (λ) = 0,

one can extract the coefficient of the lowest power of q1/2− q−1/2 in 〈W (L)〉 from the
terms involving products of vevs of sublinks in the expansion of the connected piece.

One sees immediately that the relevant part of these vevs is again the coefficient

of the lowest power of q1/2 − q−1/2. But because of the induction hypothesis, these
in turn can be evaluated by factorization into their knots. This means that the

coefficient p̃L1−L can be evaluated from
∏L
α=1〈W (Kα)〉, and this proves (4.64). This

formula was in fact obtained by Lickorish and Millett in [15] using the skein relation.

In our context, this is just the simplest prediction of (4.63), which gives much more

relations. For example, for links with L = 3, the equality p̃
(c),L
0 (λ) = 0 implies that

p̃L0 (λ) = (λ
1/2 − λ−1/2)(pK10 (λ) p̃L231 (λ) + perms)−
− 2(λ1/2 − λ−1/2)2(pK12 (λ) pK20 (λ) pK30 (λ) + perms) . (4.65)

For links with more components, one obtains more complicated equations which can

be summarized as in (4.63) and give new results on the algebraic structure of the

HOMFLY polynomial of links.

5. Lagrangian submanifold for torus links

As noted before, in order to describe the large-N closed string dual for knot and link

invariants, we need to construct a suitable lagrangian submanifold on the blown up

conifold geometry which corresponds to the D-branes after the conifold transition.

This has been done for the case of the trivial knot in [2]. In this section we wish

to generalize this construction for certain links known as algebraic links (see for

example [25] for a discussion of algebraic links). These are links that can be obtained

by intersecting a plane curve in C2

F (ζ1, ζ2) = 0 (5.1)

with a three-sphere |ζ1|2 + |ζ2|2 = R. Torus links are in fact algebraic, since a torus

link of type (n,m) is described by the equation

ζn1 + ζ
m
2 = 0 . (5.2)

This can be easily seen by writing ζ1 = r1e
iθ1 , ζ2 = r2e

iθ2 . The number of components

of this link is precisely L = gcd(n,m). It is possible to obtain a more general algebraic
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equation describing the same torus link by taking the r.h.s. of (5.2) to be a polynomial

in ζ1, ζ2 of lower degree (provided the radius R of the three-sphere is big enough). It

is important to notice that not all links and knots are algebraic.

The equation (5.1) describes an algebraic curve in C2. However on the blown

up conifold geometry we are interested in a 3-dimensional lagrangian submanifold.

How does one get a canonical such manifold from the above construction? There are

two things that need to be changed here: first, we need a lagrangian submanifold

rather than an algebraic one. Secondly we need a 3-dimensional manifold and not a

2-dimensional one.

To remedy the first difficulty, notice that one can perform a hyperKähler rotation

and obtain a 2-dimensional (real) submanifold which is lagrangian for the canonical

Kähler form ω = (i/2)
∑2
k=1 dζk ∧ dζk. The resulting equation is simply,

F
(
eiθ/2ζ1 − e−iθ/2ζ2, eiθ/2ζ2 + e−iθ/2ζ1

)
= 0 , (5.3)

where θ is a real parameter. To prove that this submanifold is lagrangian, one

considers the equation dF = 0 and its complex conjugate, which read:

(∂1F )(e
iθ/2dζ1 − e−iθ/2dζ2) = −(∂2F )(eiθ/2dζ2 + e−iθ/2dζ1) ,

(∂1F )(e
−iθ/2dζ1 − eiθ/2dζ2) = −(∂2F )(e−iθ/2dζ2 + eiθ/2dζ1) . (5.4)

Assuming that ∂1F 6= 0, and wedging the first equation with eiθ/2dζ2+e−iθ/2dζ1 and
the second equation with e−iθ/2dζ2 + e

iθ/2dζ1, we easily obtain that ω|F=0 = 0, for
any θ.

To remedy the second difficulty we recall that we are considering a lagrangian

submanifold in O(−1) + O(−1) → P1. For each point of P1 we have a copy of
C2 and the S3 should be identified with the large S3 sitting in C2. The condition

that the lagrangian submanifold after transition corresponds to a specific link before

transition is simply that the lagrangian submanifold intersects the S3 at infinity along

the corresponding link. This is precisely the case for the above construction. Thus the

above 2-dimensional construction can be viewed in principle as a 2-dimensional slice

of a 3d lagrangian submanifold, where one dimension of the lagrangian submanifold

projects to a curve in P1.

