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Abstract: We show that renormalization in quantum field theory is a special in-

stance of a general mathematical procedure of multiplicative extraction of finite val-

ues based on the Riemann–Hilbert problem. Given a loop γ(z), |z| = 1 of elements
of a complex Lie group G the general procedure is given by evaluation of γ+(z)

at z = 0 after performing the Birkhoff decomposition γ(z) = γ−(z)−1γ+(z) where
γ±(z) ∈ G are loops holomorphic in the inner and outer domains of the Riemann

sphere (with γ−(∞) = 1). We show that, using dimensional regularization, the bare
data in quantum field theory delivers a loop (where z is now the deviation from 4 of

the complex dimension) of elements of the decorated Butcher group (obtained using

the Milnor-Moore theorem from the Kreimer Hopf algebra of renormalization) and

that the above general procedure delivers the renormalized physical theory in the

minimal substraction scheme.
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1. Introduction

It has become increasingly clear in [1, 2, 3] that the nitty-gritty of the perturbative

expansion in quantum field theory is hiding a beautiful underlying algebraic structure

which does not meet the eye at first sight.

As is well known most of the terms in the perturbative expansion are given by

divergent integrals which require renormalization. In [1] the renormalization tech-

nique was shown to give rise to a Hopf algebra whose antipode S delivers the same

terms as those involved in the subtraction procedure before the renormalization map

R is applied. In [2] the group G associated to this Hopf algebra by the Milnor–Moore

theorem was computed by exhibiting a basis and computing Lie brackets for its Lie

algebra.1 It was shown that the collection of all bare amplitudes indexed by Feyn-

man diagrams in dimensionally regularized perturbative quantum field theory is just

a point φ in the group GK , where K = C[z
−1, [z]] is the field of Laurent series.

Though this made it clear that the Hopf algebra and its antipode are providing

the correct framework to understand renormalization, some of the mystery was still

around because of the somewhat ad hoc manner, in which the antipode S had to

be twisted by the renormalization map R in order to fully account for the physical

computations.

The twisted antipode SR is defined recursively [1, 3] by

SR(X) = −R[φ(X) + SR(X ′)φ(X ′′)] , (1.1)

where we abbreviate the coproduct of X as ∆(X) = X ⊗ 1 + 1 ⊗ X + X ′ ⊗ X ′′,
omitting the summation sign for abbreviation always and assuming ē(X) = 0, where

ē is the counit.
1In the simplest instance this group was later identified in [4] as the Butcher group of numerical

analysis. For the general case we will use the terminology of decorated Butcher group.
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The introduction of the twisted antipode is imposed by the actual operations

performed in renormalization. Thanks to multiplicativity constraints (m.c.s),

R[XY ]−R[R[X]Y ]− R[XR[Y ]] +R[X]R[Y ] = 0 ,

SR was shown in [3] to cover all algebraic aspects of multiplicative renormalization,

SR(XY ) = SR(Y )SR(X), including scale transformations and changes of renormal-

ization schemes by operations in the group.

But except from an obvious analogy between the recursive definition of SR and

the usual recursive construction of the antipode S the conceptual understanding of

the twisted antipode was obviously missing.

We shall unveil the conceptual nature of SR thanks to the Riemann–Hilbert

problem [5] for the group G.

This problem which together with the inverse scattering method has been a very

successful tool to solve soliton equations, can be formulated as follows: For a given

analytic curve C ⊂ CP1 and a map γ from C to a complex Lie group G, find the

decomposition

γ(z) = γ−(z)−1γ+(z) , (1.2)

of γ as a pointwise product where γ+(z) (resp. γ−(z)) is the boundary value of an
holomorphic map from the inner (resp. outer) domain of C to the group G and γ− is
normalized by γ−(∞) = 1. This decomposition is called the Birkhoff decomposition.
What we shall show is that the renormalized theory is obtained from the bare

theory through the Riemann–Hilbert problem for the group G as follows.

As we have seen above, given a quantum field theory, the collection of all bare

amplitudes indexed by Feynman diagrams in dimensionally regularized perturbative

quantum field theory is just a point φ in the group GK , where K = C[z
−1, [z]] is the

field of Laurent series.

In fact, looking more closely, this bare data is encapsulated as a loop γ(z) of

elements in the group G, where z is the complex deviation from dimension four and

lies in a small circle C around the origin.

The renormalized theory is just the evaluation at D = 4 of the holomorphic piece

γ+ in the Birkhoff decomposition of the loop γ as a product of two holomorphic maps

γ± from the respective connected components C± of the complement of the circle C
in the Riemann sphere CP1.

Thus, the nuance between naive subtraction of pole parts and renormalization

by local counterterms is the same as passing from the additive Hilbert transform to

the multiplicative Riemann–Hilbert problem.

This allows us to complete our understanding of the conceptual nature of renor-

malization and to assert that, contrary to its reputation, the subtraction procedure

as applied by practitioners of QFT successfully over many decades is now backed by

its conceptual significance.

