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Abstract: We discuss a recently proposed scenario where the sparticle masses are

purely mediated by gravity through the superconformal anomaly. This scenario ele-

gantly evades the supersymmetric flavor problem since soft masses, like the anomaly,

are not directly sensitive to ultraviolet physics. However, its minimal incarnation

fails by predicting tachyonic sleptons. We study the conditions for decoupling of

heavy threshold effects and how these conditions are evaded. We use these results

to build a realistic class of models where the non-decoupling effects of ultra-heavy

vectorlike matter fields eliminate the tachyons. These models have a flavor invariant

superspectrum similar to that of gauge mediated models. They, however, differ in

several aspects: the gaugino masses are not unified, the colored sparticles are not

much heavier than the others, the µ problem is less severe and the gravitino mass is

well above the weak scale, m3/2 & 10 TeV. We also show that in models where an
R-symmetry can be gauged, the associated D-term gives rise to soft terms that are

similarly insensitive to the ultraviolet.
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1. Introduction

Supersymmetry is at the moment the best candidate for physics beyond the standard

model (SM). It gives a natural explanation of the gauge hierarchy and its simplest re-

alization, the minimal supersymmetric standard model (MSSM), remarkably satisfies

the unification of the gauge forces. However, superparticles have not been detected

yet, nor any deviation from the SM has been seen in precision experiments and flavor

physics. This means that not only supersymmetry must be broken to give sparticles

a mass, but also that the resulting spectrum will most likely display a clever flavor

structure. The origin of supersymmetry breaking is thus crucial for phenomenology.

The simplest way to give superparticles a mass is certainly via non-renormalizable

interactions in supergravity [1], as the basic ingredient, gravity, is a fact of life. More-

over gravity mediation is generic as its agent (or the underlying more fundamental

interaction) couples to everything: whatever dynamics breaks supersymmetry, grav-

ity will eventually let us know. The flipped side of the coin is that generic soft terms

are not enough. They must also be very specific to avoid large flavor violations. It

is possible that this problem will only be fully understood in a theory of quantum

gravity such as string theory. A possibility though is that some underlying flavor

symmetry solves the problem by aligning the soft terms to the fermion masses [2].
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Models with gauge mediated supersymmetry breaking (GMSB) [3, 4], on the

other hand, offer a calculable and flavor invariant superspectrum. These two prop-

erties motivated the recent activity on this scenario.

In this paper we focus on a particular supergravity scenario [5] in which the

soft masses are generated just by the auxiliary field of the gravitational multiplet.

This differs from previous ones [1] since no direct contribution arises from the hidden

sector. In this sense, soft masses are purely mediated by gravity. This possibility was

advocated in ref. [5] in theories with extra dimensions where only gravity propagates.

Moreover the same results, but limited to gaugino masses and A-terms, are inevitably

obtained in any model where the hidden sector breaks supersymmetry dynamically in

the absence of singlets [6]. From the supergravity point of view, this idea corresponds

to a no-scale form for the Kahler potential [7] and to canonical tree-level gauge

kinetic terms. Both scalar and gaugino masses are zero at tree level and are purely

determined by quantum effects. It is easy to show that these quantum effects are just

dictated by the (super)conformal anomaly [5, 6], so that we can rightfully name this

scenario anomaly mediated supersymmetry breaking (AMSB). As anomalies only

depend on the low-energy effective theory, so will soft terms. Soft masses at a scale

µ will be written as functions of the couplings at µ, with no additional ultraviolet

(UV) dependence. This property is very interesting for the supersymmetric flavor

problem. In general soft masses can pick up all sort of dangerous contributions from

intermediate thresholds, as they flow to the infrared (IR). AMSB, however, provides

special trajectories where all these potentially dangerous effects manage to disappear

at low energy. Unfortunately the AMSB scenario cannot be applied to the MSSM, as

it leads to tachyonic sleptons [5]. The goal of the present paper is to construct realistic

models (without tachyons) where the original source of soft terms is the conformal

anomaly. Our basic point is that an intermediate threshold can displace soft terms

from the AMSB trajectory, provided that the threshold position is controlled by a

light field (modulus). Using this remark we will build models where the intermediate

threshold is provided by a messenger sector similar to that in GMSB model. The

interesting thing is that, unlike GMSB, the present mechanism works even in the

absence of tree-level mass splitting inside the messenger supermultiplets! For this

reason we will call this mechanism anti -gauge-mediation.

This paper is organized as follows. In section 2 we review AMSB, relying mostly

on a 1PI definition of the running soft terms. Section 3 focuses on decoupling and

non-decoupling of heavy thresholds and on the problem with tachyon states. Sec-

tions 4 and 5 are devoted to the construction of explicit models and to a brief

discussion of their phenomenology, while section 6 provides examples of solutions to

the µ-problem. Section 7 is somewhat outside the main line of the paper. There

we show that there is a more general family of non-trivial RG trajectories which is

UV insensitive. It is interesting that this class can be determined by internal consis-

tency in the flat limit or simply by gauging an R-symmetry in supergravity. Finally

section 8 contains our conclusions.

