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1. Introduction

Brane constructions in string theory provide powerful tools for analyzing field theories

in diverse dimensions and with varying amounts of supersymmetry [1, 2]. For a review

and references see [3]. More recently the Maldacena conjecture [4, 5, 6] added a new

relation between the large N limit of conformal field theories on branes and the near

horizon geometry of the corresponding black brane solutions. The original conjecture

was stated for N = 4 SYM realized on N 3-branes, but subsequently more general
examples were discovered. One class of such examples are orbifolds of the N = 4
configuration [7, 8] and another includes theories on 3-branes in nontrivial F-theory

backgrounds [9, 10, 11]. All of these constructions give rise to conformal theories

with varying amounts of supersymmetry. A third class of theories arises on 3-branes

at a conifold singularity [12, 13, 14, 15, 16]. These N = 1 theories are not conformal
at all scales, but flow to a line of conformal fixed points in the infrared. For all these

theories the correspondence between the large N field theory and supergravity was

studied in some detail. For branes on a conifold it turned out to be useful to have a

type IIA description which is related to the IIB configuration via T-duality [13].
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In this paper, we study a superconformal N = 1 Sp(N) × Sp(N) gauge theory
with matter in the fundamental, bifundamental, and antisymmetric representations.

We also discuss a specific deformation which preserves N = 1 SUSY but breaks
conformal invariance. The resulting theory has a running gauge coupling and flows

to a line of superconformal fixed points in the infrared. For both of these theories

we give a IIA brane construction as well as a IIB orientifold construction. The latter

description allows us to obtain the supergravity solution that is dual to the large

N limit of the conformal field theory. The type IIA description, on the other hand,

provides a simple way to determine the gauge group, the matter content, and the

superpotential of the theories in question.

In most N = 1 theories discussed in the AdS/CFT literature (see, e.g., [7, 12])
the R-current which is the superpartner of the stress-energy tensor can be fixed

uniquely by field theory considerations. For the theories we discuss here this is not

the case. There is a one parameter family of candidate R-currents, both in the theory

with vanishing beta function, and in its deformation which flows to a line of fixed

points. Since the R-charges of the fields are not uniquely determined, there is no field

theory prediction for the dimensions of the chiral primary operators. On the other

hand, once we have a supergravity dual of the large N field theory, we know which

gauge boson on AdS is the superpartner of the graviton. If we are able to match

field theory operators with supergravity states, we can determine the R-charges of

all fields and therefore the dimensions of all chiral primary operators.

Although there is no firm field-theoretical prediction for the dimensions of fields

in the infrared, for the theory with vanishing beta function the most natural assump-

tion is that all fields have canonical dimensions, i.e., that the theory is finite. This

will be born out by the supergravity analysis. In the other case, the theory with a

running coupling constant, the correct charge assignment in the infrared is harder

to guess. Unfortunately the supergravity analysis in this case is on a considerably

less solid footing and depends on circumstantial evidence. Nonetheless our analysis

suggests a definite R-charge assignment. It would be interesting to find a field theory

explanation for it.

The type IIA construction involves D4-branes compactified on a circle as well as

NS5-branes, D6-branes, and O6-planes. The gauge theory lives on the D4-branes.

Our construction is very similar to the brane configurations that give rise to elliptic

N = 2 models [2, 17, 18, 11]. One advantage of the IIA description is that the moduli
space of the gauge theory is realized geometrically. The flat directions correspond to

motions of the 4-branes. Similarly, relevant perturbations of the field theory, such as

masses for the matter fields, are also realized geometrically as motions of the 6-branes.

This allows us to identify a 6-brane configuration that gives rise to a superconformal

N = 1 theory on the 4-branes with an exactly marginal parameter. We can also
identify relevant perturbations of the superconformal 4-brane theory that lead to

theories with running coupling constants. There is one particular perturbation that

2
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gives rise to a theory that flows to a line of conformal fixed points in the infrared.

The moduli space of the perturbed theory has a Coulomb branch. A generic N = 1
theory with a Coulomb branch has a low energy effective gauge coupling that varies

over the moduli space. The theory we are considering in this paper has the special

feature that the low-energy effective gauge coupling does not depend on the moduli.

This will be relevant when we discuss the supergravity description of these theories.

In order to construct the supergravity duals we T-dualize the IIA configuration

along the compact direction. This operation turns the D6-branes and the O6-planes

into D7-branes and O7-planes. The D4-branes turn into D3-branes probing this

background. Similar probe theories were studied in [19, 20, 21, 22], and their relation

to supergravity is described in [9, 10, 11]. Our IIA configuration turns out to be T-

dual to 3-branes probing a local piece of an F-theory compactification [23, 24] which

is related to the Gimon-Polchinski model [25]. The simplest such configuration,

consisting of two intersecting O7-planes with four coincident 7-branes on top of

each, corresponds to the IIA construction of the superconformal 4-brane theory.

In the type IIB construction the Ramond-Ramond (RR) charges of the 7-branes are

cancelled locally by the charges of the orientifold planes, so the string coupling is

constant. Since the type IIB description is a perturbative orientifold, we can find

the supergravity dual of the large N limit of the field theory along the lines of

[9, 10]. Matching the spectrum of primary operators with the KK modes allows us

to determine the U(1)R charges of all fields in the conformal theory unambiguously.

The matching of non-chiral primaries exhibits a new interesting feature: We find

a short supergravity multiplet whose field theory counterpart becomes short only

when N → ∞. We interpret this as the evidence that at higher orders in 1/N
supersymmetry mixes one-particle and two-particle supergravity states.

It should also be possible to find a supergravity description of the infrared limit

of the deformed theory. Although this theory is not conformal, it has a constant low-

energy effective coupling along the Coulomb branch, so the supergravity dual will

have a constant dilaton. To find this dual we need to study the deformations of the

backgrounds in IIA and IIB and find an explicit map between them. As mentioned

before, this is straightforward on the IIA side, since the deformations correspond to

motions of the 6-branes. On the IIB side the situation is more involved. We can

analyze the deformations on the IIB side by studying the theory on the 7-branes.

The eight-dimensional theory on the 7-branes has six-dimensional matter localized

at the intersection of orthogonal 7-branes. We analyze the moduli space of this

impurity theory following [26], and find an explicit map between the type IIB and

type IIA deformations. Among supersymmetric type IIB deformations there is one

that maps to a new IIA brane configuration which involves curving D6-branes in

the background of an NS5-brane. The map between deformations also allows us

to identify the IIB configuration that gives rise to the non-conformal probe theory

with moduli-independent effective coupling. We do not have a complete supergravity

3
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description of this theory, but a partial description is possible. It supplies enough

information to determine the dimension of all chiral operators in the infrared if we

use field theory considerations as well.

In section 2, we discuss the type IIA construction of the probe theory and list

some field theory results that we need in subsequent sections. Section 3 contains the

T-duality, the analysis of the 7-brane impurity theory, and the map between IIA and

IIB deformations. We also briefly discuss the exotic IIA deformation that appears as

the counterpart of an ordinary deformation in IIB. In section 4, we analyze the large

N limit of our field theories and their supergravity duals. We discuss the matching

of operators with Kaluza-Klein modes in the conformal case and present a partial

analysis in the non-conformal case.

