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1. Introduction

It is surprising that, although it seems that non-commutative geometry is quite a

pure mathematical object, noncommutativity does emerge in some definite limits

of string theory. For instance, matrix theory compactified on tori gives Yang-Mills

theory on non-commutative tori [1]; the quantization of open strings on a D-brane

with a background B-field leads this D-brane world-volume to become non commuta-

tive [2]; the twisted version of the reduced large-N Super Yang-Mills model originally

considered as a constructive definition of type-IIB superstring can be interpreted as

non-commutative Yang-Mills theory [3], and so on.

Recent development on string dualities reveals that M-theory rules non-perturba-

tive features of superstring theories. It is natural to ask what is noncommutativity

in M-theory. We do not know so much about M-theory. M-theory leads to eleven-

dimensional supergravity at the low-energy limit, and M-theory compactified on a

circle becomes type-IIA superstring by taking the limit for the radius of the circle

to become zero. Moreover M-theory contains the two-dimensional extended object,

M2-brane, as the fundamental component. Matrix theory proposed by Banks, Fis-

chler, Shenker and Susskind [4] is considered as describing some (or complete as

they state originally) degrees of freedom of M-theory. This matrix theory does show

noncommutativity in some cases commented above. We can expect naturally that

noncommutativity can emerge in M-theory.
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On the other hand, a supersymmetric two-dimensional extended object, called

supermembrane, is interesting in its connection to superstrings. A quantum exten-

sion of supermembrane is expected to give a definition of M-theory. Especially, it

is well known that supermembrane in eleven dimensions can consistently couple to

eleven-dimensional supergravity as its backgrounds [5]. Thus, we have a natural

question here; how does supermembrane theory show noncommutativity? It is a

very meaningful question in two reasons. Firstly, since we expect that supermem-

brane is a definition of M-theory, we also expect that supermembrane theory has

noncommutativity in a definite limit or a background. Secondly, we wonder what

is noncommutativity in more than two-dimensional extended objects. To clear this

second point, let us compare it with the string case. In string theory, the end of open

strings becomes non commutative and a D-brane world-volume on which open strings

can end has non-commutative geometry. Then, let us consider an open membrane

which has one-dimensional boundary and focus on the behavior of these boundaries.

Here, we face a conceptual jump. In string theory, open string ends are “points” and

on a D-brane world-volume points do not commute with each other, while in mem-

brane case, we find that its boundaries are “strings” and noncommutativity means

one-dimensional strings do not commute with each other. Thus, we can learn a new

feature of non-commutative geometry by studying membrane noncommutativity. A

primitive analysis was carried out in [2].

In string theory, we can find noncommutativity by quantizing open strings in

background NS-NS fields. Some authors have applied the Dirac procedure to bound-

ary conditions [7, 8]. This method is very transparent and can be easily extended to

other systems. We attempt to investigate an open membrane in a background three-

form field in this way. It is well known that to investigate membrane theory has severe

difficulties, for example, non-linearity of world-volume theory, non-renormalizability

of three-dimensional sigma model, and so on. Thus, we must take an appropriate

approximation, as explained later.

Our plan of investigation is as follows. In seeing the noncommutativity, super-

symmetry was not essential in the string case. We drop the fermionic parts and

consider a bosonic membrane. We start with a bosonic open membrane in a con-

stant gauge field background. Since we should take our bosonic membrane as a

toy model of eleven-dimensional supermembrane, we restrict the background fields

to the massless bosonic fields of eleven-dimensional supergravity, the metric gµν and

the three-form tensor field Cµνρ. We consider only a bosonic background and drop the

fermionic field, the gravitino χµ. Without introducing a two-form gauge field, there

cannot exist open membranes by gauge-invariance. Also in supermembrane case, we

cannot introduce an open supermembrane without braking all the supersymmetries

in flat Minkowski space-time. However we can formulate a supersymmetric open

supermembrane when there exists a “topological defect” as a background [6]. These

defects are interpreted as, for instance, M5-brane, “end of the world” 9-plane in
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Hořava-Witten’s sense, etc. We shall introduce fixed p-branes in this bosonic case.

We assume our open membranes are bounded to these “boundary planes,” and there

is a two-form field, to which open membrane boundaries can couple, on these planes.1

In these settings, we calculate the Dirac brackets and confirm noncommutativity on

these boundary planes. Our calculation is only to second order in C and not exact.

This paper is organized as follows. In section 2, we propose our setup. We

consider a bosonic open membrane in a constant C-field background. We suppose

that one direction of the target space is compactified to a circle, another direction

is compactified to an interval and there exist two fixed planes at the boundaries of

this direction. We fix the reparametrization invariance of the world-volume with a

static gauge and simplify the action by taking a limit. Equations of motion and

boundary conditions are found, and we go on to the canonical formalism and impose

the boundary conditions as constraints. In section 3, we solve the constraints with an

approximation. We take the radius of the compactification circle to be very large and

the distance between the boundary planes to be infinitesimally small. In section 4,

we calculate the Dirac brackets and confirm the noncommutativity on the boundary

planes. Section 5 is served to discussions and remarks. In appendix A, we review the

application of Dirac’s procedure for constrained systems to the boundary constraints

in the string case.

2. An open membrane in a constant C-field

Let us consider an open membrane in the background of a constant three-form tensor

field Cµνρ. We suppose that our membrane topology is cylindrical and the background

is eleven dimensional, compactified to R9−p×Mp×S1×I, whereMp is a p-dimensional
flat Minkowski space-time and I is an interval with a finite length.2 There exist at

the boundaries of I two p-branes on which an open membrane can end, and the p-

branes wrap once around the S1. R9−p × I is transverse to these p-branes. We drop
the fermionic part, that is, restrict ourselves to considering a bosonic membrane.