2



J
H
E
P
0
5
(
1
9
9
9
)
0
1
3

2. Anomaly mediated supersymmetry breaking

The crucial feature of the scenario we consider is that supersymmetry breaking effects

in the observable sector have a pure gravitational origin. This is equivalent to saying

that the only relevant source of soft terms is the auxiliary field u of the off-shell

gravitational supermultiplet for Poincaré supergravity. The natural formalism to

describe these effects is the superconformal calculus formulation of supergravity [8].

In this framework one introduces a chiral superfield φ with Weyl weight λ = 1 playing

the role of the compensating multiplet for super-Weyl transformations. With the

aid of φ it is relatively easy to write a locally superconformal invariant lagrangean.

Poincaré supergravity is then recovered by fixing the extraneous degrees of freedom

by a suitable set of gauge conditions. In particular one can make the auxiliary field

u to reside only in φ by fixing φ = 1 + θ2u/3. (We will later comment on different

choices of super-Weyl-Kahler gauge fixing). Then the effects of 〈u〉/3 = Fφ 6= 0 on
any operator are simply determined by inserting the suitable powers of φ, φ† that
render the operator Weyl invariant. It is convenient to assign to each physical field

a Weyl weight equal to its mass dimension. Then the most general Weyl invariant

action has the form∫
d4θφφ†K

(
φ1/2

φ†
Dα,

Q

φ
,
Wα

φ3/2
, V

)
+Re

∫
d2θφ3W

(
Q

φ
,
Wα

φ3/2

)
, (2.1)

where by Q andWα we collectively indicate the matter and gauge field strength chiral

superfields. For simplicity we have omitted the dependence of K on D̄α̇, Q
†, etc.

A few comments on eq. (2.1) are in order. We have omitted all terms involving

covariant derivatives acting on φ, φ† (curvature terms). This is because we are
only concerned with the RG evolution of soft terms. By simple power counting,

terms involving Dαφ, D
2φ, etc. cannot arise from ultraviolet divergences. This

fact was already stressed in ref. [9]. Indeed one could define the soft terms at a

scale µ by considering the superspace 1PI action at external Euclidean momenta

p = µ � m3/2 ∼ Fφ but truncated to terms with no covariant derivatives acting

on φ. The neglected derivative terms correspond to the contribution from virtual

momenta in the infrared domain m3/2 . p . µ.1

One can easily check that the rule Dα → Dαφ
1/2/φ†, applied to Wα = D̄2DαV

does giveWα →Wα/φ
3/2. Moreover, notice that the D’Alembertian is essentially ∼

D2D̄2, so that its Weyl covariant version is /φφ†. This property of = −p2 crucially
relates the soft terms to RG beta functions [5, 6]. In order to elucidate this relation

we recall a few results. As discussed in ref. [9], in softly broken supersymmetry, the

soft terms associated to a chiral superfield Qi can be collected in a running superfield

1Notice that in component notation the 1PI is less useful to distinguish UV and IR contribu-

tions. For instance, in the softly broken Wess-Zumino model, the IR cut-off of the tadpole diagram

correction to the scalar mass is the soft mass itself, not µ. In superspace language virtual momenta

above and below µ contribute to the coefficient of different operators.
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wave function Zi(µ) such that
lnZi(µ) = lnZi(µ) +

(
Ai(µ)θ

2 + h.c.
)−m2i (µ)θ2θ̄2 . (2.2)

Here, Zi is the c-number wave function, m
2
i is the sfermion mass, while Ai contributes

to A-terms (for instance, a superpotential term λQ1Q2Q3 is associated to Aλ =

A1 + A2 + A3). Now, consider the present theory in the supersymmetric limit. The

running wave functions can be defined as Zi(µ) = ci(p
2 = −µ2), where ci is the

coefficient of QiQ
†
i in the 1PI. Therefore, turning on Fφ simply amounts to the shift

µ2 → µ2/φφ†

Zi(µ) = Zi
(

µ√
φφ†

)
. (2.3)

By using φ = 1 + Fφθ
2, we can write eq. (2.3) as

lnZi(µ) = lnZi(µ)− γi(µ)

2

(
Fφθ

2 + h.c.
)
+
γ̇i(µ)

4
|Fφ|2θ2θ̄2 , (2.4)

where γi is the anomalous dimension and γ̇i = dγi/d lnµ. Comparing eq. (2.4) to

eq. (2.2), we obtain

Ai(µ) = −γi(µ)
2

Fφ ,

m2i (µ) = −
γ̇i(µ)

4
|Fφ|2 . (2.5)

We emphasize that this result is a simple consequence of the 1PI definition of the

soft terms and of the Weyl-covariantization property of . This makes it clear that

it does not depend on the regulator. If we had worked in dimensional reduction

(DRED) [10], we would have gotten the same result. This is because, in the bare

lagrangean, Weyl invariance requires the scale µ to always appear in the combination

µ/
√
φφ†. Again, soft terms would be obtained as in eq. (2.3), by deforming the RG

flow into superspace.

