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Abstract: The strong version of Maldacena’s AdS/CFT conjecture implies that the

large-N expansion of free N = 4 super-YM theory describes an interacting string
theory in the extreme limit of high spacetime curvature relative to the string length.

String states may then be understood as composed of SYM string bits. We investi-

gate part of the low-lying spectrum of the tensionless (zero-coupling) limit and find

a large number of states that are not present in the infinite tension (strong-coupling)

limit, notably several massless spin two particles. We observe that all conformal

dimensions are N -independent in the free SYM theory, implying that masses in

the corresponding string theory are unchanged by string interactions. Degenerate

string states do however mix in the interacting string theory because of the compli-

cated N -dependence of general CFT two-point functions. Finally we verify the CFT

crossing symmetry, which corresponds to the dual properties of string scattering am-

plitudes. This means that the SYM operator correlation functions define AdS dual

models analogous to the Minkowski dual models that gave rise to string theory.
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1. Introduction

Since ’t Hooft’s original discussion [1] of the large-N behaviour of gauge theories we

have had a picture of a topological expansion of gauge theories in terms of surfaces of

different genus, resembling the genus expansion of string amplitudes. In recent years

Maldacena’s conjecture [2], relating the large-N expansion of N = 4 supersymmet-
ric Yang-Mills theory to string theory in an AdS 5×S5 background has stimulated
a resurge of interest in the large-N limit. The conjectured correspondence permits

the calculation of previously inaccessible gauge theory quantities by means of classi-

cal supergravity techniques when the ’t Hooft coupling, λ = g2YMN , is large [3, 4].
1

Although this regime is a concrete realization of the Yang-Mills/String duality, the

string theory side is somewhat crippled: only the lowest, massless string states con-

tribute, and with few exceptions only tree level interactions have been investigated.

To study the relation between quantized strings and gauge theory in the

AdS/CFT setting, one has to consider intermediate or small λ, and the limit of

vanishing λ naturally presents itself as a manageable alternative zero-th order ap-

proximation. Then the string tension T ∼ √λ/R2 effectively goes to zero, if the
radius of curvature R of the background is kept fixed. Or the radius of curvature

becomes much smaller than the string length scale ls ∼ T−1/2, i.e. R/ls � 1. There
are arguments [6] to all orders in the string coupling gs = g

2
YM and α

′ = l2s that the
AdS 5×S5 background is a solution to string theory, and it seems natural to assume
1For further references to these developments see the comprehensive review [5].
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that λ = 0 gauge theory is dual to (or can serve as a definition of) zero tension string

theory on this background. Certainly, the two theories should both be symmetric

under SU(2, 2|4), acting as a superconformal group on the gauge theory, and as anti-
deSitter supersymmetries on the string theory. Here we note that the problem of

defining quantized tensionless or null strings in flat backgrounds [7] is in fact a more

complicated problem than the present AdS case, due to its lack of a curvature scale,

and its solution relies on additional assumptions.

Because the full AdS 5×S5 background also contains a Ramond-Ramond field
which prohibits the use of conventional string quantization methods, the quantization

is a very difficult problem. Although interesting progress has been made [8, 9, 10, 11],

we propose a different route. We assume that the strong version of Maldacena’s con-

jecture works, i.e. that the gauge theory describes string theory even at small ’t

Hooft coupling. Then we can ask whether the picture of string theory that emerges

is consistent with general expectations about the behaviour of string theory. Thus,

one can get indirect evidence for or against the strong form of the AdS/CFT corre-

spondence, by collecting knowledge about the gauge theory, which can be interpreted

as knowledge about string theory until evidence is found to the contrary. Since we

have not found any such negative evidence we will use gauge theory and string theory

terminology interchangeably, but it should be remembered that all our calculations

are done in gauge theory.

String theory can usually be characterized by its asymptotic states and interac-

tions between them encoded in the scattering matrix. In an AdS background one

immediately runs into conceptual problems, since neither the notion of asymptotic

states nor of an ordinary S-matrix are well defined. Still, in terms of perturbations

on the boundary of AdS, Balasubramanian et al. [12] and Giddings [13] have argued

for a kind of generalized S-matrix, which replaces the usual S-matrix for string the-

ory in this background. It is also directly related to CFT correlation functions by

the AdS/CFT correspondence.