In this case, the action of the membrane is

S = −T
∫
d3ξ

{√− det hαβ + 1
3!
εαβγCµνρ∂αX

µ∂βX
ν∂γX

ρ

}
, (2.1)

where ξα are the world-volume coordinates (τ, σ1, σ2) and hαβ is the induced metric

on the world-volume, hαβ ≡ ∂αXµ∂βXµ.
1In [15], an open membrane probe was used to derive the equations of motion of boundary

M5-branes.
2Conventions of indices are as follows. µ, ν, . . . are eleven dimensional suffices and i, j, . . . rep-

resent the spatial directions of the p-brane world-volume. Membrane world-volume indices are

α, β, . . . and a, b are world-volume spatial indices, a, b = 1, 2.

3
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Figure 1: A membrane wrapped once around the compactification circle stretches between

two fixed p-branes.

First, we fix the gauge freedom of world-volume reparametrization invariance

with the static gauge, 

X0 = τ τ ∈ (−∞,∞)
X9 = σ1L σ1 ∈ [0, π]
X10 = σ2R σ2 ∈ [0, 2π) ,

(2.2)

and the radius of the compactified direction X10 is R,

X10 ∼ X10 + 2πR . (2.3)

We also compactify the X9 direction on an interval. Suppose that there are two

“fixed planes” placed at a distance of πL in the X9 direction. Here, πL is the length

of the interval, and the two boundaries of a membrane are bound to each of these

“fixed planes”,

∆X9 = πL . (2.4)

These “fixed planes” are, for example, regarded as M5-branes in M-theory when

p = 5. Since the dimension of the p-brane is not essential in our analysis, we assume

p = 9 from now on.

Under the static gauge condition,

det h =

∣∣∣∣∣∣
−1 + (Ẋ i)2 Ẋ i∂1X

i Ẋ i∂2X
i

Ẋ i∂1X
i L2 + (∂1X

i)2 ∂1X
i∂2X

i

Ẋ i∂2X
i ∂1X

i∂2X
i R2 + (∂2X

i)2

∣∣∣∣∣∣
= −L2R2 + L2R2(Ẋ i)2 − R2(∂1X i)2 − L2(∂2X i)2 +O

(
(∂X)4

)
, (2.5)

and we get the first part of the action (Dirac part) as

SD = T

∫
d3ξ

[
−1 + 1

2
(Ẋ i)2 − 1

2
(∂1X

i)2 − 1
2
(∂2X

i)2 +O ((∂X)4)] , (2.6)

where we have made a rescaling, Lσ1 → σ1 , Rσ2 → σ2.
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Next, we go on to consider the C-field part,

SC =

∫
Σ

C[3] , (2.7)

where Σ is the world-volume of a membrane. At the beginning, note that our ac-

tion (2.1) is not gauge-invariant for an open membrane. So as to make an open

membrane gauge-invariant, we introduce a two-form gauge field B coupled to the

boundaries of a membrane,

SB =

∫
∂Σ

B[2] , (2.8)

which transforms as B → B−Λ under the C-field gauge transformation, C → C+dΛ,
where Λ is a two-form field. Here, this B-field is on the boundary planes and has

the field strength F ≡ dB on these planes. Gauge-invariance requires that C and F
always appear with the form of C + F , so the constant C-field leads to a constant

field strength F on the boundary planes. Then, we gauge away F and only consider

the effects of the C-field. Moreover, we suppose that the C-field is not only constant

but also “magnetic”, that is, their non-zero components are only Cijk. Finally, the

C-field part of the action is

SC = −T
∫
d3ξ CijkẊ

i∂1X
j∂2X

k , (2.9)

where we have made a rescaling C → (LR)−1C.
A part of difficulties of membrane theory comes from its non-linearity of world-

volume theory. Here, to avoid it, we take the limit α→∞,
T −→ α2T , X −→ 1

α
X , C −→ αC ,

and also drop the constant term of the Dirac part. This limit means that the self-

interactions of the world-volume theory are weak compared to the interactions with

the background gauge fields. Finally, we get the effective action as follows:

Seff = T

∫
d3ξ

[
1

2

{
(Ẋ i)2 − (∂1X i)2 − (∂2X i)2

}
− CijkẊ i∂1Xj∂2Xk

]
, (2.10)

where the ranges of the world-volume coordinates are

σ1 ∈ [0, πL] ,
σ2 ∈ [0, 2πR) , (2.11)

and the area of the membrane is 2π2LR.

To find the equations of motion and the boundary conditions, we vary the effec-

tive action (2.10),

δSeff = −T
∫
d3ξ
[
Ẍ i − (∂1)2X i − (∂2)2X i

]
δX i +

+T

∫
d3ξ∂1

[(
−∂1X i − CijkẊk∂2Xj

)
δX i

]
. (2.12)

5
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δSeff = 0 leads to the equations of motion,

�X i = 0 , (2.13)

where � ≡ ηαβ∂α∂β = ∂2τ − ∂21 − ∂22 , and also leads to the boundary conditions,

∂1X
i − CijkẊj∂2Xk

∣∣∣
σ1=0,πL

= 0 . (2.14)

The conjugate momenta are

Pi =
δ

δẊ i
L = T

(
Ẋi − Cijk∂1Xj∂2Xk

)
, (2.15)

so the hamiltonian is

H ≡
∫
d2σ

(
Ẋ iPi − L

)
=
T

2

∫
d2σ

[(
P i

T
+ Cijk∂1X

j∂2X
k

)2
+ (∂1X

i)2 + (∂2X
i)2

]
. (2.16)

To follow the calculations in the string case [7, 8], we regard the boundary

conditions as primary constraints,

φi1 = ∂1X
i − Cijk

(
P j

T
+ Cjlm∂1X

l∂2X
m

)
∂2X

k

∣∣∣∣
σ1=0,πL

≈ 0 . (2.17)

