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Abstract: We consider the most general generation-independent U(1) gauge sym-

metry consistent with the presence of Yukawa couplings for all quarks and leptons in

the SUSY version of the Standard Model. This U(1) has generically mixed anomalies

with SM groups, which can not be cancelled by the Green-Schwarz mechanism of

heterotic D = 4 strings. We argue that these anomalies can in principle be cancelled

by the generalized Green-Schwarz mechanism present in field theories correspond-

ing to D-branes at singularities. Moreover, unlike the heterotic case, once the U(1)

symmetry is broken it may remain as an exact perturbative global symmetry in the

low energy theory. Applying this scheme to the SUSY SM we find that gauging such

a general U(1): i) B and L violating operators at least up to dim = 3, 4, 5, 6 are

generically forbidden ; ii) The µ-term is generically supressed. We also study the

properties of a U(1)X symmetry whose mixed anomalies with the different SM gauge

groups are in the ratio of the beta function coefficients βa. This relation has been

shown to hold in certain orientifold models. In all cases the U(1) remains as a global

symmetry at the orientifold singularity, the SM Higgs can break it at the electroweak

scale, making possible to relate the blowing-up of the singularity with electroweak

symmetry breaking.
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1. Introduction

The SUSY standard model (SM) has a number of naturality problems. One of the

most pressing ones is the problem of proton stability. Indeed, the most general super-

potential consistent with SU(3)×SU(2)×U(1) gauge invariance and supersymmetry
has dimension-three and -four operators which violate lepton and/or baryon number.

In particular it has the general form:

W = huQLu
c
LH̄ + hdQLd

c
LH + hl LLe

c
LH +

+ hB u
c
Ld
c
Ld
c
L + hLQLd

c
LL+ h

′
L LLLLe

c
L + µLLH̄ + µHH̄ (1.1)

in a self-explanatory notation. The first line contains the usual Yukawa couplings

which are needed for the standard quark and lepton masses whereas the second

line shows B or L-violating couplings and the third shows the µ-terms. One needs to

invoke a symmetry of some sort to forbid at least a subset of the dangerous couplings

in order to obtain consistency with proton stability.

Another problematic point of the SUSY SM is the smallness of the µ-parameter,

the SUSY mass of the Higgs multiplets. In principle that mass parameter would be

expected to be as high as the cut-off of the theory, unless there is some symmetry

reason which protects the Higgs mass from becoming large.

In field theories we are free to impose either a discrete symmetry such as R-

parity or global continuous symmetries to forbid the dangerous couplings. In string

theory R-parity does not in general appear as a natural symmetry and furthermore,

global symmetries are believed not to be present. In fact, in perturbative string
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theory it can be shown [1] that there are no global symmetries (besides Peccei-

Quinn symmetries of axion fields or accidental symmetries of the low-energy effective

action). In nonperturbative string theory, even though there is no general proof, it is

also believed that global symmetries are absent, the reason being that any theory that

includes gravity will not preserve global symmetries since they are broken naturally

by black holes and other similar objects.

Therefore, perhaps the simplest possibility for solving both problems in string

theory would be to gauge some continuos U(1) which forbids the dangerous cou-

plings [2, 3, 4]. This is in general problematic because, if we stick to the particle

content of the MSSM such symmetries are bound to be anomalous. One might think

of using the Green-Schwarz mechanism found in perturbative heterotic vacua in or-

der to cancel those anomalies and indeed this possibility has been explored in the

past. However there are two main obstructions:

1. The mixed anomalies of the U(1)’s with the SM interactions are not in the

appropriate ratios to be cancelled.1

2. Due to the presence of a Fayet-Iliopoulos (FI) term, the U(1) symmetry is in

general broken slightly below the string scale and does not survive as an exact

global symmetry. Thus in general one has to rely on the particularities of the

model and holomorphicity in order to supress sufficiently parameters like the

µ-term [6, 7].

In the present letter we point out that these two problems are not present in

the alternative generalized Green-Schwarz anomaly cancellation mechanism recently

found in type I and type IIB D = 4, N = 1 string vacua. Indeed in this novel

mechanism the mixed anomalies of a U(1) with the different group factors can be

different. In addition, unlike what happens in the perturbative heterotic case, the FI

term may be put to zero. In that case, as first pointed out in ref. [8], the U(1) survives

as an effective global symmetry which is exact in perturbation theory, evading in this

way the general argument against global symmetries in string theory. Both these

aspects are wellcome in order to suppress the dangerous couplings with a gauged

abelian symmetry.