While we cannot isolate ordinary asymptotic states in an AdS background, we

can do equally well, at least in principle. The spectrum (of energy in global co-

ordinates) is discrete, and we could study how interactions affect the states of the

theory. In the zero λ limit we are considering, this is a purely combinatorial problem.

The leading three-point functions of the gauge-invariant states which admit a string

interpretation are of order 1/N ∼ κ/R4, where κ is the gravitational coupling. To
leading order in large-N single-string states can be viewed as covariant strings of

super-Yang-Mills string bits.2 These AdS states correspond to CFT states, and by

the CFT operator-state correspondence we could find associated operators, which

are the operators involved in the generalized S-matrix.

2String bits have been proposed by Thorn [14] as possible constituents of strings in a non-

covariant formulation.
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For each AdS state there is a deformation of the string theory background [3, 4, 5].

The most important deformations are the relevant and marginal deformations, which

do not ruin the UV properties of the CFT, or the asymptotically locally AdS nature

of the corresponding spacetime. In section 2 we list all such (primary) operators

composed exclusively of scalars. Surprisingly, we find several operators corresponding

to massless spin two fields in the bulk. We also discuss how string states mix by 1/N

corrections, and how the string propagator can be diagonalized.

In string theory, all the essential information about interactions is encoded in

the three-string vertex. Similarly, the interactions in the conformal field theory are

summarized in the operator product expansion. Not surprisingly three-string vertices

and the OPE correspond closely to one another in the AdS/CFT dictionary. In

section 3 we study general features like selection rules in the λ = 0 case, to leading

order in large N , and also discuss some important special cases. We also dispel

the fear that free field theory is too trivial to describe a complicated interacting

string theory.

Given a generalized S-matrix we may discuss the properties of amplitudes. Rel-

ativistic amplitudes should obey crossing symmetry, whether they are point-particle

amplitudes or string amplitudes, but whereas point-particle amplitudes can be ob-

tained from sums of different Feynman diagrams with singularities in distinct crossed

channels, string amplitudes come from string diagrams which by analytic continu-

ation each exhibit singularities in several crossed channels. This property of string

amplitudes was called “duality” in the early days of string theory. In section 4 we

check the crossing symmetry of a particular CFT four-point function, which trans-

lates to duality of the generalized string four-point amplitude. We also indicate a

simple direct argument for general crossing symmetry in the kind of CFT built on

free field theory that we are considering.

2. States and propagators

In addition to the gauge potential the N = 4 supersymmetric Yang-Mills theory
contains six scalars in the adjoint representation of the gauge group, as well as

fermions. Local conformal operators may be written as products of fundamental fields

in the adjoint representation (the field strength in the case of the gauge potential).

Covariant derivatives (ordinary derivatives at λ = 0) on the fundamental fields are

also allowed. When the trace of the product is taken one gets invariants. Because

of the cyclic symmetry of the trace, we may think of the single-trace operators

as necklaces (closed strings) composed of SYM beads (string bits). Multiple-trace

operators, i.e. products of single-trace operators, correspond to multi-string states.

In [15] the full spectrum of single-trace fields in the zero λ limit is given, but in

this paper we instead focus on some general features of correlation functions/string

amplitudes. At zero λ different fundamental fields propagate independently so it is

3
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perfectly consistent to restrict attention to a subset of them. For simplicity we only

consider conformal operators built of the six scalar fields φI :

(
∂{n}Φ{I}

)
{µ} ≡

(
∂n1···nkΦI1···ik

)
µ11···µn11 ···µ1k ···µ

nk
k

≡

≡ 1

Nk/2
Tr
{(
∂µ11 · · ·∂µn11 φI1

)
· · ·
(
∂µ1k · · ·∂µnkk φ

Ik

)}
, (2.1)

where we have introduced multiple indices denoted with braces. Note that hermitean

operators generally are special linear combinations of such operators.

We study operators of definite conformal dimension. In our simple setting with-

out interactions, the dimension is additive. The fundamental scalar has dimension

∆φ = 1 and the derivative (the translation generator) has ∆∂ = 1. Primary operators

are operators which (at the origin) are annihilated by special conformal transforma-

tions. From them descendant operators, said to belong to the same conformal family,

are created by repeated application of the other conformal generators, in effect the

derivative. In the AdS picture the primary operator gives a ground state for the

hamiltonian conjugate to the global time coordinate, and the descendants are ex-

cited states, which may be obtained by acting with AdS isometries not commuting

with the hamiltonian. Thus all the particles in AdS can be listed by only listing

the corresponding conformal primaries. It is also enough to consider the correla-

tion functions of the primaries, since those of descendants are related by conformal

symmetry.