2. The IIA construction of the field theory

2.1 The IIA brane configuration

A configuration consisting of D4-branes extending in 01236, D6-branes and O6-

planes extending in 0123789, and NS5-branes extending in 012389 preserves four

supercharges. We obtain an N = 1 supersymmetric field theory in four dimensions
after compactifying X6 on a circle with circumference 2πR6. Specifically we consider

configurations with N D4-branes wrapping the compact X6 direction. We put two

O6−-planes at X6 = 0, πR6 and an NS5-brane and its image at X6 = R6π/2, 3R6π/2.
In order to cancel the total RR charge, we place four physical D6-branes on the circle.

An example of such a configuration is shown in figure 1.

These brane configurations are very similar to the configurations that give rise

to finite N = 2 theories in four dimensions [17, 18, 11]. In fact, the configuration we
study here can be obtained from one of the N = 2 configurations in [17] by rotating
the NS5-branes from the 45 directions into the 89 directions. This breaks half of the

supersymmetries, giving an N = 1 theory in d = 4.

7

6

Figure 1: Brane configuration: The vertical dashed lines are the O6-planes, the solid

lines are the D6-branes, the horizontal line are the D4-branes, and the point represents the

NS5-brane. Only half of the X6 circle is shown.
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Using standard techniques [3], we can determine the matter content and the

superpotential of the field theory on the 4-branes. Unlike the N = 2 case, the X6
position of the D6-branes will play an important role in our analysis. We need to

distinguish two cases that are of interest for the analysis in this paper. Either all

6-branes intersect the NS5-brane, or the four 6-branes are split into two groups of

two to the left and right of the NS5-brane (as shown in figure 1). These two choices

give rise to physically inequivalent theories. The former configuration yields a line

of fixed points (parametrized by the dilaton expectation value) that passes through

zero coupling, while the latter corresponds to a non-conformal gauge theory which

flows to a line of strongly coupled fixed points.

2.2 The conformal case: a field theory analysis

The theory on the 4-branes turns out to be an Sp(2N)1 × Sp(2N)2 gauge theory
with matter fields Ai, i = 1, 2 in the antisymmetric representation of each of the

gauge groups, two bifundamentals Q, Q̃, and fundamentals from the 4-6 strings.
The brane configuration, and consequently the field theory, admit a symmetry which

exchanges the two Sp factors. To determine the number and flavor representations of

the fundamentals we need to understand the classical gauge theory on the 6-branes.

Note that the worldvolume of the NS5-brane lies within the worldvolume of the D6-

branes. It was argued in [27] that the 6-branes can break on the NS5-brane (see also

[28]). The gauge group on the four 6-branes turns out to be U(4)u × U(4)d, where
the two U(4) factors act on the upper and lower halfs of the 6-branes respectively.

One-loop effects break the U(4)u × U(4)d symmetry to SU(4)u × SU(4)d [29]. The
matter content of the 6-brane theory includes a bifundamental hypermultiplet from

strings connecting upper and lower halfs of the 6-branes. We will have more to say

about the 6-brane theory when we discuss the deformations of this background. For

our present purposes we only need to know that the gauge group of the 6-brane

theory is the flavor group of the probe theory.

The matter content and the superpotential for a 4-brane probe in this back-

ground were worked out in [27]. The fundamentals transform as q = (2, 1, 4, 1),

q̃ = (2, 1, 1, 4), p = (1,2, 4̄, 1), and p̃ = (1,2, 1, 4̄) under Sp(2N)1 × Sp(2N)2 ×
SU(4)u × SU(4)d. The superpotential reads

W = h1Q̃A1J1Q− h1QA2J2Q̃+ h2qQp+ h2p̃Q̃q̃ . (2.1)

Here J1 (J2) is the invariant antisymmetric tensor of Sp(2N)1 (Sp(2N)2). Following

[30] it is easy to check that this theory has a line of fixed points passing through weak

coupling. The one-loop beta function vanishes and the symmetry between the gauge

factors implies that both antisymmetric tensors have the same anomalous dimension

γA, both bifundamentals have γQ and all fundamentals have γq. Therefore, the beta
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functions of the gauge coupling and the Yukawa couplings in the superpotential are

βg ∼ 2(N − 1)γA + 4NγQ + 8γq,
βh1 ∼ 2γQ + γA, βh2 ∼ γQ + 2γq . (2.2)

Setting all beta functions to zero gives two independent constraints on the three

coupling constants. The remaining coupling constant parametrizes a line of super-

conformal fixed points. Since setting all anomalous dimensions to zero satisfies the

constraints, this line passes through the free point g = h1 = h2 = 0. Note that requir-

ing the beta functions to vanish does not fix anomalous dimensions unambiguously.

The most natural assumption is that the dimensions of the fields are unchanged as

one moves along the fixed line. This would mean that the theory is finite. The su-

pergravity computation in the last section supports this conjecture by showing that

this is true in the large N limit.

The moduli space of this theory includes subspaces where it flows to theories

with more supersymmetry. For example, giving an expectation value to either Q
or Q̃ proportional to a unit matrix gives a mass to half of the fundamentals and
breaks the gauge group to the diagonal Sp(2N)D. It is a simple matter to show

that the resulting theory flows to an N = 2 superconformal theory with gauge

group Sp(2N), one antisymmetric hypermultiplet, and four hypermultiplets in the

fundamental. Giving such expectation values to both Q and Q̃ makes all flavors
massive and breaks the gauge group to SU(N). Part of the bifundamentals are eaten

by gauge bosons, and the rest give rise to three chiral superfields in the adjoint of

SU(N). This theory flows to N = 4 SYM in the infrared.
These field theory results are reproduced in the brane construction if we identify

the positions of the D4-branes with the field theory moduli in the following way:

X7 ∼ QQ† − Q̃†Q̃ ,
X4 + iX5 ∼ QQ̃ . (2.3)

Giving an expectation value to either of the bifundamentals while keeping the other

expectation value zero corresponds to moving the 4-branes in the positive or negative

X7 direction. Turning on both bifundamentals corresponds to moving the 4-branes in

the X4 and X5 directions as well as X7. The effect of these motions on the 4-brane

theory agrees with the field theory expectations. If we move the 4-branes off the

NS5-branes in the X7 direction, we can ignore the NS5-brane. The remaining branes

preserve eight supercharges, and standard techniques [3] confirm the matter content

and gauge group stated above for the N = 2 case. Moving the 4-branes in X4 and
X5 amounts to separating them from all other branes. The theory on the 4-branes

is then N = 4 SYM as expected.