For gauge fields the relevant quantity is also a real superfield, R(µ), with com-

ponents [9]

R(µ) =
1

g2(µ)
− 2Re

(
mλ

g2
(µ)θ2

)
+RDθ

2θ̄2 , (2.6)

where mλ is the gaugino mass and where at lowest order in g
2

RD =
1

8π2

(
TGm

2
λ −

∑
i

Tim
2
i

)
, (2.7)

where TG and Ti are the Dynkin indices of the adjoint and matter irreducible repre-

sentations. The real superfield R(µ) corresponds to the physical 1PI coupling and is

related to the holomorphic coupling S by [11, 12, 13]

R = F

(
S + S† − 1

8π2

∑
i

Ti lnZi
)
= F (R̃) , (2.8)
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where F−1 can be expanded in a given scheme as

F−1(x) = 1− TG ln x

8π2
+
∑
n>0

an

xn
. (2.9)

The NSVZ scheme [11] corresponds to setting all ai = 0.

Similarly to the matter case, one starts from the kinetic coefficient 1/g2(µ) in

the supersymmetric limit and turns on Fφ by the shift µ
2 → µ2/φφ†:

R(µ) = g−2
(

µ√
φφ†

)
. (2.10)

Therefore, by using eq. (2.6), we have

mλ =
g2

2

dg−2

d lnµ
Fφ = −β(g

2)

2g2
Fφ . (2.11)

It is also useful to consider the holomorphic coupling S, which, being a chiral super-

field, is defined by the shift

S(µ) =
1

g2h(
µ
φ
)
=

1

g2h(µ)
− b

8π2
Fφθ

2 , (2.12)

where gh is the holomorphic coupling in the supersymmetric limit and b is the 1-

loop β-function coefficient. Notice that although S depends only on φ, eq. (2.8) is a

function of the combination φφ†, as it should be. By using eqs. (2.8) and (2.9), it is
easy to check that our shift µ→ µ/

√
φφ†, satisfies eq. (2.7) at lowest order. The same

conclusion can be reached by using directly the gauge coupling running at two loops

in eq. (2.10). This is an important property of µ→ µ/
√
φφ†. Indeed, quite generally,

and regardless of supergravity, one may have asked whether a shift µ → µ/
√
φφ†,

applied to the running parameters of a supersymmetric theory, does generate a RG

trajectory for soft terms (i.e. whether the soft terms that are thus generated do solve

their RG equations, rather than being meaningless expressions). The property we

just mentioned is a crucial check, that our deformation does generate a meaningful

softly broken theory. We will see in section 7 that a similar argument can be used

to accept or discard a more general deformation of the supersymmetric RG flow.

Notice that, by eq. (2.1), the soft terms associated to each operator are essentially

determined by the (quantum) dimension of its coefficient. Indeed the soft masses of

eqs. (2.5) and (2.11) are just determined by the RG scaling of the couplings, i.e by the

conformal anomaly. For a scale invariant theory, like for instance N = 4 Yang-Mills,
the compensator dependence drops out in eq. (2.1) and soft terms are not generated.

This is why we refer to this scenario as “anomaly mediated supersymmetry breaking”.

We should recall that in previous studies [14], based on the effective string action

of ref. [15], contributions to gaugino masses proportional to the β-functions have been

5
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found. However, in that case, unlike ours, the direct source of the effect is the F -term

of a modulus. Moreover, prior to ref. [5], no contribution to scalar squared-masses

beyond one loop was discussed.

We now spend a few words on Kahler invariance versus the physical meaning

of Fφ.
2 In the superconformal approach the tree-level supergravity lagrangean is

written as [8, 16]

L = −3
[
e−K(Q,Q

†)/3φφ†
]
D
+
[
W (Q)φ3

]
F

(2.13)

=
1

2
ϕϕ†e−K(q̃,q̃

†)/3R + · · · , (2.14)

where, for simplicity, we only display the Einstein term in the component supergrav-

ity action. The two expressions in eq. (2.13) reduce, in the absence of gravitational

fields, respectively to d2θd2θ̄ and d2θ integrals. Before fixing the extraneous supercon-

formal gauge freedom the compensator is a general chiral superfield φ = ϕ+χθ+Fφθ
2.

Eq. (2.13) is also invariant under Kahler transformations

K → K + f + f̄ ,

W → e−fW ,

φ → ef/3φ , (2.15)

where f = f(Q) is a function of the chiral matter fields. As φ is not a physical degree

of freedom, Kahler invariance is not a true symmetry of the lagrangean. Rather it

states that physical quantities depend only on the combination G = eKWW †. Now,
the quantity Fφ/ϕ, on which we have been focusing so far, is not left invariant when

f involves hidden sector fields with non-zero F -components. However also the direct

contribution from hidden fields to soft terms is not Kahler invariant, but precisely

compensates the change of Fφ/ϕ, leaving physical quantities unaffected. The scenario

of pure mediation by Fφ that we are considering then just corresponds to assuming

the existence of a Kahler “gauge” where the hidden sector F -terms do not contribute

to soft masses in the observable sector. We may call this the “convenient gauge”. As

the Kahler gauge is fixed, Fφ/ϕ is now a physical quantity. As discussed in ref. [5],

in the convenient gauge K and W split as

W = W (Qh) +W (Qo) ,

e−K/3 = 1− fh(Qh, Q
†
h)− fo(Qo, Q

†
o) , (2.16)

where Qh and Qo denote respectively fields in the hidden and observable sector.