In order to complete the story, we need to construct that third direction of the

lagrangian submanifold. The idea is to use the SO(2) rotation symmetry of O(−1)+
O(−1) → P1 (where one thinks of the fiber directions as two copies of spinors and
SO(2) acts on P1 by the standard rotation), and rotate the 2-dimensional lagrangian

submanifold to get a 3-dimensional lagrangian submanifold. In particular consider

the 3-dimensional manifold which is given by the above lagrangian submanifold,

where one interprets θ as the angle along the equator of P1. In other words, the

projection of the 3-manifold over P1 is given by the equator parameterized by θ and

over each point the fiber is the 2-dimensional lagrangian submanifold constructed
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above. Note that the θ dependence in the above fibration is consistent with the

SO(2) action on the fibers (being spinors over the sphere). This manifold makes

sense if we get the same fiber over θ = 0 and θ = 2π, which means that this

construction only makes sense for F (ζ1, ζ2) = ±F (−ζ1,−ζ2). We will now show that
this 3-dimensional submanifold is indeed lagrangian, at least for a specific choice of

metric on O(−1) + O(−1) → P1 which is symplectically equivalent to that of the
Ricci-flat metric.

The Ricci-flat metric on this Calabi-Yau has a Kähler form that can be written as

ω =
i

2
∂∂K(U) + ωP1 . (5.5)

In this equation, ωP1 is the usual symmetric Kähler form on the sphere and K(U) is

a Kähler potential depending on the variable

U = (1 + |z|2)(|ζ1|2 + |ζ2|2) , (5.6)

where z is a complex coordinate on P1. Note that U is simply the norm of the spinor

bundles with respect to the constant curvature metric on P1. Since we are only

interested in the topological string amplitudes only the Kähler class of the metric

should be relevant and not whether it is Ricci-flat or not. For this any K(U) will

be sufficient. We take K(U) = U (which is not a Ricci-flat metric). In this case the

Kähler form is given by

i

2

2∑
k=1

(
(1 + |z|2)(dζk ∧ dζk) + zζkdz ∧ dζk + zζkdζk ∧ dz

)
+O(dz ∧ dz) , (5.7)

where the terms involving dz ∧ dz are clearly vanishing over the 3-dimensional man-
ifold we have constructed. Using this explicit expression for the Kähler form, it is

easy to prove that for z = eiθ (i.e. the equator of the sphere) eq. (5.3) describes a

lagrangian submanifold which has the topology of a surface bundle over the equator.

We have then obtained a lagrangian submanifold in the resolved conifold correspond-

ing to the algebraic link described by (5.1).

Notice that as explained above eq. (5.1) has monodromy as we go around the

equator, therefore it is not always well defined for arbitrary torus links. For (5.2),

we must have (n,m) both even or both odd. If this is the case, it is natural to

propose that (5.3) in fact describes the lagrangian submanifold corresponding to the

algebraic link (5.1) after the transition. As an evidence for the above proposal, note

that this construction for the case of (n,m) = (1, 1) which corresponds to the unknot

reproduces the result of [2] . Also for the case of (n,m) = (2, 2), which corresponds

to the Hopf link (and similarly for (n,m) = (k, k)), the above construction agrees

with a simple generalization of the construction in [2] to this case. This provides

further evidence for our construction.
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g Q=1/2 3/2 5/2

0 2 -3 1

1 1 -1 0

g Q=1 2 3 4 5

0 2 -8 12 -8 2

1 1 -6 10 -6 1

2 0 -1 2 -1 0

Table 1: The integers N̂ ,g,Q for the tre-

foil knot.

Table 2: The integers N̂ ,g,Q for the

trefoil knot.

6. Explicit results and examples

In this section we illustrate the results of the previous sections with explicit com-

putations in Chern-Simons. The equations (3.19) and (4.18) give important and

highly non-trivial structural predictions for the link invariants of Chern-Simons the-

ory. The fact that they turn out to be true in all the cases that we have checked

gives strong evidence for the D-brane degeneracy picture advocated in this pa-

per. The results presented below are just an illustrative sample of all the exam-

ples that we have computed, involving many different torus knots and links. Since

the resulting expressions are typically complicated, we have presented examples in-

volving representations with a small number of boxes and knots and links with

only a few crossings. Further examples are easily obtained with our results for

torus links.