The propagator of a scalar field in the adjoint representation of SU(N) is

〈
φαβ(x)φ

γ
δ (y)
〉
=
(
δαδ δ

γ
β −

1

N
δαβ δ

γ
δ

)
|x− y|−2∆φ , (2.2)

where the first term is the only one for the group U(N), allowing for ’t Hooft’s double

line representation [1] in the large-N limit. For SU(N) the second term can be dealt

with by 1/N corrections to the naive double line diagrams. The above propagator

for fundamental scalars can be used to calculate any correlation function

〈
∂{n1}Φ{I1}(x1)∂{n2}Φ{I2}(x2) · · ·∂{nm}Φ{Im}(xm)

〉
(2.3)

in the λ = 0 limit, e.g. by making all possible contractions directly, or by using Wick’s

theorem (all conformal operators are defined to be normal ordered). In particular

any scalar two point function may be calculated, and the results give a metric in the

space of operators,

〈
A(xi)B(xj)

〉
≡ GAB|xij |−∆A−∆B ≡ GAB , (2.4)

where we have defined

xij ≡ xi − xj . (2.5)
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Two-point functions of non-scalars scale in the same way but GAB then depends

on polarizations and the direction of xµij . The conformal operators in eq. (2.1) have

been normalized to have leading N -independent terms in large-N two-point functions

(with their hermitean conjugates).

The value of the two point correlator (modulo its spacetime dependence) of a

primary operator with the hermitean conjugate of another operator works as an

inner product3 in the space of primaries. The same quantity for any operators we

call “overlap”, by abuse of terminology. Descendants of two orthogonal primaries

have vanishing overlap with one another. Conversely, a vanishing two point function

between two operators means that they belong to orthogonal conformal families.

Therefore, an operator is primary if and only if it has vanishing overlap with all

operators of lower dimension.

All operators free of derivatives are primary, simply because there are no oper-

ators with lower dimensions that can have non-zero overlap with them. But there

are also numerous primaries containing derivatives, the most commonly known being

conserved SO(6) currents and the conserved stress tensor. For free scalars

JIJµ =
1

N
Tr
{
φI∂µφ

J − φJ∂µφI
}
= ∂01ΦIJµ − ∂01ΦJIµ , (2.6)

Tµν =
const

N
Tr

{
∂µφ

I∂νφ
I − ηµν

4
∂ρφ

I∂ρφI − 1
2
φI∂µ∂νφ

I +
ηµν

8
φI∂2φI

}
. (2.7)

In our case it is also easy to construct other primaries which are linear combina-

tions of terms with a single derivative. The operators

Tr
(
φI1 · · ·∂µφIk · · ·φIl · · ·φIm

)− Tr (φI1 · · ·φIk · · ·∂µφIl · · ·φIm) (2.8)

can only have non-zero overlap with operators composed of the same fields. Up to

permutations of the fundamental fields the only such operators of lower dimension are

Tr
(
φI1 · · ·φIk · · ·φIl · · ·φIm) , (2.9)

which by construction have vanishing overlap with the operators (2.8). Therefore,

expression (2.8) represents a new primary unless it vanishes, which it does if the

derivatives happen to act on identical fields in cylically equivalent positions. There

are also many primaries with more than one derivative, but such operators are more

difficult to generate.

The most important operators are the IR relevant and marginal operators, which

can be added to the lagrangian without destroying the UV behaviour. They have

∆ ≤ 4 and are given in table 1 in terms of their composition, derivative structure and
SO(6) Young tableaux. The table was constructed by checking the effect of the cyclic

property of the trace, which projects out some operators and relates others. The

3For hermitean operators it is just a component of the metric gAB, as seen in eq. (2.4).
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∆ = 2 ∆ = 3 ∆ = 4