6
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2.3 The non-conformal case

We can deform the background for the 4-brane theory by moving the 6-branes in the

X6 and X4,5 directions. These brane motions are parametrized by expectation values

of the two complex scalars,M,M̃ in the bifundamental hypermultiplet of the (1, 0)

theory on the intersection of the 6-branes and the NS5-branes [27]. More precisely,

we relate the positions of the 6-branes toM,M̃ as follows

X6 ∼MM† − M̃†M̃ ,

X4 + iX5 ∼MM̃ . (2.4)

To obtain the configuration shown in figure 1 we have to setM = diag(m1, m2, 0, 0)
and M̃ = diag(0, 0, m̃3, m̃4). These bifundamental expectation values act as mass

terms in the 4-brane theory. The corresponding terms in the field theory superpo-

tential are

W = M̃qq̃ +Mpp̃ . (2.5)

We will be particularly interested in the case m1 = m2 = m̃3 = m̃4. In this case the

bifundamental expectation values break the SU(4)u × SU(4)d 6-brane gauge group
to SU(2)1 × SU(2)2 × U(1). After integrating out the massive components of the
fundamentals, the superpotential of the 4-brane theory reads

W = h1Q̃A1J1Q− h1QA2J2Q̃+ h3qQQ̃q̃ + h3p̃Q̃Qp . (2.6)

The fundamentals now transform as q = (2, 1, 2, 1), q̃ = (2, 1, 2, 1), p = (1,2, 1, 2),

and p̃ = (1,2, 1, 2) under Sp(2N)1 × Sp(2N)2 × SU(2)1 × SU(2)2. Actually, the
superpotential, eq. (2.6), has an accidental SO(4)1 × SO(4)2 global symmetry under
which q and q̃ transform as a (4, 1) while p and p̃ transform as (1, 4).

An analysis along the lines of [30] shows that this theory also has a line of

superconformal fixed points. The beta functions are given by

βg ∼ 4 + 2(N − 1)γA + 4NγQ + 4γq ,
βh1 ∼ 2γQ + γA, βh3 ∼ 1 +

1

2
γQ + γq . (2.7)

Demanding that the beta functions vanish, we again find that two out of the three

constraints are independent, leaving us with a line of fixed points. In this case,

however, the line does not pass through weak coupling, since at least one of the

anomalous dimensions must be nonzero. Again the vanishing of the beta functions

alone does not determine the values of anomalous dimensions. In the last section we

will argue that supergravity considerations allow us to fix this ambiguity for large N

and find γA = γQ = 0, γq = −1.
As in the conformal case we can analyze the RG flows both in field theory and

using the brane picture. From the brane construction it is clear that we flow to
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the same N = 2 theory as in the conformal case if we move the 4-branes off the
NS5-brane in the positive or negative X7 direction. Moving the 4-branes in X4,5
again yields N = 4 SYM. The analysis in the field theory is a little more involved
in this case because the one-loop beta function does not vanish. This implies that

there will be threshold effects in the matching of the running gauge coupling. On

general grounds one would expect the low-energy effective coupling to depend on the

size of the bifundamental expectation values in the field theory. However, if we give

arbitrary (nonzero) expectation values to Q and Q̃, fields get integrated out at a
variety of scales. Assuming that the expectation value of Q is larger than that of Q̃,
the Sp(2N)× Sp(2N) gauge group is broken to the diagonal group at a scale set by
Q. The diagonal Sp(2N)D is broken to SU(N) at a scale set by Q̃, and finally the
fundamentals are integrated out at scale h3QQ̃. Matching the gauge couplings at
each of these scales we find that the low-energy effective coupling does not depend

on the bifundamental expectation values. This is a special feature of this theory that

will be important later on.

3. The type IIB description

3.1 T-duality

In this section, we describe the IIB configuration which is obtained by T-dualizing

the IIA brane configuration of section II along X6. Since ∂/∂X6 is not a Killing

vector, performing this T-duality is not completely trivial. Similar T-dualities on IIA

configurations that preserve N = 2 supersymmetry on the 4-branes have appeared
in the literature [11, 18]. In the N = 2 case the T-duality maps the two O6−-planes
and the four D6-branes to an orientifold 7-plane and four D7-branes. The D4-branes

become D3-branes probing this background. The NS5-brane and its mirror image

turn into a Z2 orbifold acting on the 7-brane coordinates transverse to the D3-brane.

The T-dual of the IIA configuration without NS5-branes was analyzed in [19, 22].

Our configuration differs from the N = 2 case by the orientation of the NS5-
branes. Since this modifies the T-duality considerably we discuss it in some detail

here.

Our first goal is to T-dualize the NS5-branes and the pair of O6−-planes. The
other branes can be added later. We begin by separating the NS5-brane and its

image in the X4,5 directions. The T-dual of the two NS5-branes is a two-center

Taub-NUT space. Recall that the two-center Taub-NUT space can be thought of as

a circle fibered over R3 so that its radius vanishes at two points on R3 (the centers).

In the present case R3 is parametrized by X4, X5, X7, while the coordinate along the

circle is T-dual to X6. The positions of the centers correspond to the positions of the

NS5-branes in X4, X5, X7. In the IIA configuration the orientifold projection ensures

that position of the physical NS5-brane and its image are related by a reflection of

8
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the X4,5 coordinates. The T-dual orientifold projection should therefore impose a

similar constraint on the location of the centers of the Taub-NUT. The Taub-NUT

metric has the following form

ds2 =

(
4

b2
+
1

R+
+
1

R−

)−1 [
dσ +

(
Z+

R+
+
Z−
R−

)
d arctan

(
Y

X

)]2
+

+

(
4

b2
+
1

R+
+
1

R−

)[
dX2 + dY 2 + dZ2

]
, (3.1)

where

Z± = Z ± Z0, R2± = X
2 + Y 2 + Z2±. (3.2)

The R3 base is parametrized by X, Y, Z, the two centers are located at (0, 0,±Z0),
and σ is the 4π-periodic coordinate on the circle fiber. The parameter b is the

asymptotic radius of the fiber. The reflection of X4,5 in the IIA picture map into

reflections of Z and one other coordinate of R3, say Y .

We will be interested in the limit when the asymptotic radius of the circle fiber,

b, becomes infinitely large, while the T-dual circle parametrized by X6 shrinks to

zero. In this limit the two-center Taub-NUT space becomes an A1 ALE space, also

known as Eguchi-Hanson space. It is useful to change coordinates [31] to transform

the metric above into the Eguchi-Hanson form:

X =
1

8

√
r4 − a4 sin(θ) cos(ψ) , Z =

1

8
r2 cos(θ) ,

Y =
1

8

√
r4 − a4 sin(θ) sin(ψ) , σ = 2φ , (3.3)

where a2 = 8Z0 and ψ has period 2π. The orientifold-induced projection (Y, Z) ∼
(−Y,−Z), implies the identification (θ, ψ) ∼ (π−θ,−ψ) for the angular coordinates.
The fixed locus of this identification is a two-dimensional submanifold of the Eguchi-

Hanson space which has the topology of a cylinder. Next we want to bring the

NS5-brane and its image back to the origin of the X4,5 plane in the IIA description,

which corresponds to setting a = 0. For a = 0 the Eguchi-Hanson metric becomes

an orbifold metric on C2/Z2. To make this explicit we can introduce two complex

coordinates

z1,2 = r exp

(
iφ

2

)(
cos

(
θ

2

)
exp

(
iψ

2

)
± i sin

(
θ

2

)
exp

(
−iψ
2

))
. (3.4)

In these coordinates the a = 0 Eguchi-Hanson metric becomes flat. The identi-

fication ψ → ψ + 2π requires that we identify (z1, z2) → (−z1,−z2) as expected
for C2/Z2. The additional orientifold identification acts on the new coordinates as

(z1, z2)→ (z1,−z2), and acting with both orientifold and orbifold identifications flips
the sign of z1. The orientifold projections have two fixed planes, z1,2 = 0, which we

identify with two O7−-planes. To summarize, the NS5-brane together with two O6−-
planes become, under T-duality, a pair of intersecting O7−-planes with six common
directions.
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Now let us put in D-branes. The four physical D6-branes in IIA are located at