While the above form was motivated in ref. [5] by a scenario with extra space-time

dimensions, it just corresponds to the old no-scale ansatz for the Kahler potential [7].

It is interesting that this form of K is stable under radiative corrections due to non-

gravitational interactions. A reflection of this fact is that the parametrization for

2We thank Fabio Zwirner for raising and discussing this point.
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soft terms just in terms of Fφ is valid at all renormalization scales. Again this has

a beautiful geometric explanation in the scenario of ref. [5]. There the hidden and

observable sectors live on different “branes” separated by a bulk where only gravity

propagates: gauge and Yukawa interactions are relegated to the observable brane

and cannot induce mixings to hidden fields.

To conclude this little detour we give the expression of Fφ obtained by solving

its equation of motion

Fφ
ϕ
=
1

3
KiF

i + eK/3
ϕ†2

ϕ
W † =

1

3
KiF

i + eK/2W † . (2.17)

In the last equation we have made the Weyl gauge choice

ϕ = ϕ† = eK(q̃,q̃
†)/6 , (2.18)

which renders the physics content of eq. (2.13) more explicit, by making the Ein-

stein term canonical. Note that the second contribution to Fφ, e
K/2W †, is just the

gravitino mass m3/2, a Kahler invariant quantity. On the other hand, the first con-

tribution, KiF
i, not only should be evaluated in the convenient gauge but is also

model dependent. In the case that supersymmetry is broken dynamically and with-

out singlets in the hidden sector, we expect this first contribution to Fφ to be at least

O(m3/23/2/M1/2
P ), so that we can neglect it [6]. In this interesting class of models the

observable spectrum is just fixed by the gravitino mass, and by gauge and Yukawa

couplings.

3. Decoupling and non-decoupling of high-energy thresholds

and the problem of tachyonic states

In this section we will focus on the mass spectrum of AMSB models and on the

effects of intermediate mass thresholds.

As shown in the previous section our soft terms at a scale µ are determined by

the (super)conformal anomaly, which in turn is a property of the relevant interactions

of the effective theory at that scale. So it seems that, by the way it was defined,

in AMSB the UV thresholds affect soft masses only indirectly, via their effects on

gauge and Yukawa couplings. Let us see this in more detail, by assuming that the

theory has a threshold at M � Fφ ∼ m3/2. Let us also assume that there are

no singlets below M . Later we will see this is a crucial requirement. An example

satisfying these conditions would be the MSSM with a vectorlike quark multiplet of

mass M � 1 TeV. Now, it is easy to power count the M dependence of the terms

in the low-energy effective action. Due to the absence of singlets, there can be no

term with a positive power M (apart from a cosmological constant). Therefore the

leading effects are logarithmic in M , and affect the kinetic terms of the light fields

7
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at the quantum level.3 Since M is a parameter in the lagrangean, it has Weyl weight

equal to zero. By Weyl invariance then the M dependence of the wave functions,

eqs. (2.3) and (2.10), must take the form

Zi(µ) = Zi
(

µ√
φφ†

,M

)
, R(µ) = g−2

(
µ√
φφ†

,M

)
. (3.1)

This implies that the soft masses, that arise from the φ-dependence of Z and R, are
still determined by the features of the low-energy theory (at the scale µ); no extra

contribution can come from the physics at M .

As an explicit example of this decoupling effect, let us consider a sector with two

fields X and Y and lagrangean∫
d4θ (XX† + Y Y †) +

∫
d2θ Y (X2 −M2φ2) , (3.2)

where by convention we have taken X and Y with Weyl weight 1. The superfield X

vacuum expectation value is given by

〈X〉 =Mφ , (3.3)

up to irrelevant higher-derivative terms. Both X and Y become massive and can be

integrated out. After that, any low-energy wave function can depend on 〈X〉 but
only through the Weyl-invariant combination 〈X〉/φ =M . Again this does not affect
the soft masses. If we were to work with component fields, we would find that the

threshold contributions from the heavy fields at M combine themselves to preserve

the AMSB form (eq. (2.5)) of the low-energy soft terms.

It is rather clear why the AMSB scenario is interesting for the supersymmetric

flavor problem. In the SM, the three Yukawa matrices are the only relevant sources

of flavor violation. This special property leads to a natural suppression of dangerous

flavor violating processes. However this property is lost in a generic supersymmetric

extension, due to the presence of squark and slepton mass matrices that are in

principle new sources of flavor violation. An elegant solution to this problem is

provided by models with GMSB. In these models the scale at which the three Yukawa

matrices Yu,d,e are generated is well above the scale ΛS at which the soft terms are

induced. Therefore flavor violations in the sfermion masses are only proportional

to the low-energy Yu,d,e and we recover natural flavor conservation. (Moreover the

flavor invariant contribution due to gauge interactions dominates these masses.)

The AMSB scenario also satisfies natural flavor conservation: scalar masses are

only functions of the low-energy gauge couplings and Yu,d,e. Unlike gauge mediation,

this property is rather independent on where the scale of flavor is. As we explained

3Higher-derivative operators scaled by M−n, with n > 0, give a contribution to soft terms

suppressed by powers of Fφ/M ∼ m3/2/M . This class of effects can only be important when

M ∼ m3/2.