ΦIJ ⊕•

ΦIJK ⊕ ⊕

ΦIJKL ⊕ 2 ⊕ 2 • ⊕ 2 ⊕ 2 ⊕

(∂10ΦIJ )µ

(∂100ΦIJK)µ 2 ⊕ 2

(∂{Σn=2}ΦIJ)µν ⊕•

Table 1: Spectrum of relevant and marginal primaries.

primaries were then picked out. There are more marginal and relevant gauge invariant

primaries composed solely of scalars in the λ = 0 limit4 than in the supergravity

limit λ→∞. In the supergravity limit the only such scalar primaries are symmetric
traceless tensors of SO(6) [4, 5]. This indicates an intricate structure of branches for

the moduli space of the theory, with new branches of conformal field theory splitting

off at intermediate values of λ, where some operators relevant at λ = 0 become

marginal. At least we could expect that the possible IR limits of deformations of

the theory vary strongly with the UV coupling λ. Another surprise in table 1 is the

last line, with 20 SO(6) traceless symmetric tensors, which are symmetric traceless

in spacetime, as well as conserved. In AdS they are SO(6) charged massless spin

two cousins of the graviton! If we had taken vector fields into account we would

also have listed the vector contribution to the energy momentum tensor, which is an

SO(6) scalar, and corresponds to a second AdS field with the quantum numbers of

the graviton. At this time it is too early to say whether these curious facts imply

that there is something seriously wrong with the zero coupling theory, or if they have

something profound to tell us about stringy geometry.

Even if one has chosen a basis of mutually orthogonal primaries in the large-

N limit, there will in general be 1/N corrections to two-point functions which mix

originally independent operators. This is the most basic way in which a kind of

interactions appear in our free theory, and it is a string coupling of the order of 1/N

4In the canonical normalization of fundamental fields of eq. (2.2), a marginal perturbation to

a non-zero λ theory can only be achieved by adding interaction terms to the lagrangian which

break the original abelian gauge symmetries and replace them with a deformed, non-abelian gauge

symmetry.
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at work. A few examples computed in the U(N) theory illustrates how the general

computation consists of a combinatorial part and an analytic part, which takes care

of the polarization dependence of the two-point function.

〈
Φ123(x)Φ123(0)

〉
=
1

N3
〈
:
[
Tr
(
φ1φ2φ3

)]
(x) ::

[
Tr
(
φ1φ2φ3

)]
(0) :
〉
=
1

N2
|x|−6 ,
(2.10)

〈[
Φ12Φ13

]
(x) Φ1231(0)

〉
=
1

N4
〈
:
[
Tr
(
φ1φ2
)
Tr
(
φ1φ3
)]
(x) ::

::
[
Tr
(
φ1φ2φ1φ3

)]
(0) :
〉
=

=
1

N
|x|−8 + 1

N3
|x|−8 , (2.11)

〈
J12µ (x)J

12
ν (y)

〉
=
1

N2

〈
:
[
Tr
(
φ1∂µφ

2 − φ2∂µφ1
)]
(x) ::

::
[
Tr
(
φ1∂νφ

2 − φ2∂νφ1
)]
(y) :
〉
=

= 2|x− y|−2 ∂
∂xµ

∂

∂yν
|x− y|−2 −

−2 ∂
∂yν
|x− y|−2 ∂

∂xµ
|x− y|−2 . (2.12)

The combinatorial calculation involves counting how many closed index lines are

formed between the two operators in the double line representation, to give the

appropriate N -dependence. Note that the convention of normal ordering operators

just means that propagators should not return to the same operator. If there are

several ways of saturating the operators with propagators, they should be added,

and will in general give rise to a polynomial dependence on 1/N .

To give the two-point function a simple and physical form, one should diagonalize

the mixing matrix. Because primary operators can only mix with operators of the

same dimension, and two operators that mix also have to consist of equal numbers of

all fundamental fields, the mixing problem can be reduced to a block diagonal form.

Only finite-dimensional diagonalizations are needed to find the exact propagator.

Single-trace operators may also mix with multiple-trace operators, i.e. products

of single-trace operators. A natural AdS interpretation of such operators is as multi-

string states, but it is somewhat puzzling that such products of independent operators

with equal argument should play a special role, in addition to being limits of products

of unequal arguments. Presumably the normal ordering needed to regularize the

product can be interpreted in AdS as a way of binding the two strings to each other

in the radial direction (which in the AdS correspondence is related to the boundary

theory scale [16, 17]).