X4 = X5 = 0. Under T-duality they become D7-branes wrapping the circle fiber of

the Taub-NUT and located at Y = Z = 0. In other words, they are wrapped on

the invariant cylinder of the orientifold projection. Taking the limit b → ∞, a → 0
we find that the invariant cylinder develops a neck and becomes a pair of planes

z1 = 0 and z2 = 0 in C
2/Z2. Thus the four physical D7-branes must be located on

these planes. Recall that these planes are the O7−-planes and therefore have 7-brane
charge −4. It follows that the 7-brane charge is cancelled between the D7-branes and
the orientifold planes, and the IIB dilaton is constant. Finally, T-duality turns the

D4-branes into D3-branes extending in 0123. To summarize, the T-dual of the IIA

configuration in the limit when the radius of X6 goes to zero consists of an O7
−-plane

with four coincident D7-branes in 01236789, another O7−-plane with four coincident
D7-branes in 01234589 and 3-branes in 0123. We will refer to the 7-branes extending

in 01234589 as 7′-branes. The orientifold group for this configuration is

G =
{
1, (−1)FLR45Ω, (−1)FLR67Ω, R4567

}
, (3.5)

where R reflects the coordinates indicated and Ω is the worldsheet parity.

The splitting of the D6-branes into half-D6-branes discussed in [27] becomes

obvious after T-duality. Indeed, it follows easily from the above formulas that the

location of the upper half 6-branes, X4 = X5 = 0, X7 > 0 in the type IIA config-

uration maps to the locus z2 = 0 in IIB. Similarly, the lower halfs of the 6-branes,

X4 = X5 = 0, X7 < 0, map to z1 = 0. Thus the upper halfs of D6-branes map to

whole D7-branes located at z2 = 0, while the lower halfs map to whole D7-branes at

z1 = 0.

To specify the theory on the 7-branes completely we need to make a consistent

choice for the action of the orientifolds on the Chan-Paton factors of the 7-7, 7-7′, and
7′-7′ strings. There are at least two such choices. One gives rise to an SO(8)×SO(8)
gauge symmetry [32], and classically the other yields a U(4) × U(4) gauge group
on the 7-branes [23, 24], which is broken to SU(4)× SU(4) by one-loop effects [29].
The second case is related to the Gimon-Polchinski [25] orientifold via T-duality.

We will be mainly interested in the second orientifold, which we will refer to as the

Sen model. Both of these orientifolds were constructed as compact models with a

total of four orientifolds and sixteen physical 7-branes of each kind. The 7-brane

gauge groups listed here are the parts of the total 7-brane group that are visible to

a 3-brane probe near one of the intersections.

The theory on a 3-brane probe in the Sen model background was analyzed in [22].

The gauge group, matter content, and the superpotential are in complete agreement

with the theory we discussed in section 2.2. Thus we conclude that the IIA configu-

ration with all 6-branes on top of the NS5-brane is T-dual to a local piece of the Sen

model [23, 24]. As in the IIA description the flat directions of the field theory corre-

spond to motions of the 3-branes in the 7-brane background. Moving the 3-branes
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off the intersection point along either of the O7-planes corresponds to giving en ex-

pectation value to one of the bifundamentals Q, Q̃, and moving the 3-branes off both
orientifolds gives an expectation value to both Q and Q̃. Separating the 3-branes
in the direction which the 7- and 7′-branes share corresponds to giving expectation
values to the antisymmetric tensors A1, A2.

It is instructive to study the deformations of the Sen model and compare these

to the deformations of the corresponding IIA construction. The IIA construction

has the advantage that all deformations of the background correspond to moving

the 6-branes or the NS5-branes. In the IIB picture only some of the deformations

are geometric, others correspond to Wilson lines. Once the map between IIA and

IIB deformations is established, we can also find the IIB description of the second

(non-conformal) IIA configuration discussed in section 2.3.

Sen [23, 24] has studied the deformations of the compact model in great detail. In

the compact case the field theory on the 7-branes turns out to be a (1, 0) theory in six

dimensions. Since our IIB configuration is non-compact, we cannot simply use Sen’s

results. In fact, in our case the theory on the 7-branes is not even six-dimensional, in-

stead it is an eight-dimensional theory with six-dimensional impurities. Such theories

have been discussed previously [26, 33].

Before we launch into an analysis of the impurity theory we need to discuss the

matter content of the 7-brane theory. A single O7−-plane with four coincident 7-
branes gives rise to an N = 1 SO(8) theory in eight dimensions. The bosonic degrees
of freedom in the eight-dimensional vector multiplet consist of a vector field and a

complex scalar, both in the adjoint of the gauge group. The second O7−-plane in our
configuration breaks half of the supersymmetries and imposes projections on fields

in the vector multiplet. With the projection matrices for the Sen model [25, 23], the

surviving constant modes of the fields are a vector and a complex scalar in the 6+ 6̄.

These fields account for the 7-7 strings and there are similar fields on the 7′-branes
from 7′-7′ strings. The 7-7′ strings are localized at the intersection of 7- and 7′-branes.
They yield a single hypermultiplet of the six-dimensional (1, 0) theory on the inter-

section, which transforms as a (4, 4) under the (classical) U(4)7×U(4)7′ gauge group.
3.2 The seven-brane impurity theory

In this section, we analyze the supersymmetric vacua of the impurity theory on

the 7-branes and compare them with the vacua of the T-dual IIA configuration.

We expect the vacuum field configurations to be translationally invariant in the six

directions common to the 7- and 7′-branes. Focusing now on the 7-branes, we see
that we can capture the physics by studying the dependence of the 7-brane fields on

the remaining two directions transverse to the 7′-branes. The 7′-branes and the O7′-
plane intersect this two-dimensional plane in a point. To set up the impurity theory

we use a complex affine coordinate z on the plane and define Az̄ = (1/2)(A1 + iA2),

where Ai are the two components of the SO(8) gauge field living on the 7-branes.

11
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The 7-brane theory also contains a complex scalar, Φ, in the adjoint of SO(8) that

describes the transverse fluctuations of the 7-branes. The bifundamental (M,M̃)
from the 7-7′ strings is localized at the point z = 0. A very similar theory (without
orientifold projections) was described in [26]. The moduli space of the impurity

theory is given by the solution of the equations

Fzz̄ −
[
Φ,Φ†

]
= δ(z)

(
MM† − M̃†M̃

)
, D̄Φ = −δ(z)MM̃ , (3.6)

where Fzz̄ = ∂Az̄ − ∂̄Az − [Az, Az̄] and D̄ = ∂̄ − Az̄. These equations are known

as Hitchin equations with sources. They are analogous to the D and F flatness

conditions in ordinary supersymmetric field theories. A similar set of equations

describes the impurity theory on the 7′-branes.
To make contact with the notation in [23, 24] we write all 7-brane fields as

antisymmetric 8 × 8 matrices with certain constraints on the entries. This reflects
the origin of the fields in the impurity theory. Without the O7′-plane, both Az̄ and
Φ would transform in the adjoint of SO(8). Orientifolding with O7′ puts additional
constraints on these fields

Φ(z) = PΦT (−z)P−1 , A(z) = PAT (−z)P−1 , (3.7)

where

P =

(
P4 0

0 −P4

)
, P4 =

(
0 12×2

−12×2 0

)
. (3.8)

Orientifolding also breaks the gauge group from SO(8) down to the group of all con-

tinuous SO(8)-valued functions satisfying g(z) = Pg(−z)P−1. In particular, at z = 0
the gauge group reduces to U(4). The orientifold projections allow the bifundamen-

tals to be arbitrary complex 8×8 matrices that commute with P [25]. The impurity
equations are consistent if the products of the bifundamentals on the right-hand side

of eq. (3.6) are antisymmetrized in the gauge indices.