We will discuss two general classes of flavour-independent anomalous U(1)’s.

The first class allows all Yukawa interactions and it is discussed in section 3 whereas

another class of anomalous U(1)’s with anomalies proportional to the beta function

coefficients of the corresponding gauge groups is discussed in section 4. We will start

in section 2 discussing the general aspects of anomalous U(1)’s in heterotic and type

I models respectively.

1This can be avoided by going to generation-dependent U(1) symmetries as in ref. [5, 6]. We

will concentrate in this article on flavour-independent U(1) symmetries.
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2. Anomalous U(1)’s: heterotic vs type I models

In D = 4, N = 1 perturbative heterotic vacua one anomalous U(1) is often present

and anomalies are cancelled by a Green-Schwarz mechanism. An important role

is played by the imaginary part of the complex heterotic dilaton S, which is dual

to the unique antisymmetric tensor Bµν of perturbative heterotic strings. Under

an anomalous U(1) gauge transformation Aµ → Aµ + δGS ∂µθ(x), ImS gets shifted

by ImS → ImS − δGS θ(x), where δGS is a constant anomaly-cancelling coefficient.
Since the gauge kinetic function for the gauge group Ga is at tree-level fa = ka S,

the lagrangean contains the couplings ImS
∑
a kaFa ∧ Fa, where the sum runs over

all gauge groups in the model and the coefficients ka are known as the Kac-Moody

levels. Then, a shift in ImS can in principle cancel mixed U(1)-gauge anomalies.

However, for this to be possible the mixed anomalies Ca have to be in the same

ratios [9] as the coefficients ka (Kac-Moody levels) of the gauge factors:

Ca

Cb
=

ka

kb
. (2.1)

With δGS = Ca/ka. In the SM, assuming the standard hypercharge normalization,

we have k3 : k2 : k1 = 1 : 1 : 5/3.

The anomalous U(1) induces, a Fayet-Iliopoulos (FI) term ξ = g2M2
P δGS/16π

2

at one-loop [10]. The gauge coupling g here is given by 8π/g2 = ReS. The D-term

in the lagrangean then takes the form:

LD = g2

2

(∑
i

qiXiKi + ξ

)2
, (2.2)

where Ki is the derivative of the Kähler potential K with respect to the matter

fields Xi which have charge qi under the anomalous U(1). This term triggers gauge

symmetry breaking. In order to preserve supersymmetry, the D-term has to vanish.

The Fayet-Iliopoulos term ξ cannot vanish because, U(1) being anomalous implies

δGS 6= 0 and, in a nontrivial vacuum, g 6= 0. Therefore a combination of the charged
fields Xi is forced to get a nonvanishing vev to compensate the FI term, breaking

the anomalous U(1) and often some other non-anomalous groups.

Let us see how the anomalous U(1) gauge field gets a mass. First, the anomaly

cancelling term in the lagrangian δGS B ∧ FU(1) gives rise, upon dualization, to a
term proportional to (∂µImS + δGSAµ)

2 which allows the gauge field Aµ to eat the

axion ImS and get a mass, as in the standard Higgs effect. A linear combination

of the real part of S and the charged scalars Xi, also gets the same mass from the

Fayet-Iliopoulos term, after expanding the D term around the nontrivial vacuum.

Therefore the analogy with the supersymmetric Higgs effect is complete: the original

vector superfield eats the chiral superfield of the dilaton giving rise to a massive

vector superfield. The anomalous U(1) symmetry gets broken at a scale determined

3
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by ξ, which can be 1-2 orders of magnitude below the Planck mass depending on

the value of δGS. The massless combination of the dilaton with the charged fields Xi
plays the role of the string coupling.

Since chiral fields Xi charged under the U(1) are forced to get vevs, non-renor-

malizable couplings of the form ψnXmi , where the ψ denote SM superfields will induce

effective operators which will in general violate the anomalous U(1) symmetry. Thus

typically this symmetry does not survive at low energies as a global symmetry.