2



J
H
E
P
0
9
(
1
9
9
9
)
0
2
4

2. The twisted antipode and the Birkhoff decomposition

Let H be a positively graded2 Hopf algebra over C which is commutative as an

algebra. Let G be the group of characters of the algebra H , endowed with the group

operation φ1 ? φ2 given by the formula

φ1 ? φ2(X) = φ1 ⊗ φ2(∆(X)) ∀X ∈ H , (2.1)

where ∆ is the coproduct.

We shall show in this section that the Riemann-Hilbert problem for G yields

exactly the defining equation for the twisted antipode SR.

We let R be the ring of Laurent polynomials3 and R : R → R be the linear
projection on the subalgebra R− generated by z−1 parallel to the subalgebra R+
generated by 1, z.

Let us first recall for clarity
Homomorphisms Loops from C to G

from H →R
φ(H̃) ⊂ R− γ extends to a holomorphic map

from C− → G with γ(∞) = 1.
φ(H̃) ⊂ R+ γ extends to a holomorphic map

from C+ → G.
φ = φ1 ? φ2 γ(z) = γ1(z)γ2(z), ∀z ∈ C.
φ ◦ S z → γ(z)−1.

Table 1: The dictionary between homomorphisms

and loops to G.

the standard dictionary between

the language of homomorphisms

from H → R (resp. to R±) and
the language of loops with values

in G and domain the inner and

outer components C± of the com-
plement of the unit circle C. We

let H̃ be the augmentation ideal

of H , i.e. the kernel of the counit.

The dictionary is then in table 1

For elements X ∈ H̃ we shall use as above the short-hand notation
∆(X) = X ⊗ 1 + 1⊗X +X ′ ⊗X ′′ , (2.2)

where we omit the summation and the components X ′ and X ′′ are of degree strictly
less than that of X for X ∈ Hn, n > 0.
Theorem 1 Let φ be an homomorphism from H → R. The φ−-component of the
Birkhoff decomposition φ = φ−1− ?φ+ of the corresponding loop is characterized as the

unique solution of the following equation

φ−(X) = −R[φ(X) + φ−(X ′)φ(X ′′)] , ∀X ∈ H̃ . (2.3)

The main point of this theorem, of course, is that this equation is identical to

the defining equation for the twisted antipode SR.

Proof: By uniqueness of the solution of the Riemann–Hilbert problem it is enough

to exhibit one solution. Let us define φ− by φ− = ē (where ē is the counit of H)
2We assume that the subspace Hn of elements of degree n is finite dimensional for each n and

that H0 is reduced to scalars.
3The discussion also applies to the ring of meromorphic functions in C+ whose only singularity

in C+ is a pole of finite order at 0.
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on elements of H of degree zero and then by induction, using the above equation.

The first thing to check which is not obvious is that this definition actually yields

a homomorphism. This follows from [3] using the multiplicativity property of the

map R

R[xy]− R[R[x]y]− R[xR[y]] +R[x]R[y] = 0 . (2.4)

For the sake of completeness we briefly recall the main ingredients of the proof.

It suffices to prove the assertion for homogeneous elements X, Y of non-zero degree.

This is done by induction on the sum of the respective degrees. Writing the recursive

definition for both φ−(X) and φ−(Y ), and taking the product yields, using (2.4) a
sum of terms which one has to equate with the terms coming from the recursive

definition applied to XY . One has

∆(XY ) = XY ⊗ 1 + 1⊗XY +X ⊗ Y + Y ⊗X +X ′Y ⊗X ′′ +X ′ ⊗X ′′Y +
+ XY ′ ⊗ Y ′′ + Y ′ ⊗XY ′′ +X ′Y ′ ⊗X ′′Y ′′ .

Using the induction hypothesis, i.e. the multiplicativity of φ− together with the
defining equation of φ− one easily reorganizes the above nine terms, using (2.3), to
get the desired result.

Now that we know that φ− is a homomorphism we just need to check that
φ−(H̃) ⊂ R− which is obvious by construction sinceR− is the range of the projection
R, and that the product φ− ?φ lands in R+. But R+ is the kernel of R and it suffices
to check that the composition R[φ− ? φ] vanishes. But this follows directly from the
defining equation using R[φ−] = φ−. �

3. Multiplicative renormalization

Let us go back to the twisted antipode SR. First of all, SR should be viewed as a

homomorphism from the Hopf algebra H to the ring of meromorphic functions in

C+ whose only singularity in C+ is a pole of finite order at 0. Its recursive definition

starts with the given homomorphism φ from H to K and modifies it by induction

using the above formula

SR(X) = −R[φ(X) + SR(X ′)φ(X ′′)] , (3.1)

while SR(e) = 1.

Theorem 2 The transition from the bare Green function φ(X) to the MS-renormal-

ized Green function ψ(X) = [SR ? φ(X)] is the multiplicative projection of the bare

Green function φ to the holomorphic part φ+ followed by evaluation at the origin.
4

4This result is applicable as long as the theory under consideration allows for local counterterms,

which includes renormalizable theories but also effective theories.
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The proof of this theorem relies on the results of [1, 2, 3], on theorem 1 and on

the detailed discussion of dimensional regularization in the next section.