We need to find all, possibly z-dependent, field configurations that satisfy the

impurity equations, eq. (3.6), modulo gauge transformations. To this end we make

the following ansatz

Az̄ =
T

z
, Φ(z) = Φ0 +

Φs
z
. (3.9)

Here T, Φ0, and Φs are constant antisymmetric 8 × 8 matrices. Imposing the con-
straints, eq. (3.7), determines that Φ0 transforms in the 6 + 6̄ of U(4) while T and

Φs transform as adjoints. The background gauge field, Az̄, can be interpreted as

a flat connection that gives rise to a Wilson line around the intersection point at

z = 0. The constant part of the scalar field, Φ0, corresponds to the asymptotic (i.e.,

z →∞) positions of the 7-branes in the directions transverse to the O7-plane, while
the singular part, Φs, parametrizes a deformation of the shape of the 7-branes.
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The moduli space of the impurity equations, eq. (3.6), has several branches with

rather different physics. The simplest situation arises if all bifundamental expectation

values and all singular parts of Az̄ and Φ vanish. In that case eq. (3.6) reduces to

the condition

[
Φ0,Φ

†
0

]
= 0 , (3.10)

which is solved by

Φ0 =

(
0 φ

−φ 0
)
, φ = diag(φ1, φ2, φ1, φ2) . (3.11)

As in ref. [23], the two complex parameters, φ1,2, parametrize the transverse position

of two pairs of 7-branes. We discuss the corresponding IIA deformation in the next

section. For the remainder of this section we set Φ0 = 0.

The impurity equations, eq. (3.6), become inhomogeneous once we turn on an

expectation value for the bifundamental fields. Since ∂̄(1/z) ∼ δ(z), and the right-

hand side of eq. (3.6) is proportional to δ(z), the singular fields above have the

right form to satisfy the impurity equations with nonzero bifundamental expectation

values.

The most generic expectation value of the bifundamentals for which the impurity

equations have solutions reads

M =
(
M1 0

0 M2

)
, (3.12)

M1 =



m1 0 −im1 0

0 m2 0 −im2
im1 0 m1 0

0 im2 0 m2


 , M2 =




m3 0 im3 0

0 m4 0 im4
−im3 0 m3 0

0 −im4 0 m4


 ,

and an expectation value of the same form, but with mi replaced by m̃i, for M̃. The
impurity equations determine the expectation values of the other fields in terms of

M and M̃. The residue of Φ is given by
Φs = diag(Φ1,Φ2) , (3.13)

where

Φ1 =



0 0 −φ1 0
0 0 0 −φ2
φ1 0 0 0

0 φ2 0 0


 , Φ2 = Φ1(φ1 → −φ3, φ2 → −φ4), (3.14)

with φi ∼ mi m̃i. The matrix T in the gauge connection has the same structure as

Φs, except that φi is replaced by ti ∼ |mi|2 − |m̃i|2.
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Before discussing this general solution, we will focus on two special cases. If

we set mi = m̃i, the right-hand side of the first impurity equation vanishes and

only the residue of Φ is turned on. This expectation value of the bifundamentals

breaks the U(4) × U(4) gauge group to a diagonal subgroup. If all mi are equal
this subgroup is U(4)D, and for generic values of mi we find U(1)

4. Since the 7-

brane group is broken to a diagonal subgroup, the impurity theory, eq. (3.6), on the

7-branes and the corresponding impurity theory on the 7′-branes contain the same
information. Therefore it is sufficient to consider only the 7-brane theory. The field

Φ(z) describes the shape of the 7-branes. For large z the 7-branes asymptote to the

O7-plane as in the unperturbed case, while they approach the O7′-plane for small
z. Thus we conclude that turning on this bifundamental expectation value deforms

pairs of intersecting 7- and 7′-branes into a single smooth 7-brane that interpolates
between the 7- and 7′-branes. This result agrees with the F-theory analysis in [24],
where this behavior was interpreted as fusing the 7- and 7′-branes together.
There are also solutions of the impurity equations with nonzero gauge connection

and Φs = 0. We find one such solution if we set m1 = m2 = m̃3 = m̃4, and all other

components of the bifundamentals vanish. For this choice the right-hand side of the

second equation in eq. (3.6) vanishes, which implies Φs = 0, and t1 = t2 ∼ |m1|2,
t3 = t4 ∼ −|m1|2. This bifundamental expectation value breaks the U(4)7×U(4)7′ 7-
brane gauge group to a diagonally embedded U(2)×U(2). Note that this deformation
is purely non-geometric. Since Φ(z) = 0, the 7-branes have the same shape as in the

case without any bifundamental expectation values.

It is now a simple matter to identify these two singular solutions with the cor-

responding deformations in the IIA construction. The first solution with T = 0,

Φs 6= 0 corresponds to moving the 6-branes off the NS5-brane in the X4,5 direction.
If none of the 6-branes coincide, the U(4) × U(4) gauge symmetry on the 6-branes
is broken to U(1)4. This is in complete agreement with the impurity analysis. Note

that a deformation that corresponds to fusing 7 and 7′-branes together in the IIB
description maps into a simple brane motion in the IIA construction, which involves

reconnecting the upper and lower halfs of the 6-branes.

The second singular solution with T 6= 0, Φs = 0 also corresponds to a simple
brane motion in the IIA description. We identify turning on m1 with the motion of

two pairs of 6-branes in the X6 direction. The classical gauge group on the 6-branes

is U(2) × U(2) as expected from the IIB analysis. This brane motion also requires
that we reconnect the upper and lower halfs of the 6-branes, so that the resulting

6-brane group is a diagonal subgroup of the original U(4) × U(4) gauge symmetry.
This is in perfect agreement with the analysis of the 7-brane impurity theory.

It is straightforward to discuss more general choices for the bifundamental ex-

pectation values. The bifundamental expectation values are parametrized by eight

complex numbers, mi and m̃i, which determine the matrices T and Φs completely.

The four parameters in T map into the X6 position of the 6-branes in the IIA descrip-
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tion and the entries in Φs correspond to the X4,5 positions. Thus we find complete

agreement between the brane motions in the IIA description and the moduli corre-

sponding to singular fields in the impurity theory.

3.3 A supersymmetric IIA configuration with curving six-branes

The deformations we discussed so far are rather

7

4,5

Figure 2: Type IIA configu-

ration for nonzero expectation

value of the 6. The dot repre-

sents the NS5-brane, the thick

line corresponds to four half

6-branes, the thin line corre-

sponds to two half 6-branes and

the curving line is another 6-

brane.

complicated in the IIB picture and correspond to sim-

ple brane motions in the IIA description. In fact, all

simple brane motions in the IIA description are ac-

counted for. However, there is a very simple brane

motion in IIB, namely the constant solution of the

impurity equations given in eq. (3.11), that should

have a counterpart in the IIA description. Since this

deformation corresponds to moving pairs of 7-branes

off the orientifold, we can find an explicit equation

describing the position of these branes. In terms of

the coordinates in eq. (3.4) this equation reads z2 =

const. Starting from this expression we can reverse

the coordinate transformations that took us from the

Taub-NUT space to the flat coordinates on C2/Z2.