Let us now see how things change in type I strings. Recently it has been real-

ized [11] that the cancellation of U(1) anomalies in certain type I and type IIB D = 4,

N = 1 models [12]–[20] proceeds in a manner quite different to the one in perturbative

heterotic vacua. These are models which may be constructed as type IIB orbifolds

or orientifolds [21] and contain different D-brane configurations in the vacuum. For

example, the vacuum may contain a certain number of D3-branes and D7-branes

with their transverse coordinates located at different positions in the extra six com-

pact dimensions. Chiral N = 1 theories in D = 4 are only obtained when e.g., the

D3-branes are located on top of orbifold singularities. It has been found [18, 11, 22]

that in this class of theories: a) There may be more than one anomalous U(1); b)

The mixed anomaly of the U(1) with other groups need not be universal ; c) There

is a generalized Green-Schwarz mechanism at work in which the cancelling role is

played not by the complex dilaton S but by twisted closed string massless modes

Mk. These are fields which live on the fixed points of the orbifold. In particular,

their real part (which are NS-NS type of fields) parametrize the smoothing out of

the orbifold singularities whereas their imaginary parts (which are Ramond-Ramond

fields) are the ones actually participating in the U(1) anomaly cancellation.2 More

specifically, cancellation of U(1) anomalies results from the presence in the D = 4,

N = 1 effective action of the term

∑
k

δlkBk ∧ FU(1)l , (2.3)

where k runs over the different twisted sectors of the underlying orbifold (see ref. [11,

22] for details) and Bk are the two-forms which are dual to the imaginary part of

the twisted fields Mk. Here l labels the different anomalous U(1)’s and δ
l
k are model-

dependent constant coefficients. In addition the gauge kinetic functions have also a

2More precisely, from string theory, the blowing-up modes together with the antisymmetric

tensors coming from the RR sector, belong to linear multiplets. The scalar components of these

multiplets, mk are the ones that vanish at the orbifold point and their value determine the blowing-

up procedure [23]. Upon dualization, the linear multiplets get switched to the chiral multiplets

Mk, the relation between mk and the real part of Mk depends on the structure of the lagrangean

but close to the singularity it is linear and mk = ReMk − F (Ti, T ∗i ) where F (T, T ∗) is a model
dependent function which depends on the untwisted moduli fields Ti which determine the size of

the compact space.
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(tree-level) Mk-dependent piece
3

fα = S +
∑
k

skαMk , (2.4)

where the skα are model dependent coefficients. Under a U(1)l transformation the

Mk fields transform non-linearly

ImMk → ImMk + δlkΛl(x) . (2.5)

This non-linear transformation combined with eq. (2.4) results in the cancellation of

the U(1)l anomalies as long as the coefficients C
l
α of the mixed U(1)l-G

2
α anomalies

are given by

C lα = −
∑
k

skαδ
l
k . (2.6)

Unlike the perturbative heterotic case, eq. (2.6) does not in general require universal

mixed anomalies as in eq. (2.1).

In D = 4 models like these there can also be mixed U(1)X-gravitational anoma-

lies. In the perturbative heterotic case, in order for the Green-Schwarz mechanism

to work, the coefficient C lgrav of those anomalies must be related to those of mixed

U(1)-gauge anomalies by

C lgrav =
24

kα
C lα . (2.7)

Such relationship disappears in the case of type IIB D = 4, N = 1 orientifolds. One

can find though certain sum rules relating the gravitational to the gauge anomalies

in certain classes of models. In particular, for the toroidal orientifolds of the general

class studied in refs. [18] one can obtain the constraint [11]:

C lgrav =
3

2

∑
α

nαC
l
α , (2.8)

where nα is the rank of the U(n) or SO(m) groups which are present in this class of

orbifolds. This constraint has to be satisfied for the anomalies to be cancelled by the

generalized Green-Schwarz mechanism present in these models.4

The FI term for this U(1)X is given by ξ = δXKM , since the Kähler potential

(to first order in M)is given [25, 26, 22, 23] by K = [ReM −F (Ti, T ∗i )]2+ · · · we can
easily see that the FI term vanishes at the orbifold singularity [18, 11, 22, 23] (see

3This is for gauge groups coupling either to type I 9-branes or 3-branes. In the case of 5-branes

or 7-branes the complex field S is to be replaced by the appropriate Ti field. The different choices

for Dp-branes are in fact T-dual to each other and, hence, equivalent. See e.g. ref. [24] for details.
4It is amusing that eq. (2.8), valid for certain classes of type IIB orientifolds, turns out to be

consistent with what is found in perturbative heterotic SO(32) abelian orbifolds. Indeed, in that

case all mixed U(1)-gauge anomalies are equal and one has
∑
α nαC

l
α = rank(SO(32))C

l = 16Cl.

Plugging this back into eq. (2.8) we recover the perturbative heterotic result eq. (2.7).