The relation between different renormalization schemes explained in [3] also ex-

plains the finiteness of Green functions when we vary dimensionful parameters. It is

common practice to maintain dimensionless coupling constants in dimensional regu-

larization by introducing a dimensionful parameter [µ2]z into the integral measure,

as in the example exhibited in the next section. The Birkhoff decomposition is done

at q2 = µ2, say. At other q2, one imposes on Feynman graphs Γ with deg(Γ) = n

loops a homomorphism ρ(Γ) = [µ2/q2]z deg(Γ) which is in accordance with the m.c.s.

It is important to stress that in the above multiplicative renormalization proce-

dure the precise location of the curve C is not crucial since one can move it freely

by a homotopy in the complement of the singularities of the initial loop γ.

We shall end the paper with a few comments on the known crucial features of

dimensional regularization which enabled us to obtain this result.

4. Dimensional regularization

Dimensional regularization (Dim. Reg.) can be characterized by the three following

properties: it naturally involves CP1, it projects to logarithmic divergences and it

raises internal propagators to complex powers.

It promotes the dimension four of spacetime consistently to an analytic continua-

tion to D = 4−2z, z ∈ C, so that the complex parameter z serves as a regularization
parameter. It is not necessary to exhibit the technical details of this analytic contin-

uation, we rather comment on its most useful properties mentioned above.

All the above three properties distinguish it from regularization prescriptions

which use a dimensionful regularization parameter, like in a cut-off or Pauli-Villars

scheme, where

• a dimensionful parameter λ parametrizes the divergences by a finite series in
λ and log λ, and the convergent part as a series in 1/λ, spoiling any attempt

towards using λ in a holomorphic decomposition of the finite and divergent

part;

• it involves no projection onto logarithmic divergences at the level of the regu-
larization;

• integration of subgraphs evaluates to logarithms of internal propagators instead
of complex powers.

The practical advantages of Dim. Reg. in this respect are so severe5 that even a

prescription like on-shell BPHZ, fully avoiding regularization at all, cannot compete
5See [7] for a typical example of a calculation which would have been barely possible without

Dim. Reg. and the multiplicativity properties of counterterms.
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with Dim. Reg. in practical calculations. We now see that this is underwritten from

a conceptual viewpoint: it is actually the presence of complex domains provided by

z = (4 − D)/2 ∈ C in Dim. Reg. which allows to promote renormalization to a
concept.

Let us for the sake of the reader exhibit these features in some detail using simple

examples. Let us consider the basic integral in dimensionally regularized euclidean

space ∫
dDk

[µ2]−z
1

k2 +m2
= −m2

∫
dDk

[µ2]−z
1

k2(k2 +m2)
+

∫
dDk

[µ2]−z
1

k2
.

In Dim. Reg., the last expression on the rhs is zero thanks to analytic continuation,

which gives [6], as one of Dim. Reg.’s defining properties,

∫
dDk

[µ2]−z
[k2]a = 0 ,

for all a ∈ C. The first expression on the rhs of (4) evaluates to −m2[m2/µ2]−z
π2−zΓ(−1 + z), with the Γ(−1 + z)-function delivering the expected pole term near
z = 0.

Evaluating the same quadratic divergent integrand by a standard integral in four

dimension, multiplying the integrand with a cut-off function Θ[λ −√(k2)], we find
the result −m2π2[log λ2/m2+log(1+m2/λ2)]+π2λ2, where λ→∞ is now the limit
of interest.

What can we learn from this basic example? First of all, we use it to exhibit

what we mean when we say that Dim. Reg. naturally involves CP1. Clearly, the bare

result in Dim. Reg. is a series which has a pole in z of finite order (first order in the

example) and is an infinite Taylor series in z. We hence can formulate the quest for

the Birkhoff decomposition in the framework used above.

Further, the result
∫
dDk
[µ2]−z [k

2]a = 0 immediately ensures that one only confronts

logarithmic divergent integrals, with suitable dimensionful coefficients (−m2 in our
example) maintaining the correctness of powercounting. This has far reaching con-

sequences: it allows to add zero in a suitable manner to each Feynman integrand

to dispense with all appearances of overlapping divergences, as exemplified by the

following instructive example:

∫
dDk

[µ2]−z
dDl

[µ2]−z
1

(k2 +m2)(k + l)2l2
=

∫
dDk

[µ2]−z
dDl

[µ2]−z

[ −m2
(k2 +m2)k2(k + l)2l2

]
,

where the l.h.s. and r.h.s. are equal using an addition of

0 = −
∫ ∫

dDk

[µ2]−z
dDl

[µ2]−z
1

k2(k + l)2l2
.

In a regularization using a dimensionful parameter, such a simplification would not

appear until one uses the Hopf algebra structure to realize that terms which do not
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depend on dimensionful parameters drop out at the end of the calculation in ratios of

the form SR ?φ. Hence, in Dim. Reg. we already obtain at the level of bare diagrams

a decomposition of amplitudes into functions representing rooted trees, hence the

desired representation in terms of elements of the decorated Butcher group GK .
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