This provides an expression for the world volume of

the 7-brane in the Taub-NUT coordinates. Since the

7-branes wrap the fiber of the Taub-NUT and the

fiber T-dualizes to the compact X6 direction, it is

straightforward to find the equation for the world-

volume of the corresponding 6-brane. The result is

X24 − cX7− c2/4 = 0, i.e., a parabola in the X4−X7
plane. Figure 2 shows the IIA configuration which is

T-dual to the following IIB situation: All 7′-branes
are coincident with the O7′-plane, and one pair of
7-branes is displaced from the O7-plane.

From this picture one can see that turning on the constant complex scalar on the

7-brane corresponds to fusing two upper halfs of the 6-branes together and moving

them off the NS5-brane as shown in the figure. On the IIB side it is obvious that this

deformation preserves all supersymmetries. This is somewhat harder to see on the

IIA side. Presumably the H-field produced by the NS5-brane stabilizes the curved

worldvolume of the D6-brane.

The effect of this deformation on the probe theory is what we expect from the

IIB picture. There we move two 7-branes away from the 3-branes sitting at the inter-

section point of the orientifold planes. This gives a mass to half of the fundamentals

from 7-3 strings. In the IIA picture the deformation accomplishes the same. In the
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IIB picture moving the 3-branes along the O7′-plane and transverse to the O7-plane
corresponds to giving the bifundamental field Q in the probe theory an expectation
value [22]. Thus it is possible to move the 3-branes away from the intersection of

the orientifolds towards the intersection of the pair of 7-branes with the O7′-plane
by giving an expectation value to one of the bifundamentals. This is also reflected in

the IIA description. We can move the 4-branes in the negative X7 direction by giving

an expectation value to one of the bifundamentals (see section 2.2). This moves the

4-branes off the NS5-brane and towards the intersection of the lower half-6-branes

with the curving 6-brane.

In the IIB description moving a pair of 7-branes away from the O7-plane breaks

the 7-brane gauge group from SU(4) down to SU(2) × SU(2) [23, 24]. Moving all
four 7-branes together breaks SU(4) down to Sp(4). This implies that the unbroken

gauge group on a single curving 6-brane should be SU(2), while for two coincident

curving branes it should be enhanced to Sp(4). It is not at all clear how to see this

from the IIA description.

3.4 Comparison with F-theory

Sen argued [23, 24] that the T-dual version of the GP model [25] is related to an

F-theory compactification with certain fluxes through collapsed 2-cycles. The naive

candidate for such an F-theory compactification would be a pair of intersecting D4
singularities. However, this cannot be directly related to the GP orientifold, since

it would give rise to an SO(8) × SO(8) gauge symmetry and contain tensionless
strings, while the GP model has SU(4)×SU(4) symmetry and no tensionless strings.
The difference is due to NS (and possibly RR) 2-form fluxes through the collapsed

2-cycle at the intersection of the two D4 singularities. These fluxes give a mass

to 3-branes wrapping this cycle, thereby preventing the appearance of tensionless

strings. These fluxes are not quantized [23, 24], so we should be able to identify

moduli in our IIA description that correspond to turning them off. The NS flux is

conventionally identified with the position of the NS5-branes on the X6 circle and

the RR flux parametrizes the location of the NS5-branes on the M-theory circle.

From the IIB point of view, they are both part of a massless hypermultiplet living

at the intersection of the D4 singularities. In order to turn off the NS flux, we move

the NS5-brane and its image as well as all D6-branes to coincide with one of the

O6-planes. This configuration has an SO(8)×SO(8) gauge symmetry from the eight
upper and eight lower halfs of the 6-branes, as well as tensionless strings from the

NS5-brane coincident with its image [34]. In addition to the hypermultiplet that

corresponds to moving the NS5-brane off the orientifold in the X4, X5, X6, X10 there

is now a tensor multiplet whose scalar expectation value corresponds to separating

the two NS5-branes in the X7 direction. All this agrees with the expectations from

F-theory.
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4. The large N limit

When the number of D3-branes, N , is large there is a dual description of N = 1
superconformal theory on the D3-branes in terms of a supergravity on AdS5 × X,
where X is an Einstein manifold (or orbifold) [4]. This dual description is valid

when the t’Hooft gauge coupling, g2YMN , is large. In this section, we will show how

the AdS/CFT correspondence works for the conformal gauge theory with SU(4) ×
SU(4) flavor symmetry discussed in section 2.2, and provide evidence that this theory

is finite. We will also provide a partial analysis of the non-conformal theory of

section 2.3 in the large N limit and argue that supergravity suggests a definite R-

charge assignment for all the fields in the infrared.

4.1 The conformal case

In the conformal case, X is an orientifold of S5. As explained in the previous section,

the IIA configuration with SU(4)×SU(4) gauge symmetry on the 6-branes is T-dual
to a local piece of the Sen model. At the SU(4) × SU(4) point, the Sen model is
a perturbative type IIB orientifold with constant string coupling, τ [23, 24]. Thus

the near-horizon geometry of the 3-branes is obtained by orientifolding AdS5 × S5.
Similar theories were analyzed in [9, 10, 11].

Let us denote the orientifolded five-sphere by S̃5. The metric on S̃5 is the angular

part of

ds2 = |dz1|2 + |dz2|2 + |dw|2, (4.1)

where w = X8 + iX9 and the variables z1, z2 are subject to the identifications zi →
−zi. A U(1)3 subgroup of the SO(6) isometry group of S5 commutes with these
identifications. It is convenient to take the generators that rotate z1, z2, and w

separately as a basis in the Lie algebra of U(1)3. Explicitly, the metric on S̃5 can be

written as

ds2
S̃5
= dθ21 + sin

2(θ1)dφ
2
1 + cos

2(θ1)
(
dθ22 + sin

2(θ2)dφ
2
2 + cos

2(θ2)dφ
3
3

)
, (4.2)

where φ1,2 ∈ [0, π], φ3 ∈ [0, 2π], and θ1,2 ∈ [0, π]. The three angles φi parametrize
rotations in the z1,2 and w planes respectively. The periodicity of φ1,2 reflects the

identifications on z1,2. Since this periodicity of φ1,2 is the only thing which distin-

guishes S̃5 from S5, the eigenvalues of the scalar Laplacian on the former can be

obtained from those on the latter. The eigenvalue of the scalar Laplacian on S5 is

k(k + 4), where k = 0, 1, . . . . In terms of the angular momenta, mi, associated with

the angles φi, we have k = |m1| + |m2| + |m3| + 2l1 + 2l2, where li are nonnega-
tive integers. The orientifold projection on the bulk supergravity states amounts to

keeping modes with even m1 and m2.

In the N = 4 case, the supergravity states with lowest mass squared come from
the KK reduction of haa, the dilaton mode of the S

5. The AdS masses of these states
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are given by m2 = k(k − 4) [35], where k is given above. According to [6], the
AdS mass of a KK state is related to the dimension of the corresponding boundary

operator by ∆(∆− 4) = m2, which implies ∆ = k for this tower of KK modes. The
decomposition of the other supergravity fields yield towers of KK states for which

∆ = k+n, where n is a positive integer [6]. We will see below that only for n = 0 the

KK states couple to chiral primary operators. Therefore we will restrict our analysis

to the KK modes from the decomposition of haa.