5
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also [27, 28]). This is impossible in the heterotic case, because in that case it is the

field S that cancels the anomaly and the FI-term ξ is then proportional to KS ∼ g2

which cannot be set to zero in a nontrivial vacuum. The anomalous gauge field gets

a mass [26, 28] exactly in the same way as in the heterotic case, nevertheless, there is

no need for a charged field to get a nonvanishing vev in order to cancel the D-term,

therefore the corresponding global symmetry is not broken. Thus, the gauge field

gets a mass of the order of the string scale (since the mass depends on KMM∗ and

not on KM) but the global symmetry remains perturbatively exact as long as we

are at the orbifold singularity ξ = 0. If there is a vacuum for which the D-term

vanishes outside the singularity, the scale of breaking of the global symmetry could

in principle be as small as we want.

We can see then that in the class of type IIB orientifolds in which this anomaly

cancellation mechanism has been studied, the anomalous U(1)’s have generically a

mass of order the string scale. Unlike what happens in the heterotic case, this FI-

term is arbitrary at the perturbative level and hence may in principle vanish (orbifold

limit). In this case the U(1)X symmetry remains as an effective global U(1) symmetry

which is perturbatively exact.

3. Anomalous U(1)′s and Yukawa couplings

We will now study the new possibilities offered by these generalized Green-Schwarz

mechanism when applied to MSSM physics. We will consider the simplest possibil-

ity in which we extend the SM gauge group by adding a single anomalous U(1)X .

There are just three U(1) charge asignements (beyond hypercharge) for the MSSM

chiral fields which 1) allow for the presence of the usual Yukawa couplings and 2)

are flavour-independent. These were named R, A and L in ref. [4], and the corre-

sponding assignments are displayed in table 1, where we also include the hypercharge

assignments Y .

Notice that L is just lepton number and R corresponds to the 3rd component of

right-handed isospin in left-right symmetric models (baryon number is given by the

combination B = 6Y +3R+3L). The other symmetry, A, is a Peccei-Quinn type of

Q u d L e H H̄

6Y −1 4 −2 3 −6 3 −3
R 0 −1 1 0 1 −1 1

A 0 0 −1 −1 0 1 0

L 0 0 0 −1 1 0 0

QX 0 −m m− n −n− p m+ p −m+ n m

Table 1: U(1) symmetries of the SUSY standard model.
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symmetry. Thus the more general such U(1) symmetry will be a linear combination:

QX = mR + nA + pL (3.1)

where m,n, p are real constants. We will denote the corresponding U(1)X ’s by giving

the three numbers QX = (m,n, p). The fifth line in the table shows the general QX
charge of the particles of the MSSM. Notice that, depending on the values of m,n, p

some of the terms in the superpotential (1.1) may be forbiden. Thus, for example,

QX = R = (1, 0, 0) forbids all the terms in the second line and would forbid proton

decay at this level by itself. On the other hand it does not provide an explanation

for the smallness of the µ-term. In particular, the bilinear HH̄ has QX charge equal

to n, and hence it can only be forbiden if our U(1) has n 6= 0. For that purpose
we can see that the U(1) symmetry is necessarily anomalous. Thus let us study the

anomalies of the above QX symmetry.

The mixed anomalies Ci of QX with the SM gauge interactions are given by:
5

C3 = −nNg
2
,

C2 = −nNg
2
+ n

ND

2
− p

Ng

2
,

C1 = −n5Ng
6
+ n

ND

2
+ p

Ng

2
, (3.2)

where we have preferred to leave the number of generations Ng and doublets ND free

to trace the origin of the numerical factors (one has Ng = 3, ND = 1 in the MSSM).

There is an additional constraint from the cancellation of U(1)Y ×U(1)2X anomalies
which yields:

p(m− n) = n

2Ng
(ND(n− 2m) + 2Ngm) . (3.3)

Thus there are only two independent parameters out of the threem,n, p if we imposse

this latest constraint.

It is now easy to see that (3.2) cannot be satisfied in the heterotic case since

there is no solution to these equations with C3 : C2 : C1 = 1 : 1 : 5/3. However

these equations can, in principle, be easily satisfied in the type I case. To see this,

let us suppose for simplicity that one twisted field M is relevant in the cancellation

mechanism.6 The gauge kinetic functions for the SM interactions will have the form:

fα = S + sαM , α = 3, 2, 1 . (3.4)

5We will not consider constraints coming from cancellation of mixed U(1)-gravitational anomalies

in our analysis in this chapter and the next, since one can always cancel those by the addition of

apropriate SM singlets carrying U(1)X charges.
6Notice that M may also denote a linear combination of several twisted fields living at the

singularity.
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QuH̄ QdH̄ LeH HH̄ LH̄ udd QdL LLe

QX 0 0 0 n m− n− p m− 2n m− 2n− p m− 2n− p
QX ’ −Y Y Y − 3δX −δX −2δX + Z − Y Z Z − δX Z − 4δX
Table 2: U(1)X charge of dim = 3, 4 operators in the MSSM for the two classes of U(1)’s

considered in sections 3 and 4 respectively.