In the first subsection we present a compu-
g Q=1 2 3 4 5

0 4 -16 24 -16 4

1 4 -20 32 -20 4

2 1 -8 14 -8 1

3 0 -1 2 -1 0

Table 3: The integers N̂
,g,Q
for

the trefoil knot.

tation of the new integer invariants N̂R,g,Q in the

case of knots. The computation of the generating

functions fR has been done in [3] for torus knots

and in [4] for some other knots with up to nine

crossings. From these generating functions, and us-

ing (3.21) and the explicit expression of the matrix

MRR′(q), we can extract the new integer invariants

introduced in section 3. The fact that the functions

f̂R turn out to have the simple structure predicted in (3.20) is highly non trivial from

the point of view of Chern-Simons, since the entries of the inverse matrix of MRR′(q)

are rational functions with very complicated denominators. The integrality property

of the invariants N̂R,g,Q is clearly stronger than the integrality property of NR,Q,s,

and gives a powerful check of the arguments presented in section 3.

After presenting the results for knots, we consider the case of links and we

illustrate the arguments presented in section 4. For links, the structural results

that we have obtained are already very strong when all the components are in the

fundamental representation, as we have seen in subsection 4.6. Our results also

confirm that the proposal (4.40) is the right prescription to obtain results compatible

with the dual description in terms of topological strings.
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g Q=3/2 5/2 7/2 9/2 11/2 13/2 15/2

0 2 -18 64 -116 114 -58 12

1 1 -21 106 -232 251 -131 26

2 0 -8 67 -187 227 -121 22

3 0 -1 19 -74 103 -55 8

4 0 0 2 -14 23 -12 1

5 0 0 0 -1 2 -1 0

Table 4: The integers N̂ ,g,Q for the trefoil knot.

g Q=3/2 5/2 7/2 9/2 11/2 13/2 15/2

0 11 -99 332 -558 507 -239 46

1 15 -201 842 -1627 1612 -796 155

2 7 -164 910 -2080 2275 -1172 224

3 1 -66 528 -1475 1792 -947 167

4 0 -13 171 -614 833 -443 66

5 0 -1 29 -148 226 -119 13

6 0 0 2 -19 33 -17 1

7 0 0 0 -1 2 -1 0

Table 5: The integers N̂
,g,Q
for the trefoil knot.

In principle, the integer invariants N̂R,g,Q can be computed on the gravity side,

after the transition, by looking at the moduli space of Riemann surfaces with bound-

aries on the lagrangian submanifold. It would be very interesting to compute some of

these numbers by using the explicit construction for torus links presented in section 5.

6.1 Knots

We will first give some examples of the integer invariants N̂R,g,Q for the trefoil knot,

for representations of up to 3 boxes. The values of the invariants can be read from [3,

eqs. (4.7), (4.13) and (4.21)], and are presented in tables 1–6.

In addition, we present also the the values of the integers N̂ ,g,Q, N̂ ,g,Q and

N̂ ,g,Q for the knots 41, 51 and 61 shown in figure 1. The results are collected

in tables 7–15. Knots 41, and 61 are not torus knots. The values of the integer

invariants have been obtained from the expressions for f , f and f presented

in [4]. The knot 51 is a torus knot and the integer invariants have been obtained

after using the general formula for this type of knots provided in [3]. The following

tables contain the values that take all these integer invariants. Notice that for the

amphicheiral knot 41 the results are consistent with the fact that for this type of

knots fR(q, λ) are invariant under q → q−1, λ → λ−1. Using (3.12) and (3.19 it is
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g Q=3/2 5/2 7/2 9/2 11/2 13/2 15/2

0 12 -108 352 -568 492 -220 40

1 26 -306 1180 -2136 2006 -950 180

2 22 -366 1740 -3618 3728 -1864 358

3 8 -230 1431 -3504 3978 -2066 383

4 1 -79 698 -2077 2603 -1378 232

5 0 -14 200 -761 1057 -561 79

6 0 -1 31 -167 259 -136 14

7 0 0 2 -20 35 -18 1

8 0 0 0 -1 2 -1 0

Table 6: The integers N̂
,g,Q
for the trefoil knot.

easy to prove that amphicheiral knots satisfy

N̂R,g,Q = (−1)`N̂Rt,g,−Q , (6.1)

as one can see for R = , and in tables 7–9.

g Q=-3/2 -1/2 1/2 3/2

0 1 -2 2 -1

0 0 -1 1 0

g Q=-3 -2 -1 0 1 2 3

0 2 -7 9 -6 4 -3 1

1 1 -6 9 -5 2 -1 0

2 0 -1 2 -1 0 0 0

Table 7: The integers N̂ ,g,Q for the

figure-eight knot 41.