Poisson brackets are ordinarily defined as{
X i(σ1, σ2), Pj(σ

′
1, σ

′
2)
}
= δijδ

2(σ − σ′) , {
X i, Xj

}
= {Pi, Pj} = 0 . (2.18)

Using these, we get the equations of motion,

Ẋ i ≡ {X i(σ), H} = P i
T
+ Cijk∂1X

j∂2X
k , (2.19)

and

Ṗ i ≡ {Pi(σ), H} = T
{
Ẍ i − Cijk

(
∂1Ẋ

j∂2X
k + ∂1X

j∂2Ẋ
k
)}

= T

[
Cijk

(
∂2X

j∂1

(
P k

T
+ Cklm∂1X

l∂2X
m

)
−

− ∂1Xj∂2
(
P k

T
+ Cklm∂1X

l∂2X
m

))
+∆X i

]
, (2.20)

where laplacian ∆ is defined as ∂21 + ∂
2
2 and dot means τ derivative.

For simplicity, we set T = 1. We can recover T by replacing P with P/T .

6
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3. Solving constraints

The method described in appendix A leads us to find the Dirac brackets of the

membrane in the constant C-field. First, we consider the consistency conditions of

the constraints

φ̇ ≡ {φ,HT} ≈ 0 , (3.1)

and find an infinite chain of secondary constraints as follows:

φi2 ≡ φ̇i1 =
{
φi1, H

}
= ∂1Ẋ

i − CijkẌj∂2Xk − CijkẊj∂2Ẋk ,
φi3 ≡ φ̇i2 = ∂1Ẍ i − Cijk

[
X(3)j∂2X

k + 2Ẍj∂2Ẋ
k + Ẋj∂2Ẍ

k
]
,

...

φin+1 ≡ φ(n)i1 = ∂1X
(n)i
1 − Cijk

∞∑
`=0

(
n

`

)
X(n+1−`)j∂2X(`)k , (3.2)

where

φ(n)i ≡ ∂
n

∂τn
φi . (3.3)

Note that the equation of motion (2.19) tells that each secondary constraint has at

most C3, and all the constraints are second class. Explicit computations show that

the first few constraints are given by

φi1 = ∂1X
i − Cijk

(
P j + Cjlm∂1X

j∂2X
k
)
∂2X

k
∣∣
σ1=0,πL

≈ 0 , (3.4)

φi2 = ∂1P
i + Cijk

[
∂1X

j∂1∂2X
k − ∂22Xj∂2Xk − P j∂2P k

]
+

+CijkCjlm
[−∂2P k∂1X l∂2Xm + P k∂2(∂1X l∂2Xm)]−

−CijkCjlmCkop
[
∂1X

l∂2X
m∂2(∂1X

o∂2X
p)
]∣∣
σ1=0,πL

≈ 0 , (3.5)

φi3 = ∂1∆X
k + Cijk

[−∆P j∂2Xk + 2∂2P j∆Xk − P j∂2∆Xk]+
+CijkCjlm

[
2∆Xk∂2(∂1X

l∂2X
m)− ∂2Xk∆(∂1X l∂2Xm) −

−∂2∆Xk(∂1X l∂2Xm)
]∣∣
σ1=0,πL

≈ 0 . (3.6)

These constraints look too hard to solve completely unlike the string case. Thus, we

shall take an approximation to solve them.

At this stage, we take the limit L→ 0 and R→∞.3 This leads to simplification
as follows. For σ1, we suppose that no oscillations are excited. Hence, after solving

the constraints, X i(τ, σ1, σ2) and P
i(τ, σ1, σ2) are determined by their boundary val-

ues. And for σ2, we neglect terms which is of order (1/R)
3 or higher, which means

that we drop the terms involving three derivatives of σ2 or higher,

∂32X
i = 0 , ∂22X

i∂2X
j = 0 etc . . . . (3.7)

3Note that this limit is a tensionless string limit in Strominger’s sense [14].
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To solve the constraints, we shall include the effects of the C-field order by order.

At order of C0, the boundary conditions are

∂1X
i
∣∣
σ1=0,πL

= 0 and X i(τ, σ1, σ2) = X
i(τ, σ1, σ2 + 2πR) . (3.8)

Since no oscillations of σ1 are excited under the L→ 0 limit, the solution is

X i(τ, σ1, σ2) = x
(0)i
0 (τ, σ2) , (3.9)

where the subscript 0 of x
(0)i
0 means we are considering only the zero-mode of σ1.

Since the C-field background changes the σ1 boundary conditions, the σ1 dependence

of fields X and P would be altered:

X i = x
(0)i
0 (τ, σ2) + (corrections which depend also on σ1 and C) . (3.10)

Let us calculate the corrections to second order in C. Consider the expansions

of X and P in terms of C

X i0(τ, σ1, σ2) = x
(0)i
0 + x

(1)i
0 + x

(2)i
0 ,

P i0(τ, σ1, σ2) = p
(0)i
0 + p

(1)i
0 + p

(2)i
0 , (3.11)

where x
(0)
0 and p

(0)
0 are functions of τ and σ2, independent of σ1 and unconstrained.