Now, from eq. (2.6) we see that the mixed anomalies will cancel if the anomaly

coefficients in (3.2) are related to the parameters δX and sα by Cα = −δX×sα, which
is possible to satisfy for appropriate δX and sα. Notice , however, that in the present

case the coefficients sα are related. Indeed, for the physical case Ng = 3, ND = 1

anomalies can be cancelled as long as the parameters sα satisfy:

2s3 = s1 + s2 . (3.5)

This imposes a constraint on which type I models can have an anomalous U(1) that

allow all standard Yukawa couplings.

Let us now be a bit more specific and study the posibilities for anomalous QX =

(m,n, p) symmetries. As we said, we need n 6= 0 in order to forbid the µ-term.

1. The simplest case is obtained for p = 0, i.e. no gauging of lepton symmetry.

In this case condition (3.3) requires n = 2m(ND −Ng)/ND = −4m and we are
left with a unique possibility Qµ consistent with anomaly cancellation:

Qµ = R− 4A . (3.6)

It is easy to check (see table 2) that this symmetry forbids all dimension 3

and 4 terms violating baryon or lepton number in eq. (1.1). Dangerous F -

term operators of dimension smaller than 9 are also forbidden in this case

(see for instance reference [29], for a recent discussion of these operators).

The dimension 6 operators [QQu∗e∗]D and [Qu∗d∗L]D are however allowed (see
table 3).

2. A related symmetry is the one introduced by Weinberg in 1982 in order to

eliminate dangerous B,L violating operators in the supersymmetric SM [30].

In his model all quarks and leptons carry unit charge whereas the Higgses have

charge −2. This symmetry corresponds to QW = −5R− 4A− 6Y . In order to
cancel U(1) anomalies he was forced to add extra chiral fields transforming like

(8, 1, 0,−2)+(1, 3, 0,−2)+2(1, 1, 1,−2)+2(1, 1,−1,−2) under SU(3)×SU(2)×
U(1)Y × U(1)X . We now see that in the present context the addition of all
those extra fields is not required and one can stick to the particle content of

the MSSM as long as the anomaly cancelation mechanism here considered is

at work. The U(1) clearly satisfies equations (3.2) with p = 0, n = −4 but

8
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Operator Dimension QX Charge Q′X charge

[QQQL]F 5 −n− p 0

[uude]F 5 p− n −δX
[QQQH ]F 5 n−m δX + Y − Z
[H̄H̄e∗]D 5 m− p Z − 2Y
[QuL∗]D 5 p+ n−m 2δX − Z
[H̄∗He]D 5 p+ n−m 2Y − δX − Z
[QQd∗]D 5 n−m δX − Z
[uuuee]F 6 2p−m −2δX − Z
[uddHH̄]F 6 m− n Z − δX
[dddLH ]F 6 2m− 3n− p Y − 2δX + 2Z
[uddLH̄]F 6 2m− 3n− p 2Z − 2δX − Y
[AA∗LH∗]D 6 m− 2n− p Z − δX − Y
[AA∗LH̄ ]D 6 m− n− p Z − Y − 2δX
[QQQH̄∗]D 6 −m 2δX + Y − Z
[QQu∗e∗]D 6 −p 2δX
[Qu∗d∗H ]D 6 2n−m Y − Z
[Qu∗d∗L]D 6 −p −δX
[Qu∗d∗H̄∗]D 6 n−m δX + Y − Z
[Qd∗d∗H̄ ]D 6 2n−m −Y − Z
[Qd∗d∗L∗]D 6 3n− 2m+ p 2δX − 2Z
[Qd∗d∗H∗]D 6 n−m δX − Y − Z
[QuH̄∗e]D 6 p−m Y − Z
[QdH∗e∗]D 6 m− 2n− p 2δX − Y + Z
[QdH̄e∗]D 6 m− n− p δX − Y + Z
[LLH∗H∗]D 6 2m− 4n− 2p 2Z − 2Y − 2δX
[ddde∗]D 6 2m− 3n− p δX + 2Z

Table 3: Supersymmetric operators of dimension 5 and 6 that violate Baryon or Lepton

numbers, including their charges with respect to the anomalous U(1)’s of sections 3 and 4.