Table 8: The integers N̂ ,g,Q for the

figure-eight knot 41.

g Q=-3 -2 -1 0 1 2 3

0 1 -3 4 -6 9 -7 2

1 0 -1 2 -5 9 -6 1

2 0 0 0 -1 2 -1 0

g Q=3/2 5/2 7/2

0 3 -5 2

1 4 -5 1

2 1 -1 0

Table 9: The integers N̂
,g,Q
for the

figure-eight knot 41.

Table 10: The integers N̂ ,g,Q for the

knot 51.

6.2 Links

We now give explicit results for some torus links. The simplest link is the Hopf link,

which is the (2, 2) torus link. It has two components which are both the unknot.

Before presenting the results, it is worthwhile to show that the correction factor

in (4.34) is crucial to agree with the string predictions. The unnormalized HOMFLY

34



J
H
E
P
1
1
(
2
0
0
0
)
0
0
7

g Q=3 4 5 6 7

0 20 -80 120 -80 20

1 60 -260 400 -260 60

2 69 -336 534 -336 69

3 38 -221 366 -221 38

4 10 -78 136 -78 10

5 1 -14 26 -14 1

6 0 -1 2 -1 0

g Q=3 4 5 6 7

0 30 -120 180 -120 30

1 115 -490 750 -490 115

2 176 -819 1286 -819 176

3 137 -724 1174 -724 137

4 57 -365 616 -365 57

5 12 -105 186 -105 12

6 1 -16 30 -16 1

7 0 -1 2 -1 0

Table 11: The integers N̂ ,g,Q for the

knot 51.

Table 12: The integers N̂
,g,Q
for the

knot 51.

polynomial of the Hopf link is given by:(
λ1/2 − λ−1/2
q1/2 − q−1/2

)(
λ3/2 − λ1/2
q1/2 − q−1/2 − λ

1/2(q1/2 − q−1/2)
)
. (6.2)

The linking number of the two unknots is
g Q=-3/2 -1/2 1/2 3/2 5/2

0 1 -1 -1 2 -1

1 0 -1 0 1 0

Table 13: The integers N̂ ,g,Q for the

knot 61.

−1, and according to (4.34) the vev 〈Tr U1
Tr U2〉 should be equal to the unnormalized
HOMFLY polynomial, times λ−1. Without
this factor, the connected vev (4.9) does not

have the structure predicted by (4.6). Once

the right prescription has been used, one

obtains:

f( , )(q, λ) = −λ−1(λ− 1) . (6.3)

Using all our previous results, we can compute the f ’s up to order `1 + `2 = 4. At

order three, we find:

f( , )(q, λ) = −λ−1(λ1/2 − λ−1/2)q−1/2 ,
f( , )(q, λ) = λ−1(λ1/2 − λ−1/2)q1/2 , (6.4)

g Q=-3 -2 -1 0 1 2 3 4 5

0 2 -4 -1 7 -4 -6 15 -13 4

1 1 -5 2 6 -4 -10 25 -19 4

2 0 -1 1 1 -1 -6 13 -8 1

3 0 0 0 0 0 -1 2 -1 0

Table 14: The integers N̂ ,g,Q for the knot 61.
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Figure 1: Some of the knots and links considered in the paper. The trefoil knot 31 and

the knot 51 are the torus knots (3, 2) and (5, 2), in the notation used in subsection 4.5.

The figure-eight knot 41 and the knot 61 are not torus knots. The first one is amphicheiral.

The two-component links 221 and 4
2
1 correspond to the torus links (2, 2) and (2, 4) in the

notation used in subsection 4.5.

while at order four we get:

f( , )(q, λ) = −λ−2(λ− 1)q−1 ,
f( , )(q, λ) = λ−2(λ− 1) ,
f
( , )
(q, λ) = −λ−2(λ− 1)q ,
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g Q=-3 -2 -1 0 1 2 3 4 5

0 1 -2 0 3 -4 -12 26 -21 6

1 0 -1 1 1 0 -26 60 -46 11

2 0 0 0 0 0 -22 50 -34 6

3 0 0 0 0 0 -8 17 -10 1

4 0 0 0 0 0 -1 2 -1 0

Table 15: The integers N̂
,g,Q
for the knot 61.

g Q=0 1

0 -3 1

1 -1 0

g Q=-1 0 1

0 3 -4 1

1 1 -1 0

Table 16: The integers N̂( , ),g,Q for

the Hopf link.