8
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above, the soft masses in AMSB models decouple from UV physics, and depend

only on the IR theory. This a great virtue, but unfortunately it is also what kills

this scenario by making it too (wrongly) predictive. The scalar masses are given by

eq. (2.5), that leads in a pure gauge theory to

m2i (µ) =
cib

8π2
α2(µ)|Fφ|2 , (3.4)

where ci > 0 is the quadratic Casimir of the scalar. This contribution is therefore

positive for asymptotically free gauge theories (b > 0) and negative for infrared free

theories. In the MSSM both SU(2)L and U(1)Y have b < 0. The sleptons, whose

masses are essentially determined by the SU(2)L× U(1)Y gauge interactions,4 are
therefore tachyonic and the model is ruled out.

In ref. [5], in order to avoid the tachyons, it was assumed the presence of ad-

ditional (non-anomaly-mediated) contributions to the scalar masses. These contri-

butions were associated to new fields propagating in the bulk. Although these bulk

contributions could lead to positive scalar masses, they certainly spoil the decou-

pling features of the AMSB models. These effects can be associated to terms that

mix hidden with observable fields in eq. (2.16), so that we apparently go back to

the standard problem: in the absence of an explicit model where the bulk effects are

calculable the supersymmetric flavor problem remains open.

In the rest of the paper we will investigate the possibility of preserving the

property of natural flavor conservation in AMSB models, while avoiding tachyons.

For this purpose, we will reconsider the decoupling property of AMSB models. As it

is often the case, the absence of light singlets turns out to be necessary in the proof

of decoupling.

Our basic point is the following. Suppose that we have a superfield X such that

the VEVM of its scalar component sets the threshold. If after the shift X =Mφ+S,

the singlet S is light, it must be kept in the effective theory. In this case the Kahler

potential can have a linear dependence on M :∫
d4θ
(
SS† + cMφS† + c∗Mφ†S

)
, (3.5)

where c is an O(1) number. In the presence of supersymmetry breaking these terms
are important. By minimizing we get a rather large FS = −cMFφ. (Notice that this

result corresponds to the well known problem that singlets coupled to the MSSM

Higgs H1H2 can destabilize the weak scale because of their large F -terms [17].) Thus

for a light singlet S, the proportionality of eq. (3.3) is violated (remember that S has

zero scalar VEV by assumption). The power counting is now drastically changed.

For instance, an irrelevant operator like∫
d4θ

SS†

M2
QQ† , (3.6)

4Yukawa coupling effects are negligible for (at least) the first two families.
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leads to an unsuppressed contribution ∼ |cFφ|2 to the mass of the Q scalar. Soft
terms are no longer associated to the relevant interactions of the low-energy theory

and decoupling is lost. This property of light singlets is the key ingredient of the

models we will construct. As we will see, in these new models, the tachyons can be

eliminated by extra non-decoupling (flavor diagonal) contributions of heavy states.

Non-decoupling effects from light singlets have also been used in ref. [18] to lower

the effective scale of supersymmetry breaking. The scenario in ref. [18] is different

from ours as it relies on a total singlet that mixes at the Planck scale with the hidden

sector fields. Also, in that scenario m3/2 must be much below the weak scale, while

in our case it is much above.

4. Anti gauge-mediated supersymmetry breaking

The first model we will present is based on the following set of extra fields: the

“messenger” fields, Ψ and Ψ̄, in vectorlike representations of the SM gauge group,

and the field X, whose VEV will give mass to the messengers. The latter field

has a very flat potential in order to fulfill the condition for non-decoupling that we

explained above. Like in gauge mediated models we take Ψ and Ψ̄ to fit in complete

SU(5) representations in order to preserve gauge coupling unification. For instance

we can take N flavors of 5+ 5̄. The superpotential of the model is given by

W = λXΨΨ̄ +
Xn

Λn−3φn−3
, (4.1)

where again all fields have Weyl weight 1 and n > 3. The scale Λ suppressing the non-

renormalizable term could conceivably be of the order of the Planck mass, Λ ∼MP .

The form of the above superpotential could also be enforced by an (anomalous)

R-symmetry. Notice that the φ-dependence of W is dictated by Weyl-invariance.

Now, when Fφ is turned on, the tree-level potential along the scalar-component of

X becomes

V (X) = n2
∣∣∣∣Xn−1

Λn−3

∣∣∣∣
2

+ (n− 3)
(
FφX

n

Λn−3
+ h.c.