Here the fields A represent any of the fields of the supersymmetric standard model.

the value m = −5 does not satisfy the quadratic constraint (3.3). However
this is exactly cancelled by the contribution from the hypercharge. Concerning

what B, L-violating operators are allowed, the same as in the previos example

applies.

3. For the generic case with m,n, p 6= 0 tables 2 and 3 show that all B, L violating
operators up to dimension 6 are forbidden. A similar analysis may be done for

higher dimensional operators which may be also dangerous for models with a

relative small string scale [31]–[40] and [8].
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4. For particular choices of m,n, p one can allow some R-parity violating dim = 4

operator. For example, the U(1) given by:

Qudd = 4R + 2A+ 3L (3.7)

forbids all dim = 3, 4, 5, 6 lepton violating couplings but allow the coupling

of type udd in the superpotential. One can also find choices which allows for

lepton number violating but not for baryon number violating ones.

5. There is a particularly simple U(1) for which all the anomalies are the same:

C1 = C2 = C3. This will require a string model with identical sα coefficients

in the gauge kinetic function. This is a solution as long as Ng = 3ND which

is satisfied in the physical case with p = n/3;m = −3n/2. Since the three sα
are identical the gauge couplings are unified for any value of 〈ReM〉. Notice
however that the U(1)Y normalization is not the canonical one. This U(1)

also forbids all dangerous couplings of dimension 3, 4, 5 and 6 as well as all

dangerous F -term operators of dimension less than 9.

Thus one concludes that ensuring a small µ-parameter implies in general that B

and L-violating dim = 3, 4, 5, 6 operators are generically forbidding in the presence

of anomalous U(1)’s of this type except for very particular cases. As for neutrino

masses, the operator LLH̄H̄ is forbiden as long as m 6= n + p so one must include

right-handed neutrinos to allow for neutrino masses with charges n+ p−m.
Now, once the U(1)X symmetry is gauged, the µ parameter is forced to be zero

at the perturbative level and we understand why the Higgs fields have small masses

compared to the cut-off. A small but non-vanishing µ-parameter is however needed

in order to obtain appropriate SU(2)×U(1) symmetry breaking. Notice however that
once SUSY is broken, a non-vanishing DX-term will in general appear of order M

2
W .

Thus the U(1)X symmetry will get small breakings of order MW and an effective

µ-term of order MW could be generated. U(1)X symmetry breaking effects could

also be generated from non-perturbative effects and could also give rise to a µ term.

4. Anomalous U(1)’s and β-functions

The class of U(1) symmetries considered in the previous section is very interesting

phenomenological and in principle it may be realized in type I strings. However,

at the moment we do not yet know an explict example giving rise to such symme-

tries since we are still lacking sufficiently realistic models. We will now change our

approach in the following way. Instead of imposing the phenomenological require-

ments of allowing all quark and lepton masses, we will impose some constraints on

the anomalies inspired in some known orientifold models. Recently a special class of

anomalous U(1)’s has been found in orientifold models [24, 22, 41]. These models are
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Q u d L e H H̄

Q1 1 0 0 −3 −2 0 −2
Q2 1 0 0 −3 −2 −2 0

Q3 0 1 0 0 −3 −1 0

Q4 0 0 1 0 −2 −1 0

Q′X m+ n p q −3(m+ n) −(2m+ 2n+ 3p+ 2q) −2n− p− q −2m
Table 4: Anomalous U(1) symmetries with mixed anomalies proportional to beta function

coefficients.

such that the mixed anomalies of these U(1)’s with the other gauge groups are in the

ratio of the beta-function coefficients of the corresponding gauge groups. This could

be of interest also in trying to accomodate a string scale well below the unification

scaleMX = 2×1016 GeV [24, 41]. For these U(1)’s instead of (3.1), valid for heterotic
models, we would have:

Cα

Cγ
=
βα

βγ
. (4.1)

If an extension of the MSSM exists with such an extra U(1)X , since we know the

beta-function coefficients for the supersymmetric standard model, β3 : β2 : β1 = −3 :
1 : 11, we can then look for the most general family independent U(1) that satisfies

these constraints. Imposing the three constraints for the mixed anomalies with the

standard model groups we find four independent solutions as shown in the table.