We substitute them into the constraints (3.4) and (3.5). Of order C1, we get

φi1 = ∂1x
(1)i
0 − Cijkp(0)j0 ∂2x(0)k0

∣∣∣
σ1=0,πL

≈ 0 ,

φi2 = ∂1p
(1)i
0 + Cijk

(
−p(0)j0 ∂2p(0)k0

)∣∣∣
σ1=0,πL

≈ 0 , (3.12)

and find solutions at this order as follows:

x
(1)i
0 (τ, σ1, σ2) = A

(1)i
0 (τ, σ2) + Cijkp

(0)j
0 ∂2x

(0)k
0 · σ1 , (3.13)

p
(1)i
0 (τ, σ1, σ2) = B

(1)i
0 (τ, σ2) + Cijkp

(0)j
0 ∂2p

(0)k
0 · σ1 , (3.14)

where A0 and B0 in the right-hand sides are unconstrained. In succession, the equa-

tions of order C2 are

φi1 = ∂1x
(2)i
0 − Cijk

[
p
(1)j
0 ∂2x

(0)k
0 + p

(0)j
0 ∂2x

(1)k
0

]
−

−CijkCjlm
(
p
(0)l
0 ∂2p

(0)m
0 ∂2x

(0)k
0 − p(0)l0 ∂2x(0)m0 p

(0)k
0

)
· σ1 , (3.15)

φi2 = ∂1p
(2)i
0 − Cijk

[
p
(1)j
0 ∂2p

(0)k
0 + p

(0)j
0 ∂2p

(1)k
0

]
−

−CijkCjlm
(
p
(0)l
0 ∂2p

(0)m
0 ∂2p

(0)k
0 − p(0)l0 ∂2p(0)m0 p

(0)k
0

)
· σ1 , (3.16)
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and we find the solutions,

x
(2)i
0 (τ, σ1, σ2) = A

(2)i
0 (τ, σ2) + Cijk

[
B
(1)j
0 ∂2x

(0)k
0 + p

(0)j
0 ∂2A

(1)k
0

]
σ1 +

+CijkCjlm

(
p
(0)l
0 ∂2p

(0)m
0 ∂2x

(0)k
0 − p(0)l0 ∂2x(0)m0 p

(0)k
0

)
· σ
2
1

2
,

p
(2)i
0 (τ, σ1, σ2) = B

(2)i
0 (τ, σ2) + Cijk

[
B
(1)j
0 ∂2p

(0)k
0 + p

(0)j
0 ∂2B

(1)k
0

]
σ1 +

+CijkCjlm

(
p
(0)l
0 ∂2p

(0)m
0 ∂2p

(0)k
0 − p(0)l0 ∂2p(0)m0 p

(0)k
0

)
· σ
2
1

2
. (3.17)

Putting them together, we find that the X i(τ, σ1, σ2) and P
i(τ, σ1, σ2) are determined

by the unconstrained boundary values, X0(τ, σ2) = x
(0)
0 +A

(1)
0 +A

(2)
0 and P0(τ, σ2) =

p
(0)
0 +B

(1)
0 +B

(2)
0 as follows:

X i(τ, σ1, σ2) = X
i
0 + σ1CijkP

j
0∂2X

k
0 +

+
σ21
2
CijkCjlm

[
∂2X

k
0P
l
0∂2P

m
0 − P k0 ∂2(P l0∂2Xm0 )

]
, (3.18)

P i(τ, σ1, σ2) = P
i
0 + σ1CijkP

j
0∂2P

k
0 +

+
σ21
2
CijkCjlm

[
∂2P

k
0 P

l
0∂2P

m
0 − P k0 ∂2(P l0∂2Pm0 )

]
. (3.19)

One can confirm that these solutions satisfy the remaining constraints by substitut-

ing (3.18) and (3.19) into the explicit form of φi3 and taking into account the fact

that the other higher constraints involve only higher derivative terms of σ1 and σ2.

Since we get the solutions of the constraints, we can compute the Dirac brackets

of X and P by the method given in appendix A. This is what we shall do in the

following section.

4. Computing the Dirac brackets

In order to compute the Dirac brackets, we first calculate Lagrange brackets. In this

case, Lagrange bracket L is defined as

Ω = −2
∫
d2σdX i(σ1, σ2) ∧ dP i(σ1, σ2) =

∫
dxdyLijxy dφ

i(x) ∧ dφj(y) , (4.1)

where we have integrated over σ1, dφ = dX0(σ2) or dP0(σ2), and x and y denote the

σ2 coordinate. Dirac bracket C is determined by the inverse matrix of this Lagrange

brackets, C = L−1. To calculate the Lagrange bracket of this system, we determine
the effects of the C-field order by order, to order C2:

L = L(0) + L(1) + L(2) , (4.2)
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where L(i) denotes the terms of order C i. Then the Dirac bracket is obtained as

C = L−1 = L(0)−1 − L(0)−1 (L(1) + L(2))L(0)−1 +
+L(0)−1L(1)L(0)−1L(1)L(0)−1 +O(C3) (4.3)

= J− J (L(1) + L(2))J+ JL(1)JL(1)J+O(C3) , (4.4)

where we have abbreviated L(0)−1 as J.
Let us start the calculation. In zeroth order in C, the Lagrange bracket is

determined through the symplectic form

Ω[0] = −2
∫
dσ2dX i0 ∧ dP i0 = −2πL

∫
dx dyδijδ(x− y) dX i0(x) ∧ dP j0 (y) . (4.5)

We get

L(0) =

(
0 L(0)

− (L(0))T 0

)
, (4.6)

where

L(0) = −πLδijδ(x− y) . (4.7)

The inverse matrix of this L(0) is given by

J = (L(0))−1 =
( −J
J

)
, J = (L(0))−1 = − 1

πL
δij δ(x− y) , JT = J . (4.8)

At this stage, we can calculate the Dirac bracket at C = 0:{
X i0(x), X

j
0(y)

}
DB
= 0 ,{

P i0(x), P
j
0 (y)

}
DB
= 0 ,{

X i0(x), P
j
0 (y)

}
DB
=
1

πL
, δij δ(x− y) . (4.9)

These are the original Poisson brackets except for the normalization factor.