)
. (4.2)

The minimum condition for V (X) is

Xn

|X|2 = −
n− 3

n(n− 1)F
∗
φΛ

n−3 , (4.3)

that leads to a non-zero VEV for X:

〈X〉 ∼ m
1
n−2
3/2 Λ

n−3
n−2 . (4.4)

Eq. (4.3) also fixes the value of FX/X (the quantity relevant to soft terms)

FX
X
=

nX∗n

|X|2Λ∗(n−3) =
n− 3
n− 1Fφ . (4.5)
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Notice that, unlike the model of eq. (3.2), the VEV of the superfield X is no longer

proportional to φ. Since X has weight 1, the low-energy wave functions depend on

the threshold via X̃ ≡ X/φ, which has now a non zero F -component

FX̃

X̃
= − 2

n− 1Fφ . (4.6)

Then in this model the soft masses at low-energy are no longer determined by the

action of d/d lnµ on the wave functions, eqs. (2.5) and (2.11), but by

mλ(µ)

g2(µ)
=
Fφ

2

(
∂

∂ lnµ
+
2

n− 1
∂

∂ ln |X|
)

1

g2(µ,X)
,

Ai(µ) = −Fφ
2

(
∂

∂ lnµ
+
2

n− 1
∂

∂ ln |X|
)
lnZi(µ,X) ,

m2i (µ) = −
|Fφ|2
4

(
∂

∂ lnµ
+
2

n− 1
∂

∂ ln |X|
)2
lnZi(µ,X) . (4.7)

From the component point of view, the soft terms in this model are determined as

follows. Down to the scale X the soft terms respect the AMSB form (2.5). At this

scale, the messengers add a gauge mediated contribution. This contribution does

not adjust the soft terms to the AMSB trajectory of the low-energy theory. For

that to happen one would need precisely FX/X = Fφ, which does not hold. Notice

indeed that decoupling is recovered only in the limit n→ ∞, when the mass of the
X excitation around the minimum becomes very large.

As another example we now consider the previous model but in the absence of

the second term on the r.h.s. of eq. (4.1). In this case X is a flat direction only lifted

by the effects of Fφ 6= 0. The relevant term along X 6= 0 and Ψ, Ψ̄ = 0 is
∫
d4θZX

(√
XX†

φφ†

)
XX† , (4.8)

where µ2 → XX†/φφ† has been taken in the wave function, since X plays now
the role of IR cut-off (notice that the above equation satisfies Weyl symmetry). At

leading order the potential along X is determined by the running soft mass

V (X) = m2X(|X|)|X|2 '
∣∣∣∣ Fφ16π2

∣∣∣∣
2

Nλ2(X)
[
Aλ2(X)− Cag2a(X)

] |X|2 , (4.9)

where A,Ca > 0, and a sum over the gauge couplings ga of the messengers is un-

derstood. The expression in square bracket is just the beta function of λ. It is

conceivable a situation where at a large energy scale the λ4 term dominates and

m2X > 0, while at lower values of X the gauge term becomes important leading to

m2X = 0 at some M . The X field is therefore stabilized at 〈X〉 ∼ M . This is just a

supersymmetric version of the Coleman-Weinberg mechanism [20]. A situation like
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that is very easy to obtain if the gauge group has an asymptotically free factor. In

the MSSM only SU(3) is weakly UV free and the presence of more than 3 flavors of

messengers makes it IR free. Nonetheless it is quite possible to gauge a subgroup

of the messenger flavor group obtaining a strongly UV free factor. In this case the

Coleman-Weinberg stabilization of X can work very well. X could get a VEV any-

where between the weak and GUT scales. Notice that from eq. (4.9), FX/X is a

loop factor smaller that Fφ, FX/X ' Nλ2Fφ/16π
2, and can be neglected. Therefore

FX̃/X̃ ' −Fφ and the soft masses are affected by the messenger threshold. This
effect is given by eqs. (4.5) and (4.7) extrapolated at n = 3. The essential agree-

ment between these two limits is just due to the fact that they both correspond to

classically scale invariant models in which there are no soft terms at tree level.

4.1 Superparticle spectrum

A model like the one just outlined above is very similar to GMSB models. All sources

of flavor violation that are active above the scale X cannot affect the masses in a

relevant way; this is because above X we are on the AMSB trajectory. Below the

scale X, the soft terms are no longer on this privileged trajectory and can pick up all

sort of dangerous contributions. Therefore we must assume that the scale of flavor

ΛF (below which the only sources of mixings are Yu,d,e) is somewhat larger than X. If

the MSSM unifies in a simple gauge group, then ΛF cannot be bigger than the GUT

scale ∼ 1016 GeV. Thus we will assume from now onX . 1016 GeV. For simplicity we
will also consider the case in which the VEV of X is fixed by the Coleman-Weinberg

mechanism.

In order to get the sparticle spectrum from eq. (4.7), we only need to know the

dependence of the gauge coupling g and the wave function Z on the scale µ and

on the singlet X induced after integrating out the messengers Ψ and Ψ̄ [19]. For a

simple gauge group, these are given by

α−1(µ,X) = α−1(Λ) +
b−N
4π

ln
XX†

Λ2
++

b

4π
ln

µ2

XX†
, (4.10)

and

Zi(µ,X) = Zi(Λ)

(
α(Λ)

α(X)

) 2ci
b−N

(
α(X)

α(µ)

) 2ci
b

. (4.11)

where ci is the quadratic Casimir. Using eqs. (4.10), (4.11) and (4.7) with n = 3, we

obtain

mλ(µ) =
α(µ)

4π
(b−N)Fφ , (4.12)