If one includes the multiple-trace operators among the operators that can mix,

one gets larger matrices to diagonalize, but still of finite dimension, by the same argu-

ment as before. The resultant diagonalized full propagator propagates N -dependent
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linear combinations of single-trace and multi-trace operators, without mixing among

these superpositions. Their dimensions are all unchanged, and N -independent. This

result about N -independence at λ = 0 sharpens the assertion in [18] about the be-

haviour of the dimensions of multi-trace operators at weak coupling. In contrast,

the strong ’t Hooft coupling result of D’Hoker et al. [18] is that the dimensions of

multi-trace operators do shift.

The block overlap matrices should become degenerate for some finite N , de-

pending on the block. This is because there are linear dependencies among the naive

states [15], known as a string exclusion principle [19]. The determinants of the block

overlap matrices are polynomials in 1/N , so the smallest root of each determinant

sets the value ofN for which 1/N perturbation theory breaks down in the given block.

3. Operator products and string vertices

Essentially all string theory interactions may be derived from three-string vertices,

roughly because all string diagrams can be constructed by sewing together pant

diagrams (which carry the three-string structure). In many approaches additional

contact terms are also needed, but their role is mainly to make sense of analytic con-

tinuations. Similarly, in conformal field theory we expect the three-point functions

(and analytic continuation) to be enough to calculate any correlation function. The

three-point functions contain essentially the same information as the operator prod-

uct expansion, which completely characterizes the theory if conformal bootstrap [20]

works as in two dimensions [21]. For general operators the three-point function

〈A(x1)B(x2)C(x3)〉 = CABC

|x12|∆A+∆B−∆C |x31|∆A+∆C−∆B |x23|∆C+∆B−∆A ≡ CABC , (3.1)

where spacetime dependence is included in CABC , which as CABC typically depends
on the spins of the operators and the relative orientations of the xµij . The general

operator product expansion

A(x)B(y) ∼
∑
D

CAB
DD(y)|x− y|∆D−∆A−∆B =

∑
D
CABDD(y) (3.2)

is formally related to the three-point function through

CABD ≡ CABC GCD (3.3)

with GAB the inverse of the propagator GAB.
The n-point functions are constrained by the requirement that all fundamental

fields should be joined by a propagator to a fundamental field in another operator

(see figure 1). This implies that all non-zero correlation functions contain an even

number of fundamental fields. Furthermore, any n-point function can be represented

8
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Figure 1: A schematic description of a four-point function as a tetrahedron. To resolve

the N -dependence the order of the fields in each operator also has to be taken into account.

by an n-hedron for each kind of fundamental field (see figure 1). There are nIi fields

φI at the i-th corner, and nIij propagators of φ
I along the ij ≡ ji edge. We must

have nIi = n
I
i1 + · · ·+ nIin and

nIij =
1

n− 2
(
nIi + n

I
j −
nI1 + · · ·+ nIn
n− 1

)
. (3.4)

For the three-point function, n = 3, a non-negative number of propagators nIij ≥ 0
implies triangle inequalities

nIπ(1) ≤ nIπ(2) + nIπ(3) (3.5)

for any permutation π.

The underlying reason for the rules above is that we are dealing with a free

theory, which is invariant to independent shifts of all the fundamental scalars. The

corresponding conserved currents are JIαµβ = ∂µφ
Iα
β , which are not gauge singlets, and

thus not among the operators we would otherwise consider.

In our case we have a free theory, and the OPE can be obtained by first applying

Wick’s theorem and then Taylor expanding the result. For example we have

1

N
: Tr
{
φ2(xi)

}
:
1

N
: Tr
{
φ2(xj)

}
:=

=
1

N2
: Tr
{
φ2(xi)

}
Tr
{
φ2(xj)

}
: +

4

N2|xij|2 : Tr{φ(xi)φ(xj)} : +
4

|xij|4

=
1

N2

∑
n

(xij)
µ1 · · · (xij)µn
n!

: Tr
{
∂µ1 · · ·∂µnφ2(xj)

}
Tr
{
φ2(xj)

}
: +

+
4

N2|xij |2
∑
n

(xij)
µ1 · · · (xij)µn
n!