Calculations of O(C1). Next, we shall calculate the C1 part. This is the first
non-trivial result in these calculations. The symplectic form of this order is

Ω[1] = −2
∫
d2σ

[
σ1 Cikl dX

i
0 ∧
(
dP k0 ∂2P

l
0 + P

k
0 ∂2dP

l
0

)
+

+ σ1Cikl
(
dP k0 ∂2X

l
0 + P

k
0 ∂2dX

l
0

) ∧ dP i0]
= −(πL)2

∫
dx dy Cijl

[
dX i0(x) ∧ dP j0 (y)

(−2CijlP l0(x)∂xδ(x− y)) −
− dP i0(x) ∧ dP j0 (y)∂xX l0 δ(x− y)

]
, (4.10)

and we get

L(1) =

(
0 L(1)

− (L(1))T l(1)

)
, (4.11)

10
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where

L(1) = (πL)2CijlP
l
0(x)∂xδ(x− y) , (4.12)

l(1) = (πL)2Cijl∂xX
l
0δ(x− y) . (4.13)

At this order, the Dirac bracket is{
X i0(x), X

j
0(y)

}
DB
= Cijl∂xX

l
0 δ(x− y) ,{

P i0(x), P
j
0 (y)

}
DB
= 0 ,{

X i0(x), P
j
0 (y)

}
DB
=
1

πL
δij δ(x− y)− CijlP l0(y)δ′(y − x) . (4.14)

One can check that the Jacobi identity holds at this order,{{
X i0(x), P

j
0 (y)

}
, Xk0 (z)

}
+ (cyclic.) =

=
1

πL
Cijk (δ(y − z)δ′(y − x) + δ(y − x)δ′(y − z) + δ(z − x)δ′(z − y))

=
1

πL
Cijk (δ(y − z)δ′(y − x) + δ(y − x)δ′(y − z) + δ(y − x)δ′(z − y)−

− δ′(z − x)δ(z − y))
= 0 . (4.15)

The Jacobi identity for {X, {X,X}} is trivially satisfied at first order in C. To see
how it is non-trivially satisfied, we turn to the calculations of C2.

Calculations of O(C2). The calculations of order C2 turn out to be very compli-
cated, so we split the calculations into some parts.

First, we consider the cross terms, (C1 part) ∧ (C1 part) . The symplectic form
of this part is

Ω[2−1] = −2
∫
d2σ σ21 CijkCilm (dP

j
0∂2X

k
0 + P

j
0∂2dX

k
0 ) ∧ (dP l0∂2Pm0 + P l0∂2dPm0 )

= −2(πL)
3

3

∫
d2σ CiklCjml × (4.16)

× {dX i0(x) ∧ dP j0 (y)∂x (P k0 (x) (2∂yPm0 (y) + Pm0 (y)∂y) δ(x− y)) +
+ dP i0(x) ∧ dP j0 (y)

[
1

2

(
Xk′0 (x)P

m′
0 (x)− P k′0 (y)Xm′0 (y)

)
δ(x− y) −

− (Xk′0 (x)Pm0 (x) + P k0 (y)Xm′0 (y)) δ′(x− y)
]}
,

so we get

L[2−1] =
(

L[2−1]

− (L[2−1])T l[2−1]

)
, (4.17)

11
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where

L[2−1] = −(πL)
3

3
CiklCjml∂x

(
P k0 (x) (2∂yP

m
0 (y) + P

m
0 (y)∂y) δ(x− y)

)
, (4.18)

l[2−1] = −1
3
(πL)3CiklCjml

((
Xk′0 (x)P

m′
0 (x)− P k′0 (y)Xm′0 (y)

)
δ(x− y) − (4.19)

− (Xk′0 (x)Pm0 (x) + P k0 (y)Xm′0 (y)) δ′(x− y)) .
Next, we consider the (C0 part)∧ (C2 part). The symplectic form of this part is

Ω[2−2] = −2
∫
d2σ σ21 CijkCilm × (4.20)

× {[∂2dXk0P l0∂2Pm0 + ∂2Xk0 dP l0∂2Pm0 − ∂2Xk0Pm0 ∂2dP l0 −
−dP k0 ∂2(P l0∂2Xm0 )− P k0 ∂2(dP l0∂2Xm0 − Pm0 ∂2dX l0)

] ∧ dP i0 +
+ dX i0 ∧

[
∂2dP

k
0 P

l
0∂2P

m
0 − ∂2P k0 Pm0 ∂2dP l0 + ∂2P k0 dP l0∂2Pm0 −

− dP k0 ∂2(P l0∂2Pm0 )− P k0 ∂2(dP l0∂2Pm0 − Pm0 ∂2dP l0)
]}
.

Then we find that the Ω[2−2] has the form

Ω[2−2] =
∫
dxdyL[2−2]dφi(x) ∧ dφj(y) , (4.21)

where

L[2−2] = M+N ,

(M)ijxy =

(
M

−MT m

)
,

(N)ijxy =

(
N

−NT n

)
, (4.22)

and, M and N correspond to the following tensor structures of C2:

M ∝ CijkCklm , N ∝ CiklCjml .
The explicit calculations ofM and N are shown in appendix B. The results are

M =
(πL)3

3
CijkCklm

[
P l0(x)∂xP

m
0 (x)δ

′(x− y)] , (4.23)

m =
(πL)3

3
CijkCklm∂y

(
P l0(y)∂yX

m
0 (y)

)
δ(x− y) , (4.24)

N =
(πL)3

3
CiklCjml

[
P k0 (x)P

m
0 (x)δ

′′(x− y)+
+Pm′0 (x)∂x

(
P k0 (x)δ(x− y)

)]
, (4.25)

n =
(πL)3

3
CiklCjml

[
Xk′0 (x)P

m
0 (x) +X

m′
0 (y)P

k
0 (y)

]
δ′(x− y) . (4.26)

Thus we get the Lagrange brackets to order C2. Let us compute the Dirac brackets.
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Computing the Dirac brackets. By (4.3), we can calculate the Dirac brackets

C,

Cijxy =

( {
X i0(x), X

j
0(y)

}
DB

{
X i0(x), P

j
0 (y)

}
DB

−{P j0 (y), X i0(x)}DB {
P i0(x), P

j
0 (y)