Ai(µ) = −2ci
4π

[
α(µ) + [α(X)− α(µ)]N

b

]
Fφ , (4.13)

m2i (µ) =
2cib

(4π)2

[
α2(µ)− α2(µ)N

b
+ [α2(µ)− α2(X)]

(
N2

b2
− N

b

)]
|Fφ|2 .(4.14)
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At the scale µ = X, we can see that the
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Figure 1: Soft squared-masses of the left-

handed squark (solid line), the right-handed

down-squark (dashed-dotted line), the left-

handed slepton (dashed line) and the right-

handed slepton (dotted line) normalized to

the SU(2)L-gaugino squared-mass as a func-

tion of Log10(X/GeV) for N = 2, 3, 4 mes-

senger multiplets.

contributions in (4.12)–(4.14) arise from

two sources. The first term is purely

dictated by the superconformal anomaly.

The second one is the effect of the N Ψ-

Ψ̄ threshold. This second contribution is

equal in magnitude but opposite in sign

to the usual in GMSB models. For this

reason we call this scenario anti -GMSB.

Since it is well known that the GMSB

contribution to the scalar soft masses are

positive, one could think that this will

not help us to solve the above problem

of negative scalar masses. Nevertheless,

this is not the case. In anti -GMSB there

is yet another contribution to the scalar

masses: the third term in brackets in

eq. (4.14) originating from the gaugino

mass via RG. Therefore in order to have

positive scalar masses at µ ∼ mW , the

third term of eq. (4.14) must overcome

the others. The condition m2i > 0 puts

a lower bound on N and X. In fig-

ure 1 we plot the soft squared-masses of

the left-handed squark (solid line), the

right-handed down-squark (dashed-dot-

ted), the left-handed slepton (dashed)

and the right-handed slepton (dotted)

normalized to the SU(2)L-gaugino squar-

ed-mass, as a function of Log10(X/GeV).

These masses are calculated at the scale

≈ 200 GeV. We have taken N = 2, 3, 4
pairs of Ψ and Ψ̄ in the 5 and 5̄ rep-

resentation of SU(5). We see that for

X . MGUT ' 1016 GeV, one is forced to have N ≥ 3 in order to have positive
masses. The case N = 3, however, implies a zero β-function for the SU(3) coupling

above X, and therefore zero gluino mass. We then find that the only case that gives

realistic soft masses corresponds to N ≥ 4. As an example, let us consider the case
N = 4 with X = MGUT . The spectroscopy of this scenario is completely different

from anyone in the literature. Neglecting the effects of Yukawa couplings, we have:

mλ̃1
' 1.1mλ̃2

' 1.6mλ̃3
' 1.6mQ ' 1.9mL ' 2mU ' 2.2mE ' 2.4mD . (4.15)
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We have not specified the Higgsino mass since it depends on the µ-parameter and

therefore is model dependent. From eq. (4.15) we see that the gaugino masses have

an hierarchy opposite to that of GMSB. Also notice that this scenario gives some

of the squarks lighter than the sleptons. The stops and the Higgs H2 receive an

extra contribution proportional to the top Yukawa coupling Yt that is as important

as eq. (4.14). For H2 this is given by

δm2H2(µ) =
3

(4π)2
αt(µ)

{∑
i

di

[
−αi(µ) + 2N

bi
(αi(µ)− αi(X)) + F (µ)

E(µ)
N
α2i (X)

2π

]
+

+
N2

2π

G2(µ)

E(µ)
+ 6αt(µ)

[
1 +

N

2π

G1(µ)

E(µ)

]2}
|Fφ|2 , (4.16)

where i sums over the three MSSM gauge groups, bi = (−6.6,−1, 3), di = (13/15, 3,
16/3), αt = Y

2
t /4π and

E(µ) = Πi

(
αi(t)

αi(tX)

)di/bi
, t = lnµ , tX = lnX ,

F (µ) =

∫ t

tX

E(t′)dt′ ,

G1(µ) =

∫ t

tX

E(t′)
∑
i

di

bi
(αi(t

′)− αi(tX))dt′ , (4.17)

G2(µ) =

∫ t

tX

E(t′)



∑
i

di

bi
(α2i (t

′)− α2i (tX)) +
[∑

i

di

bi
(αi(t

′)− αi(tX))
]2
 dt′ .

For the left-handed stop and right-handed stop, the top contribution is obtained by

just replacing the factor 3 in front of eq. (4.16) by a factor 1 and 2 respectively. We

have checked that for values of the top coupling in the region 0.7 . Yt(X) . 0.9
the soft mass m2H2 is the only negative one. This can trigger electroweak symmetry

breaking (EWSB).

The µ-term and the bilinear Higgs mass term, Bµ, are not predicted by the

model. In section 6, we will propose a way to generate them. For phenomenological

purposes, however, they can be considered free parameters of the theory. Their only

constraint comes from EWSB. We find that EWSB can be achieved for moderate

values of µ, typically not bigger than the other soft masses. This is very convenient

since it implies that the LSP in these theories can be the neutral Higgsino. This is

again different from GMSB models where the LSP is the gravitino. Here the gravitino

gets a tree-level mass of order Fφ and becomes very heavy (∼ 10 TeV).