The simplest way to identify chiral primaries is to find all states for which ∆ =

(3/2)R, where R is the R-charge which is part of the superconformal algebra. The R-

current is a certain linear combination of the three U(1) currents. To find this linear

combination we first need to determine which supercharges survive the orientifold

projection. The orientifold group, Z2 × Z2, is generated by γ1 = Rz2Ω(−1)FL and
γ2 = Rz1z2 . Orientifolding by the first generator breaks SO(6) down to SU(2)L ×
SU(2)R × U(1)N where U(1)N acts on z2 while SU(2)L × SU(2)R acts on z1, w. The
surviving supercharges (Q+, Q−) transform as (1, 2)1 with respect to this group.
Orientifolding by γ2 breaks SU(2)L×SU(2)R down to U(1)L×U(1)R. We will denote
the sum of the U(1)L and U(1)R charges by U(1)2, the difference by U(1)3, and

refer to U(1)N as U(1)1. The charges of z2, z1, and w under these three U(1)’s

are given by (2, 0, 0), (0, 2, 0), and (0, 0, 2), respectively. The supercharge Q+ which

survives the second orientifolding has U(1) charges (1, 1,−1). It follows that the
R-charge which is in the same superconformal multiplet as the stress-energy tensor

is (1/3)(2m1 + 2m2 − 2m3). Here 2m1 is the U(1)1 charge, 2m2 is the U(1)2 charge,
and 2m3 is the U(1)3 charge. The normalization is chosen so that Q+ has R-charge

1. It follows that any KK mode with l1 = l2 = 0, m1, m2 ≥ 0 and m3 ≤ 0 should
couple to a chiral primary operator in the boundary field theory.

We discussed the identification of geometric mo- U(1)1 U(1)2 U(1)3
A1,2 0 0 −2
Q 2 0 0

Q̃ 0 2 0

q,p 0 1 −1
q̃, p̃ 1 0 −1
Table 1: Charge assignments for

the matter fields.

tions of 3-branes with flat directions in the 3-brane

field theory in the previous section (see also [22]).

This allows us to determine the U(1) charges of the

fields A1, A2,Q, Q̃. The field theory superpoten-
tial then fixes the R-charges of the fundamentals

q, q̃, p, p̃. The results are summarized in the table 1.

With these charge assignments in hand it is now

a simple matter to match the bulk KK modes and

the chiral primary operators in the field theory. Let us give some examples. The

supergravity spectrum contains a singleton chiral primary with U(1)3 charge −2 and
∆ = k = 1. This state corresponds to a chiral primary Tr(A1J1) + Tr(A2J2) in the

field theory.1 Since ∆ = 1, this is a free field. For ∆ = 2 there are three chiral

primary states with geometric U(1) charges (4, 0, 0), (0, 4, 0), and (0, 0,−4). We
1The antisymmetric representation of Sp(N) is reducible and contains a singlet.
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identify them with TrQTJ1QJ2, Tr Q̃TJ2Q̃J1, and Tr(A1J1)2+Tr(A2J2)2. The chiral
primary operators with ∆ = 3 are Tr[QA2QTJ1 + QTJ1A1J1QJ2], Tr[Q̃A1Q̃TJ2 +
Q̃TJ2A2J2Q̃J1], and Tr(A1J1)3+Tr(A2J2)3. They correspond to the KK states with
charges (4, 0,−2), (0, 4,−2), and (0, 0,−6) respectively.
The field theory also contains operators that carry charges under the 7-brane

gauge groups. It was pointed out in [10] that these operators couple to the AdS modes

coming from the KK reduction of the 7-brane fields. Our configuration includes an

O7-plane with four coincident D7-branes wrapping an S3 defined by |z1|2 + |w|2 =
const., and similarly an O7′-plane with four D7′-branes wrapped on |z2|2 + |w|2 =
const. The two 3-spheres intersect over a circle. We can focus on the KK modes

from the first S3. These modes couple to operators that are charged under the SU(4)7
subgroup of the SU(4)7 × SU(4)7′ global symmetry group of the probe theory. The
modes living on the other S3 couple to similar operators in the field theory that

transform under SU(4)7′.

The KK reduction of the theory on an O7-plane with four coincident 7-branes

was discussed in [10]. In that case there were twice as many supersymmetries as in

ours. The simplest way to compute the KK spectrum in our case is to use the results

of [10] and impose the additional projection from the O7′-plane.
Reference [10] contains a detailed discussion of the 7-brane states and their multi-

plet structure. The lowest component of the multiplet is a real field in the (k,k+ 2)0
representation of SU(2)L × SU(2)R × U(1)N , where k = 1, 2, . . . This mode comes
from KK reduction of the components of the 7-brane gauge field along the S3,

Aa =
∑
k

akY
k
a , (4.3)

where Y ka is the k-th vector spherical harmonic on S
3. These modes couple to op-

erators of dimension ∆ = k + 1 in the boundary field theory. For simplicity we

will only consider operators with ∆ = 2, 3. The state with ∆ = 2 transforms in

the (1, 3)0 and decomposes into modes with U(1)
3 quantum numbers (0, 0, 0) and

(0,±2,∓2). The (0, 0, 0) mode has no U(1)R charge and does not correspond to a
chiral primary. The states with U(1)3 charges (0, 2,−2) and (0,−2, 2) are complex
conjugates of each other, so it is sufficient to consider only one of them, e.g., the

first. It has R-charge 4/3 and is, therefore, a chiral primary. This state starts out in

the adjoint of the SO(8)7 gauge group on the 7-brane. Since it has m2 = 1, it is odd

under the additional orientifold projection γ2. This projection breaks SO(8)7 down

to SU(4)7. As explained in [23, 24], states in the adjoint of SO(8)7 which are odd

under γ1 yield 6+ 6̄ of SU(4)7, while even states give adjoints of SU(4)7. It follows

that the (0, 2,−2) state yields one complex state in 6 and one complex state in 6̄.
These KK states correspond to operators qJ1q and pJ2p, which transform in the 6

and 6̄ of the 7-brane group respectively.
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The ∆ = 3 mode is in the (2, 4)0 representation and decomposes into even modes

with U(1)3 charges (0, 0,−2) and (0, 4,−2) and their complex conjugates, as well as
odd modes with U(1)3 charges (0, 2, 0) and (0, 2,−4) and their complex conjugates.
The even (0, 0,−2) mode and the odd (0, 2, 0) mode do not couple to chiral primary
operators, because the R-charge does not match the dimension. The even (0, 4,−2)
mode couples to a chiral primary operator in the adjoint of SU(4) which we identify

as pJ2Q̃J1q. The odd (0, 2,−4) mode couples to a chiral primary in the 6+ 6̄. The
corresponding operators are given by qA1q and pJ2A2J2p.

Other scalars on AdS come from the decomposition of the complex scalar field

on the 7-branes. These KK modes are in the (k,k)2 representation of SU(2)L ×
SU(2)R×U(1)N and couple to operators of dimension k+2 [10]. It is straightforward
to decompose and project these modes as we did for the KK modes of the vector

field. The ∆ = 3 case is especially simple, since this mode carries only U(1)1 charge.