}
DB

)
, (4.27)

as follows:

{
X i0(x), X

j
0(y)

}
DB
= J

(
l(1)
)
J + J

(
l(2)
)
J − Jl(1)JL(1)J − J (L(1))T Jl(1)J

=
1

(πL)2
(
l(1)
)ij
xy
+

1

(πL)2
(
l(2)
)ij
xy
+ (4.28)

+
1

(πL)3

{(
l(1)
)il
xz

(
L(1)

)lj
zy
+
((
L(1)

)T)il
xz
(l(1))ljzy

}
+O(C3),{

X i0(x), P
j
0 (y)

}
DB
= −J + J

((
L(1)

)T)
J + J

((
L(2)

)T)
J − J (L(1))T J (L(1))T J

=
1

πL
(1)ijxy +

1

(πL)2

((
L(1)

)T)ij
xy
+

1

(πL)2

((
L(2)

)T)ij
xy
+

+
1

(πL)3

((
L(1)

)T)il
xz

((
L(1)

)T)lj
zy
+O(C3), (4.29){

P i0(x), P
j
0 (y)

}
DB
= 0 . (4.30)

Explicit computation shows

{
X i0(x), X

j
0(y)

}
DB
= CijlX

l′
0 (x)δ(x− y)−

− 1
3
CiklCjml

[(
Xk′0 (x)P

m′
0 (x)−Xm′0 (y)P k′0 (y)

)
δ(x− y) +

+
(
Xk′0 (x)P

m
0 (x) +X

m′
0 (y)P

k
0 (y)

)
δ′(x− y)]+

+
1

3
CijkCklm∂y

(
P l0(y)X

m′
0 (y)

)
δ(x− y) +O(C3), (4.31){

X i0(x), P
j
0 (y)

}
DB
= δijδ(x− y) + CijlP l0(y)δ′(x− y)−
− 1
3
CiklCjml

[
P k0 (x)P

m
0 (x)δ

′′(x− y)+3P k0 (x)Pm′0 (x)δ′(x− y)+
+
(
2P k0 (x)P

′′m
0 (x) + P

k′
0 (x)P

m′
0 (x)

)
δ(x− y)]+

+
1

3
CijlClkmP

k
0 (y)P

m′
0 (y)δ

′(x− y) +O(C3) , (4.32)

where we have rescaled the momenta, πLP i0 → P i0. This is because in the limit
L → 0, the integrated momenta πLP0 are more naturally assigned to the boundary
strings than the original boundary momenta P0.

These results mean that the coordinates of the boundary strings of an open mem-

brane in the constant C-field background show noncommutativity. It is very curious

that the commutation relation between X i and Xj depends on other components of

transverse fields, Xk.
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5. Concluding remarks

In the previous section, we have obtained the Dirac brackets of an open membrane in

the C-field background. The result shows that the boundary string has a loop-space

noncommutativity.

We can confirm that the Jacobi identity holds at order in C2 with these results,

though we do not write down the calculation explicitly. Indeed, the satisfaction

of Jacobi identity is trivial from the general properties of Poisson bracket, but the

cancellations between the terms are not trivial. This indicates the algebra has com-

plicated structures and more transparent understanding of it from the boundary

string viewpoint is desirable.

The results presented above are the Dirac brackets between the coordinates and

momenta of the boundary. Dirac brackets between the coordinates on the membrane

can be calculated by (3.18), and there exists noncommutativity not only at the

boundary but also on the membrane. In string theory, the string coordinates are

commutative except at its ends as explained in appendix A, and to show this it is

essential to include all the oscillation modes. Thus we also expect that including

all the oscillation modes make the membrane coordinates commutative except at

its boundary, because the C-field part of the action (2.9) is total derivative for a

constant C, and should change the dynamics only at the boundary.

We have done our analysis in a tractable static gauge condition. Light-cone

gauge analysis is more interesting in its relationship with BFSS matrix theory and

the results of [1]. It is easy to find the light-cone gauge hamiltonian,

HLC =

∫
d2σ

1

2P+

[
(P i + Cijk∂1X

j∂2X
k)2 +

T 2

2

{
X i, Xj

}2]
, (5.1)

the equations of motion

Ẍ i +
{
Xj ,

{
X i, Xj

}}
= 0 , (5.2)

and the boundary conditions

−T∂2Xj
{
X i, Xj

}
+ Cijk∂2X

jẊk
∣∣∣
σ1=0,π

= 0 . (5.3)

However, the chain of the boundary constraints look too complicated to solve in this

case even if some approximations are taken. Moreover, when there is a constant

C-field background, we cannot apply the matrix regularization method developed

in the third paper of [6]. Thus, analysis in this gauge is remaining as a hard but

interesting problem.

When this work was in the process of typing, we learned that another group [16]

has also employed the quantization of an open membrane in a C-field background,

and they have also investigated the decoupling limit as the open string case. Though
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their line of thought is different from ours, their results seem to be consistent with

ours at least in first order in C. Moreover, their paper has also studied the light-cone

coordinate analysis, but their analysis is within the decoupling limit and slightly dif-

ferent from our interests such as membrane regularization related to matrix models.
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A. A brief review of Dirac’s procedure applied to

boundary constraints

In string theory, one can find noncommutativity on a D-brane by quantization pro-

cedures for open strings with a background B-field [2]. A transparent way to confirm

the noncommutativity of open strings is the Dirac’s procedure applied to boundary

conditions [7, 8]. In this appendix, we briefly review this approach. The calcula-

tions described here are mainly based on the appendix of the paper by Kawano and

Takahashi [10].

Dirac’s procedure. First, we survey the ordinary methods for constrained sys-

tems following [11, 12]. In singular systems, we face some constraints, primary con-

straints, between canonical variables. Consistency conditions for these constraints

in time evolution sometimes lead to additional constraints, secondary constraints.