Table 17: The integers N̂( , ),g,Q for

the link (2, 4).

g Q=-3/2 -1/2 1/2

0 6 -9 3

1 5 -6 1

2 1 -1 0

g Q=-3/2 -1/2 1/2

0 2 -3 1

1 1 -1 0

Table 18: The integers N̂( , ),g,Q for

the link (2, 4).

Table 19: The integers N̂
( , ),g,Q

for

the torus link (2, 4).

f( , )(q, λ) = λ−2(λ− 1)q−2(λq + q2 − q − 1) ,
f( , )(q, λ) = −λ−2(λ− 1)2 ,
f( , )(q, λ) = λ−2(λ− 1)(λq − q2 − q + 1) . (6.5)

The next link in complexity is the torus link (2, 4), again a two-component link made

of two unknots, with linking number −2. Up to order three, the results are:

f( , )(q, λ) = λ−1q−1(λ− 1)(λq − q2 − q − 1) ,
f( , )(q, λ) = λ−3/2q−5/2(λ− 1)(1 + q)(λq − q2 − 1) ,
f( , )(q, λ) = −λ−3/2q−1/2(λ− 1)(1 + q)(λq − q2 − 1) . (6.6)

in agreement with the structure results (3.31) and (4.55). Finally, we give a simple

example of a link of three components: the link (3, 3), made up of three unknots.
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g Q=-2 -1 0

0 10 -16 6

1 15 -20 5

2 7 -8 1

3 1 -1 0

g Q=-2 -1 0

0 5 -8 3

1 5 -6 1

2 1 -1 0

Table 20: The integers N̂( , ),g,Q for

the torus link (2, 4).

Table 21: The integers N̂
( , ),g,Q

for

the torus link (2, 4).

g Q=-2 -1 0 1

0 48 -93 54 -9

1 106 -172 72 -6

2 99 -137 39 -1

3 47 -57 10 0

4 11 -12 1 0

5 1 -1 0 0

g Q=-2 -1 0 1

0 26 -47 24 -3

1 45 -67 23 -1

2 30 -38 8 0

3 9 -10 1 0

4 1 -1 0 0

Table 22: The integers N̂( , ),g,Q for

the torus link (2, 4).

Table 23: The integers N̂
( , ),g,Q

for

the torus link (2, 4).

One finds:

f( , , )(q, λ) = (q
−1/2 − q1/2)

{
λ−3/2(4 + (q−1/2 − q1/2)2)−
− λ−1/2(5 + (q−1/2 − q1/2)2)

}
, (6.7)

Using now the results of section 4, we can give
g Q=-2 -1 0 1

0 12 -21 10 -1

1 16 -22 6 0

2 7 -8 1 0

3 1 -1 0 0

Table 24: The integers N̂
( , ),g,Q

for the torus link (2, 4).

the integer invariants N̂(R1,R2),g,Q for the Hopf link,

for `1 + `2 ≤ 4. For (R1, R2) = ( , ), we simply
find

N̂( , ),0,0 = −N̂( , ),0,−1 = −1 , (6.8)

and the rest of them are zero. For (R1, R2) =

( , ), we find:

N̂( , ),0,−1/2 = −N̂( , ),0,−3/2 = −1 , (6.9)

and N( , ),g,Q = 0 for all g, Q. For (R1, R2) = ( , ), we have

N̂( , ),0,−1 = −N̂( , ),0,−2 = −1 , (6.10)
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and N( , ),g,Q = N( , ),g,Q
= 0 for all g, Q. For (R1, R2) = ( , ), one simply has

N̂( , ),0,0 = −1 , (6.11)

and N( , ),g,Q = 0 for all g, Q. Finally, for (R1, R2) = ( , ) the integer invariants

are given in table 7.

For the torus link (2, 4), the integer invariants up to order four are presented in

tables 17–24.

The integers N̂
( , ),g,Q

all vanish for the link (2, 4).
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