: Tr{∂µ1 · · ·∂µnφ(xj)φ(xj)} : +
4

|xij |4 . (3.6)

Terms proportional to the unit operator do not contribute to three-point functions,

but as we will see explicitly in section 4, they are essential for the 1/N -expansion to
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Figure 2: Leading diagrams contributing to the correlator (3.7).

produce disconnected diagrams. Such diagrams are of course needed if the expansion

is to be interpreted as a perturbative expansion of string theory.

Since the model is essentially a trivial free field theory, only studied from the

special perspective of its gauge-invariant local operators, we might worry that the

corresponding string theory is also trivial. In particular, we might ask if there are

only lowest order, 1/N , string interactions. Could it be that diagonalization of the

full two-point function is enough, and absorbs all other N -dependence? For flat space

amplitudes, such behaviour would be impossible in an interacting theory because of

S-matrix unitarity.5 In the present theory, we do not have an ordinary S-matrix,

neither in the four-dimensional Minkowski space because of conformal invariance, nor

in the five-dimensional gravitational picture because of the AdS background, so this

argument does not necessarily apply. To resolve the issue we have found a three-point

function with only higher order interactions, and checked that diagonalization of the

two-point functions of the three operators cannot reduce the interaction to order

1/N , the coupling strength of the fundamental interactions. This demonstrates that

the theory is a highly non-trivial interacting theory even at zero ’t Hooft coupling

(i.e. for tensionless strings).

Consider the correlation function

〈
Φ1212(x1)Φ

2323(x2)Φ
3131(x3)

〉
, (3.7)

among single-trace operators. The leading contributions are shown in figure 2, and

they are of order 1/N3. The three operators involve different fields and cannot mix

pairwise with each other. Thus, no diagonalization of single-trace operators can give

this three-point function from a 1/N vertex and 1/N -corrected external states.

By diagonalization among the full set of gauge invariant operators, including

multi-trace operators, it is possible to get terms like the leading contribution as

a result of an admixture of double-trace operator in the external state, but again

vertices of higher order than 1/N are needed to couple to the remaining two states.

To see this factorize a diagram of figure 2 into a first factor consisting of 1/N2

three-point vertices 〈ΦIJIJΦJKJK[∂{n}ΦKI∂{m}ΦKI ]〉 between two external single-
trace operators and two-trace operators and a second factor consisting of a 1/N

mixing 〈[∂{n}ΦKI∂{m}ΦKI ]ΦKIKI〉 of such two-trace operators with the remaining
5It generates an order g2 imaginary part from an interaction of order g, etc.
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Figure 3: Diagrams showing two possible expansions of a six-point function given in

eq. (4.1).

external single-trace operator. This example indicates that it may be possible to

write the full theory in terms of completely diagonalized local operators, but also

that three-point vertices of higher order in 1/N are needed.

4. CFT crossing symmetry and string amplitude duality

The OPE, eq. (3.2), can be used inside correlation functions in several ways depend-

ing on which distances are assumed to be small, and at what points the operator

products are to be inserted. By a sequence of expansions an n-point function can

be reduced to operator product coefficients CABD joined by operator two-point func-
tions 〈C(xi)D(xj)〉, all multiplied together and summed over all possible propagat-
ing operators. More symmetrically, the n-point function may be expressed in terms

of two-point functions and the amputated three-point function CABC , obtained by
multiplying the three-point function by inverse two-point functions. For example a

six-point function can be written as

CABB′CDCC′CFEE′CB′C′C′′GC′′E′ =
= GAA1GBB1GCC1GDD1GEE1GFF 1CA1B1B

′CFEE′ ×
× CC1D1C′CE1F1E′GB′B′1GC′C′1GE′E′1CB

′
1C
′
1E
′
1 . (4.1)

Diagrammatically this may be drawn as in figure 3. In the second way of writing

the six-point function additional internal spacetime points serving as arguments of

two-point functions and amputated three-point functions are introduced. If only the

expansions converge the locations of these points are arbitrary.

No single sequence of expansions converges for all positions of the operators, but

one can hope that different sequences should converge in complementary regions in

the space of operator positions, and yield continuations of each other. Interpreted

in terms of an AdS string S-matrix this would mean that the amplitude could be

expanded in kinematic invariants in many different ways that are continuations of

11
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one another. But this is just the kind of scattering “duality” that was the origin of

string theory [22], and which is intuitively reasonable when the amplitude is viewed

as a result of a path integral over string world sheets with no interaction points (in

contrast to corresponding amplitudes for point-particle theory). In our case we do not

have an actual worldsheet picture, just sets of free particle propagators that can span

a surface thanks to large-N counting. But by examining a four-point function we

can see explicitly how string scattering duality emerges from the OPE of conformal

field theory.