We must consider the consistency conditions for these new constraints and pos-

sibly find new constraints, secondary constraints for secondary constraints, and

so on.

Constraints are classified into two classes; the first class constraints that commute

with all the other constraints in Dirac’s weak sense and the second class constraints

that do not. The first class constraints are related to the gauge symmetry of the

system and we can treat them as second class by gauge fixing. Thus we may assume

all the constraints are second class. The singular system is treated with the Dirac

bracket defined as

{F,G}DB ≡ {F,G} − {F, φA}CAB {φB, G} , (A.1)

where CAB = (C−1)AB, CAB ≡ {φA, φB} and φA, φB are second class constraints.
These Dirac brackets are Poisson brackets on the constrained surface [11, 12], so

we can determine the time evolution of this constrained system using the Dirac

bracket.
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Boundary condition as constraint. According to [9], we can treat the boundary

conditions of an open string as constraints. The consistency conditions of these

constraints lead to an infinite chain of secondary constraints, which are all second

class. Thus, we can calculate Dirac brackets of this system in principle. However, we

must consider the inverse of an∞×∞ matrix CAB. Surprisingly, we can completely
solve this question in the string case.

Let us explain the string case calculations for example. We consider an open

string in a constant NS-NS B-field background. The action of this system is

S =
1

4πα′

∫
Σ

d2σ
[
gij

(
Ẋ iẊj −X ′iX ′j

)
+ 2bijẊ

iX ′j
]
, (A.2)

where

X ′ ≡ ∂
∂σ
X , Ẋ ≡ ∂

∂τ
X , (A.3)

and bij = 2πα
′Bij. Variation of the action leads to the equations of motion and the

boundary conditions:

∂α∂αX
i(τ, σ) = 0 , (A.4)

Dirichlet directions: δX iD = 0(X iD = const.) ,

Neumann (or Mixed) directions: gijX
′j + bijẊj = 0 at σ = 0, π ,

where mixed directions are named for their mixtures of some directions [9] and we

shall only consider below the directions obeying these mixed boundary conditions.

We now go on to the canonical formalism. Conjugate momenta are 2πα′Pi(τ, σ) =(
gijẊ

j + bijX
′j
)
and the boundary conditions are taken to be primary constraints

of this system,

φi(σ) = GijX
′j + 2πα′bikgklPl , (A.5)

where Gij ≡ gij − (bg−1b)ij , so called “open string metric”.
The consistency of the constraints in time evolution leads to an infinite chain of

secondary constraints:

∂(2n+1)

∂σ(2n+1)
Pi(σ) ≈ 0 and

d(2n)

dσ(2n)
φi(σ) ≈ 0 . (A.6)

The solution to these constraints is [10]

X i(τ, σ) =

∞∑
n=0

X in(τ) cos(nσ) + Θ
ij

[
P0j(τ)σ +

∞∑
n=1

1

n
Pnj sin(nσ)

]
, (A.7)

Pi(τ, σ) =

∞∑
n=0

Pni(τ) cos(nσ) . (A.8)
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Lagrange bracket. One of the easiest way to find the Dirac bracket is to use the

Lagrange brackets [12] and this method was used in [2] in a slightly different way.

Lagrange bracket L for variables zµ = zµ(q, p) is defined through the symplectic

form

Ω = −2dqi(z) ∧ dpi(z) = Lµνdzµ ∧ dzν , (A.9)

where q and p are canonical variables of this system. Explicitly, Lagrange bracket is

written as

Lµν =
∂qi

∂zµ
∂pi
∂zν
− ∂q

i

∂zν
∂pi
∂zµ
. (A.10)

An important property of this bracket is that this is the inverse matrix of the Poisson

bracket,

Lµν {zν , zρ} = δρµ . (A.11)

To find the relation to the Dirac bracket, let us take the variables as follows:

z1, z2, . . . , z2N−2m︸ ︷︷ ︸
coodinates on the constrained surface

, z2N−2m+1 = φ1, . . . , z2N = φ2m︸ ︷︷ ︸
2m constraints

. (A.12)

Then we find that the matrix obtained by limiting variables to the first (2N − 2m)
ones is the inverse matrix of the Dirac bracket,

2N−2m∑
µ,ν=1

Lµν {zν , zρ}DB = δρµ . (A.13)

This means that Dirac bracket is the Poisson bracket on the constrained surface

defined through the conditions, z2N−2m+1 = · · · = z2N = 0. Thus, we can compute
the Dirac bracket by solving the constraints, constructing the Lagrange bracket and

taking its inverse.

In string case, Lagrange brackets are defined by

Ω = −2
∫
dσdX i(σ) ∧ dPi(σ)

= −2
[
πdX i0 ∧ dP0i +

π

2
dX in ∧ dPni −Θij

π2

2
dP0i ∧ dP0j

]
. (A.14)

From this, we can determine the Lagrange brackets for every mode of X and P .

Taking the inverse, we obtain

{
X i(σ), Pj(σ

′)
}
DB
= δij

(
1

π
+
2

π

∞∑
n=1

cos(nσ) cos(nσ′)

)
≡ δij δ̃(σ, σ′) (A.15)

{Pi(σ), Pj(σ′)}DB = 0 (A.16)

{
X i(σ), Xj(σ′)

}
DB
=



Θij (σ = σ′ = 0)
−Θij (σ = σ′ = π)
0 (otherwise)

. (A.17)

This shows noncommutativity of open strings and this equals the result in [2].

17



J
H
E
P
0
7
(
2
0
0
0
)
0
1
4

B. The explicit calculations of Lagrange brackets at

second order in C

In this appendix, we give the explicit calculations of (4.23)–(4.26).