Since the R-charge and the dimension do not satisfy ∆ = (3/2)R, this KK mode

does not couple to a chiral primary operator. The same is true for the higher KK

modes of the complex scalar field.

Finally, there are also states living on the intersection of the 7-branes and 7′-
branes which is an S1 embedded in S5. The KK reduction of these states is straight-

forward, and we will not discuss it.

In the above analysis we have focused on chiral primaries. It is also interesting

to ask whether non-chiral states match between field theory and supergravity. Some

of the non-chiral scalars we have seen, namely the ones coming from the reduction

of complex scalars living on the 7-branes, are descendants of the chiral primaries

and therefore match automatically. On the other hand, the non-chiral scalars which

come from the KK reduction of the gauge field on the 7-branes are primary. One

may ask whether the superconformal multiplet they live in is long or short.

To answer this question we need to recall some facts about unitary representa-

tions of the N = 1 superconformal algebra [36]. For our purposes it is sufficient to
consider multiplets whose primary states have zero spin. Let the R and ∆ be the

R-charge and the dimension of the primary. Unitarity puts restrictions on which

values of R and ∆ may occur; the allowed possibilities are

(i) ∆ = R = 0 (the trivial representation),

(ii) ∆ = (3/2)|R| (chiral and anti-chiral representations),

(iii) ∆ ≥ (3/2)|R|+ 2.

Representations of type (iii) with ∆ > (3/2)|R| + 2 contain no null states and
therefore are termed long multiplets. Chiral and anti-chiral representations contain

null states at level one, i.e., their primaries are annihilated by half of the supercharges.
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These representations are called short. Representations of type (iii) which saturate

the inequality are also short; the null states occur at level two. A well-known example

of a short multiplet is a linear multiplet which contains a conserved current. It

corresponds to the case R = 0,∆ = 2.

One can check that all non-chiral primaries coming from the reduction of the

gauge field on the 7-branes satisfy ∆ = (3/2)|R|+2 and therefore are in short multi-
plets of type (iii). In particular, the (0, 0, 0) mode with ∆ = 2 we have found above

is in fact the lowest component of a linear multiplet. It couples to a field theory

operator q†q− pp† in the adjoint of SU(4)7. The corresponding current is simply the
SU(4)7 flavor current. The matching of non-chiral primaries with ∆ = 3 is a bit more

involved. The (0, 2, 0) mode transforms in 6+ 6̄ of SU(4)7. Its field theory counter-

parts are h1p
†Q̃J1q+h2qJ1A†1J1q and h1pJ2Q̃q†+h2pA†2p, where the flavor indices are

antisymmetrized. The U(1)3 charges of these operators match those of the (0, 2, 0)

mode. To show that these operators live in short multiplets, i.e. are annihilated by

D̄2, one needs to use the classical equations of motion. The manipulations one has to

go through are very similar to those in [37], and are subject to the same caveats. The

use of the classical equations of motion is presumably justified in the weakly coupled

regime where g2YMN is small. The supergravity analysis indicates that the operators

in question belong to short multiplets even for large g2YMN . An even more interesting

situation arises when one tries to match the non-chiral primary with U(1)3 charges

(0, 0,−2) and ∆ = 3. This mode lives in the adjoint of SU(4)7. We claim that it
corresponds to the field theory operator h1qA1J1q

† − h1p†A2J2p− h2qQ̃†p. Evaluat-
ing the D̄2 descendant of this operator using the classical equations of motion, one

finds that it does not vanish. Instead, the descendant has the form (qq̃)(p̃p), i.e. it

factorizes into a product of two gauge-invariant operators and is therefore sublead-

ing at large N . It follows that this field theory operator lives in a long multiplet for

finite N , but is “close” to being in a short multiplet in the sense that its dimension

approaches the unitarity bound as N → ∞. On the supergravity side this means
that the (0, 0,−2) one-particle state is in a short multiplet only for N = ∞. For
finite N the multiplet absorbs another short multiplet made of two-particle states

and becomes long.

This concludes our analysis of the AdS/CFT correspondence for the Sen model.

There is complete agreement between the spectrum of primary operators in the

field theory and the scalar Kaluza-Klein states on AdS as required by the AdS/CFT

correspondence [4, 5, 6]. The charge assignments in table 1 together with the formula

R = (1/3)(2m1+2m2−2m3) imply that all chiral fields have canonical dimensions in
the infrared. This is the most natural assumption for a theory with vanishing beta

function, but as we pointed out in the introduction there is no field theory proof

of this. The supergravity computation is only valid for large N and large g2YMN .

However, given that for g2YM � 1 and N of order 1 the dimensions are also canonical,
it appears likely that the theory is finite for all N .
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4.2 The non-conformal case

Next we discuss the deformed N = 1 theory which flows to a line of conformal
fixed points in the infrared (section 2.3). We have already pointed out that al-

though the Wilsonian gauge coupling in this theory depends on the scale, the low-

energy effective gauge coupling does not vary over the moduli space. This implies

that the corresponding IIB background should have constant τ . Indeed, in sec-

tion 3, we showed that the 7-brane background for this configuration is very sim-

ilar to the background for the conformal theory. As in the conformal case, the

7-branes do not bend and are coincident with the O7-planes. The RR charge of

the 7-brane is cancelled locally by the O7-planes, so we expect that the type IIB

string coupling is constant. Similarly, the gravitational field of the 7-branes can-

cels against that of the orientifold planes. Thus it appears that the closed string

sector is not affected by this deformation. The only difference between the confor-

mal and the non-conformal case is in the open string sector, namely in the gauge

connection on the 7-branes. In the conformal case it is trivial, while in the non-

conformal case it is a flat connection which breaks the SU(4)7 × SU(4)7′ group
to a diagonally embedded SU(2) × SU(2). To summarize, the deformation of the
7-brane background that leads to the non-conformal theory changes the proper-

ties of the theory on the 7-branes, but it appears not to change the closed string

sector.

To find a supergravity dual for this non-conformal theory, we need to repeat the

analysis above with the new 7-brane background. Since the closed string sector is

unchanged, the spectrum of the bulk modes should be the same as before. The matter

content of the conformal and the non-conformal theory differ only in the number of

flavors and their coupling to the bifundamentals. Therefore both theories have the

same spectrum of operators that do not transform under the 7-brane groups. Thus

it appears that the dimensions of all chiral primaries uncharged with respect to the

flavor group are the same as in the conformal case, i.e., canonical. If antisymmetric

tensors and bifundamentals have zero anomalous dimensions then the vanishing of

the beta-functions, eq. (2.7), requires that the fundamentals have dimension 1/2.

This is actually the lowest dimension for the fundamental allowed by unitarity. To

show that this assignment of dimensions, or equivalently of R-charges, agrees with

supergravity we would have to show that the KK reduction of the 7-brane theory

with the singular flat connection switched on, reproduces the expected dimensions of

the chiral primaries that involve the fundamentals. Unfortunately we do not know

how to analyze the excitations of the impurity theory around nontrivial vacua, so

we cannot check that our solution is consistent. Nevertheless, we get a definite

prediction for the infrared dimensions of all fields. It would be interesting to confirm

the answer by directly analyzing the perturbative expansion of the non-conformal

theory at large N .
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