If we insert the OPE eq. (3.6) twice into the four-point function of normalized

quadratic traces of U(N) scalars

1

N4
〈
: Trφ2(x1) :: Tr φ

2(x2) :: Trφ
2(x3) :: Trφ

2(x4) :
〉
, (4.2)

we get

1

N4

〈
: Trφ2(x1) :: Tr φ

2(x2) :: Tr φ
2(x3) :: Trφ

2(x4) :
〉
=

=
16

|x12|4|x34|4 +
1

N4

∑
n,m

(x12)
µ1 · · · (x12)µn
n!

(x34)
ν1 · · · (x34)νm
m!

×

×
(〈
: [Tr ∂µ1 · · ·∂µnφ2Trφ2](x2) ::

[
Tr ∂ν1 · · ·∂νmφ2Trφ2

]
(x4) :

〉
+

+
16

|x12|2|x34|2 〈: [Trφ∂µ1 · · ·∂µnφ] (x2) :: [Tr φ∂ν1 · · ·∂νmφ] (x4) :〉
)
,

(4.3)

for small x12 and x34 relative to x23 and x14. The first term comes from the terms

proportional to the unit operator in the OPEs, corresponds to disconnected dia-

grams. The second line on the right hand side corresponds to the propagation of

quartic operators, and consists of one connected and two disconnected pieces (corre-

sponding to propagation of double-trace operators). Finally, the last line consists of

connected diagrams propagating quadratic operators. A direct Taylor expansion of

the Green function (4.2) gives the same result as this double OPE, and the regions

of convergence are the same. There are three different ways of combining the four

external operators into two pairs, each yielding a different expansion of the same

Green function. Therefore, the full Green function can be obtained as a continu-

ation of expansions in any such channel. This is string scattering duality for the

corresponding AdS amplitude.

The basic reason for the above duality appears to be that products of normal

ordered operators are associative. Presumably the associativity can be used to prove

rigorously many of the formal identities discussed above relating n-point functions,

OPE coefficients, three-point functions and two-point functions.
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5. Discussion

We have used the AdS/CFT conjecture as a tool to tentatively define string theory

in AdS 5×S5 with a Ramond-Ramond background. Although we have used the cor-
respondence outside the region where it has been tested, at small ’t Hooft coupling,

we have found that such a definition gives rise to a non-trivial interacting theory

with the fundamental properties of a string theory, like duality of scattering ampli-

tudes. We have tested a simple four-point amplitude and verified that CFT crossing

symmetry gives rise to the desired behaviour. We have listed marginal and relevant

primary operators composed of scalars and found that there are more such operators

at small ’t Hooft coupling than at large, indicating a complicated phase diagram

of IR deformations of N = 4 SYM. In string theory we expect a large number of
backgrounds which are asymptotically AdS.

Surprisingly we have found several marginal traceless symmetric tensors, which

correspond to massless spin 2 particles in AdS. Somehow, the extremely stringy

tensionless limit involves several geometries interacting with each other. It remains

to be seen if this is a defect which can only be cured by a perturbation to non-zero

tension, or if it is a consistent and perhaps even a characteristic property of string

theory at extremely short distances.

Furthermore we have argued that the theory in the limit of vanishing ’t Hooft

coupling allows a complete diagonalization of the string propagator. Nevertheless,

we have found the theory to be a complicated interacting theory with interactions of

all orders in 1/N .

A puzzling question is if the purely combinatorial 1/N expansion in the zero

coupling theory, which by large N lore is the genus expansion of string theory, can

be related to sums of intermediate single- and multiple-string states. In particular,

one would expect string loops to correspond to integrals or sums over all multi-

string intermediate states (composed of arbitrarily many fundamental fields) that

can couple to the external states. For loop sums to equal the combinatorial sums

there apparently have to be enormous cancellations, since the number of fundamental

propagators in the sums is bounded by expressions like eq. (3.4). Perhaps such

cancellations are typical of extremely holographic systems.
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