First, we calculate the part of M . This part of the symplectic form is

Ω
[2−2]
M = −(πL)

3

3

∫
dxdyCijkCjlm ×

× [dX i0(x) ∧ dP k0 (y) [−∂y (P l0(y)Pm′0 (y)δ(x− y)) −
− ∂y(P l0(y)Pm′0 (y))δ(x− y)

]
+

+ dXk0 (x) ∧ dP i0(y)
[−∂x (P l0(x)Pm′0 (x)δ(x− y))]]

=
2(πL)3

3

∫
dxdyCijkCjlmdX

i
0(x) ∧ dP j0 (y)

[
P l0(x)P

m′
0 (x)δ

′(x− y)] . (B.1)
These correspond to (2M)ijxydX

i
0(x) ∧ dP j0 (y), and hence

M =
(πL)3

3
CijkCklm

[
P l0(x)∂xP

m
0 (x)δ

′(x− y)] . (B.2)

Next, we consider the N part.

Ω
[2−2]
N = −(πL)

3

3

∫
dxdyCilkCljm ×
× {dX i0(x) ∧ dP j0 (y) [Pm′0 (y)P k′0 (y)δ(x− y) +

+ ∂y
(
Pm0 (y)P

k′
0 (y)δ(x− y)

)
+

+ Pm′0 (y)∂y
(
P k0 (y)δ(x− y)

)
+

+ ∂y
(
Pm0 (y)∂y

(
P k0 (y)δ(x− y)

))]
+

+dXj0(x) ∧ dP i0(y)
[
∂x
(
Pm0 (x)∂x

(
P k0 (x)δ(x− y)

))]}
=
(πL)3

3
CiklCjml

∫
dxdy dX i0(x) ∧ dP j0 (y)×
× [Pm′0 (x)P k′0 (x)δ(x− y)−Pm0 (x)P k′0 (x)δ′(x− y) −
− Pm′0 (y)P k0 (x)δ′(x− y)−∂y

(
Pm0 (y)P−)k(x)δ′(x− y)

)
+

+∂x
(
P k0 (x)∂x (P

m
0 (x)δ(x− y))

)]
, (B.3)

where in the last term we make k ↔ m. Using

−P k0 (x)Pm′0 (y)δ′(x− y) = −P k0 (x) (P ′′m0 (x)δ(x− y) + Pm′0 (x)δ′(x− y)) ,
−∂y

(
P k0 (x)P

m
0 (y)δ

′(x− y)) = P k0 (x)Pm′0 (x)δ′(x− y) + P k0 (x)Pm0 (x)δ′′(x− y),
∂x
(
P k0 (x)∂x (P

m
0 (x)δ(x− y))

)
= P k′0 (x)P

m′
0 (x)δ(x− y) + P k′0 (x)Pm0 (x)δ′(x− y) +

+P k0 (x)P
′′
0 (x)δ(x− y) + 2P k0 (x)Pm′0 (x)δ′(x− y) +

+P k0 (x)P
m
0 (x)δ

′′(x− y) , (B.4)
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we obtain

(B.3) =
(πL)3

3
CiklCjml

∫
dxdy dX i0(x) ∧ dP j0 (y)×
× [2P k0 (x)Pm0 (x)δ′′(x− y) + 2P k0 (x)Pm′0 (x)δ′(x− y) +
+2P k′0 (x)P

m′
0 (x)δ(x− y)

]
. (B.5)

Hence,

N =
(πL)3

3
CiklCjml

[
P k0 (x)P

m
0 (x)δ

′′(x− y) + Pm′0 (x)∂x
(
P k0 (x)δ(x− y)

)]
. (B.6)

The m part can be calculated as follows:

Ω[2−2]m = −(πL)
3

3

∫
dxdyCijkCjlmdP

k
0 (x) ∧ dP i0(y)

(−∂x (P l0(x)Xm′0 (x)) δ(x− y))
=
(πL)3

3

∫
dxdyCijkCklmdP

i
0(x) ∧ dP j0 (y)×

× (−∂x (P l0(x)Xm′0 (x)) δ(x− y)) , (B.7)

then

m =
(πL)3

3
CijkCklm∂y

(
P l0(y)∂yX

m
0 (y)

)
δ(x− y) . (B.8)

Finally, we compute the part of n. Because the result should be antisymmetric

under {i, x} ↔ {j, y}, and n is proportional to CiklCjml, we only need to consider
the antisymmetric part under {k, x} ↔ {m, y}.

Ω[2−2]n = −(πL)
3

3

∫
dxdyCijkCjlmdP

l
0(x) ∧ dP i0(y)×

× (Pm′0 (x)Xk′0 (x)δ(x− y) + ∂x(Pm0 (x)Xk′0 (x)δ(x− y)) +
+Xm′0 (x)∂x(P

k
0 (x)δ(x− y))

)
= −(πL)

3

3

∫
dxdyCijkCjlmdP

l
0(x) ∧ dP i0(y)×

× (Pm′0 (x)Xk′0 (x)δ(x− y) + P k′0 (x)Xm′0 (x)δ(x− y) +
+Xm′0 (x)P

k
0 (x)δ

′(x− y) +Xk′0 (y)Pm0 (y)δ′(x− y)
)

(B.9)

The terms symmetric under {m, x} ↔ {k, y} vanish, so

Ω[2−2]n = −(πL)
3

3

∫
dxdyCijkCjlmdP

l
0(x) ∧ dP i0(y)×

× (Xm′0 (x)P k0 (x)δ′(x− y) +Xk′0 (y)Pm0 (y)δ′(x− y))
=
(πL)3

3

∫
dxdyCiklCjmldP

i
0(x) ∧ dP j0 (y)×

× (Xk′0 (x)Pm0 (x)δ′(x− y) +Xm′0 (y)P k0 (y)δ′(x− y)) . (B.10)
Thus

n =
(πL)3

3
CiklCjml

[
Xk′0 (x)P

m
0 (x) +X

m′
0 (y)P

k
0 (y)

]
δ′(x− y) . (B.11)
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