The most general anomalous U(1) is

Q′X = mQ1 + nQ2 + pQ3 + qQ4 , (4.2)

which has mixed anomalies with the standard model groups given by:

Cα = −βα
2
(2m+ 2n+ p + q) . (4.3)

We therefore will assume 2m+2n+ p+ q 6= 0 so that the U(1) is indeed anomalous.
These anomalies are cancelled if the gauge kinetic function has the form fα = S+

βα
2
M

(i.e. sα = βα/2) with δX = (2m+ 2n+ p+ q). We thus have Cα = −βα2 δX .
There are two more conditions that have to be imposed. First that the mixed

U(1)X − U(1)X − Y anomaly vanishes identically, imposing a quadratic constraint
among the U(1)X charges. Second, that the U(1)

3
X anomaly is also cancelled by

a Green-Schwarz mechanism, therefore a constraint CX = −δX/2βx has also to be
satisfied. The quadratic constraint can be automatically satisfied by use of the fol-

lowing argument: adding a term proportional to the hypercharge to each of the

U(1)X charges will not change any of the linear constraints coming from the mixed

U(1)X−G−G anomalies because we know that hyercharge is anomaly free. Therefore
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this will change only the quadratic constraint, we then assume that the proportion-

ality constant has been fixed and not impose the quadratic constraint. This will tell

us though that the four coefficients m,n, p, q are not independent and we are free to

impose one constraint among them (the Weinberg U(1) of the previous section was

obtained in this way). As for the cubic constraint, since it involves only the anoma-

lous U(1)X we will allow the possibility of extra matter fields charged only under

the anomalous U(1)X but not the Standard Model groups, which is very common in

string models, so that their charges satisfy the cubic anomaly condition.

Let us then try to extract the possible implications of the U(1)X symmetry. It

turns out that one can draw some general conclussions without needing to go into

the details of each U(1)X . We show in table 2 the U(1)X charges of the dim = 3, 4

operators in the MSSM. Here one defines Y = m− n− p and Z = p + 2q.7 For any
of those couplings to be allowed the corresponding entry has to vanish. Examining

the table 1 reaches the following conclussions:

1. The µ-term is prohibited as long as the U(1) is anomalous (δX 6= 0). This
result happens to be identical to the case in the previous section. Thus this a

very generic fact: U(1)′s forbidding the µ-term are necesarily anomalous.

2. If a mass term for the up quarks is allowed (Y = 0), then automatically a mass

term for the down quarks is also allowed. However, at the same time, lepton

masses are forbidden. Therefore with this U(1)X lepton or quark mass terms

may be present but not both simultaneously. This implies that the class of

U(1)’s studied in the previous section does not fall into the present cathegory.

In the following we will consider the case that quark masses are permitted

(Y = 0), similar conclusions can be obtained if only the lepton masses are

present, or none of them. We will comment below how leptons could get a

mass.

3. If the baryon number violating operator udd is allowed (Z = 0) then the

lepton number violating operator QdL is automatically forbidden implying, at

this level, proton stability.

4. From table 3 one also observes that in the generic case all B and L-violating

terms are forbidden at least up to dimension 6 except for the dim = 5 operator

[QQQL]F which is always necesarily allowed for a U(1) of this type.

One can also check that the charges of the dimension 5 operators LLH̄H̄ are

given by 2Z − 2Y − 4δX . Thus for choices with 2Z = 2Y + 4δX neutrino masses
can be naturally generated as in the standard see-saw mechanism. Alternatively,

right-handed neutrinos may be added.

7Note thatm,n, p, q are defined in eq. (4.2) and have nothing to do with those defined in eq. (3.1).
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We can then see how restrictive a single anomalous symmetry can be regarding

the physically interesting couplings in the superpotential. Even though the lepton

masses are forbidden, there is a very economical way to generate them. If there is a

standard model singlet N with charge 3 δX , the coupling NLeH is invariant under

the anomalous U(1) and if N has a nonvanishing expectation value, it gives rise to

lepton masses. This looks like dangerous since, as we discussed in the introduction,

once we give large vevs to fields charged under the anomalous U(1)X , this symmetry

will be broken in the effective lagrangean, as it generically hapened in the heterotic

models.

Interestingly enough there is an unexpected unbroken discrete Z3 gauge group

which saves the day. Indeed, a vev for the field N turns out to break U(1)X to a

discrete Z3 subgroup. This is due to the fact that the N field has to have charge

3 δX whereas the forbidden terms would require vevs of fields with charges ±2 δX or
±1 δX to be allowed. This is enough to forbid the dangerous couplings, such as the
µ-term and the B,L violating operators. The ratio 〈N〉/Ms may be at the origin of
a hierarchy of fermion masses. The only dangerous coupling that is not forbidden by

this U(1)X (nor its residual Z3 once leptons get masses) is the dimension 5 operator

QQQL. We may hope that an extra symmetry, possibly a flavour-dependent U(1) or

even a sigma-model symmetry as those discussed in [22], may be at work to forbid

this operator and keep the proton stable. Notice that this coupling is dangerous only

for the first families of quarks and leptons. A detailed analysis of flavour-dependent

anomalous U(1)’s may also be interesting [5, 6, 7], in order to study the possible

structure of fermion masses. We hope to report on this in a future publication.

5. Final comments

We have studied the possible use of anomalous U(1) gauge symmetries of the class

found in type IIB D = 4, N = 1 orientifolds to restrict Yukawa couplings and

operators in simple extensions of the MSSM in which a single such U(1) is added.

We have studied in detail two general classes of flavour independent anomalous U(1)’s

that may come from type I strings. The general properties of anomaly cancellation

and induced FI terms are very different compared to those previously considered

in the context of perturbative heterotic models. Besides its intrinsic interest, this

study may lead us to extract general properties of these models. We have seen

that in most cases, dangerous couplings are forbidden, in particular the µ term and

B,L violating operators are naturally constrained by these anomalous symmetries.

We have checked that generic symmetries of this class easily forbid B,L violating

couplings up to large operator dimensions. This could be wellcome for string models

with the string scale well below the Planck mass as in refs. [31]–[40] and [8].

It would be interesting to extend the present analysis to the case of flavour-

dependent U(1) symmetries which could restrict the patterns of fermion mass tex-
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tures. Notice that in the analysis in section 3 we have tacitely assumed that the

residual global U(1)X symmetry is broken (by vevs of charged scalars) only close to

the weak scale so that proton decay supression is sufficiently efficient and a large µ-

term is not generated. This is a possibility which is not pressent in heterotic models

in which the FI-term generically forces charged scalars to get vevs close to the string

scale. However in the type I context other flavour-dependent U(1)’s can be assumed

to be broken by vevs of singlet scalars slightly below the string scale so that schemes

analogous to those considered in [5, 6, 7] are also possible. Notice also that more

than one anomalous U(1) may be present now.

If there is more than oneM field at the singularity, since only one gets swallowed

by the U(1)X to become massive, they can play the role of invisible axions and solve

the strong CP-problem as proposed in ref. [8]. Indeed, these other fields would be

massless to high accuracy and have the adequate couplings to do the job. It is

unlikely that they get substantial masses after SUSY-breaking if the latter originates

in a hidden sector. However it is not clear if these fields couple to F ∧ F . For
example, in Z3 with 9-branes, the sum of 27 fields is massive, the other 26 are not.

But they have zero coupling with F ∧ F . We expect that in the generic case, for an
anomalous U(1)X , the linear combination s

k
XMk cancels the anomaly and gets eaten

by the anomalous gauge field, whereas the combination sk3Mk is the one that couples

to QCD and plays the role of the QCD axion.

Once SU(2)× U(1) is broken and the Higgs fields get vevs, those vevs will also
break the U(1)X symmetry. In the DX term this can be compensated by a tiny

(compared to the string scale) FI-term ξ. Thus it seems electroweak symmetry

breaking will trigger a FI-term of order MW . This means that 〈M〉 ∝ MW in these

models. Thus, interestingly enough, the electroweak scale would be a measure of

the blowing up of the singularity. The process of SU(2)×U(1) breaking would look
like a transition of some branes to the bulk. The distance of the branes to the

original singularity (given by the vevs of the Higgs) is equal to the induced FI term.

Of course, all this depends on the supersymmetry breaking mechanism and how it

affects the structure of the D-terms.

In the general case we can say that for an arbitrary anomalous U(1) the vacuum

is either at the singularity ξ = 0 or not. If it is not, then the blowing-up mode

can substantially affect the unification scale as argued in refs. [24, 41]. Otherwise

the anomalous U(1) symmetry remains as a perturbatively exact global symmetry

that can help forbidding dangerous couplings allowed by supersymmetry. This is

the first concrete proposal to evade the general claim against the existence of global

symmetries in string models. The SM Higgs can break this symmetry, triggering a

nonvanishing value to the FI term and then moving away from the singularity. This

may provide a ‘brany’ interpretation to the scale of electroweak symmetry breaking.

In any case these new anomalous symmetries can certainly play a very interesting

role in low-energy physics.
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