5. D-term contributions to scalar masses

One could also use the previous non-decoupling mechanism to build realistic models

with extra U(1)’s at high-energies. Extra U(1)’s are well motivated as they appear
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in GUT groups of rank greater than 5, such as SO(10) or E6. As we shall see,

additional contributions to the low-energy soft masses can be obtained from the

D-terms of these U(1)’s.

Let us consider two fields ψ and ψ̄ with U(1)-charges 1 and -1. Let us also

assume that the D-flat direction, ψ = ψ̄ ≡ X, is stabilized by the Coleman-Weinberg

mechanism away from the origin, as in the previous section. This will break the U(1)

giving a mass to the vector superfield proportional to X. We can now integrate out

the vector superfield. This induces, a new spurious dependence of the low-energy

wave functions on X/φ, and correspondingly a new contribution to the soft masses.

The mass of a scalar with U(1) charge qi will be corrected by
5

δm2i = qi〈D〉 , 〈D〉 = 1
2
[m2ψ̄(X)−m2ψ(X)] , (5.1)

where m2ψ and m
2
ψ̄
are the anomaly mediated soft masses of ψ and ψ̄, eq. (2.5).6

This contribution to the slepton and squark masses is in general comparable to that

arising from the anomaly eq. (2.5). Its exact value depend on the RG trajectory of

Zψ and Zψ̄ that is model dependent. For a large enough value of 〈D〉 and qi > 0,
the contribution (5.1) can overcome the negative contribution (2.5) and provide a

realistic theory of soft masses. The contribution (5.1) is generated at the scale at

which the U(1) is broken. This scale must be around the GUT scale if we do not

want to spoil the gauge coupling unification of the MSSM. This does not necessary

implies that the scale of flavor must be well above the GUT scale to avoid flavor

violations in the soft masses. As explained in ref. [21], if qi are flavor independent,

the soft masses can be flavor diagonal at the leading order.

Gaugino masses are not affected by D-terms since the latter are R-invariant.

Therefore in this scenario gaugino masses are predicted to have their anomaly medi-

ated value eq. (2.11).

6. The µ-problem

In order to have a phenomenologically viable model, a supersymmetric Higgs mass

parameter µ, of the order of the soft terms, must be generated. This is a well-known

problem in GMSB theories where soft masses are induced by loop effects [22]. In our

models, since soft masses are also induced at the one-loop level, one might expect the

µ-problem to be equally severe. On the contrary, we will show that in these theories

there is a simple way to generate the µ parameter.

5There can be other contributions mediated by the U(1) vector multiplet at the two-loop

level [19]. These contributions, however, are proportional to g4U(1) and can be in principle smaller

than the ones here.
6Notice that for m2ψ = m2

ψ̄
the D-term contribution eq. (5.1) is zero. Therefore ψ and ψ̄ must

have different couplings in order to generate the soft mass (5.1).
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A priori, a µ mass could arise from the Weyl-invariant operator [23]∫
d4θ

φ†

φ
H1H2 , (6.1)

where H1,2 are the two Higgs doublets of the MSSM. This operator induces both µ

and Bµ at tree level. While µ could be small because of a small coefficient multiplying

eq. (6.1), this operator always gives B = Fφ, which is much larger than all the other

soft masses. Therefore this term must be forbidden. The solution we propose is to

generate the µ-term by the operator

∫
d4θ H1H2

X†

X
Z̃

(√
XX†

φφ†

)
, (6.2)

where Z̃ is a wave function coefficient at the renormalization scale µR →
√
XX†/φφ†

(in this section we will denote the renormalization scale by µR instead of µ in order

to distinguish it from the Higgs µ-parameter), and X is the light singlet with FX ' 0
introduced in section 4.

The operator (6.2) generates a one-loop µ term and a two-loop Bµ term:

µ =
1

2

dZ̃

d lnµR

∣∣∣∣∣
µR=|X|

, (6.3)

Bµ =
1

4

d2Z̃

(d lnµR)2

∣∣∣∣∣
µR=|X|

. (6.4)

The operator (6.2) can arise by integrating out a singlet S coupling to H1H2 and

getting its mass from X. A simple example is given by the superpotential∫
d2θ

[
λSH1H2 +

1

3
kS3 +

1

2
yS2X

]
. (6.5)

At one-loop, a kinetic mixing between X and S is generated∫
d4θZ̃(µR)SX

† + h.c. (6.6)

For a nonzero X VEV, the singlet S is massive and can be integrated out. Its

equation of motion is given by

S ' −λ
y

H1H2
X

, (6.7)

which inserted in eq. (6.6) gives rise to eq. (6.2).

An alternative model is given by∫
d2θS

(
λH1H2 + λNN

2 − λN̄N̄2
)
. (6.8)
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This model has a flat direction along λNN
2 = λN̄N̄

2 ≡ X2. Assuming as above that

X gets a VEV, the singlets get a mass. Integrating them out, one obtains eq. (6.2)

with Z̃ ∝ ZN − ZN̄ .
We stress that in the present mechanism there is no danger of generating a large

B, which was instead the case for GMSB. This is because nowhere in the visible

sector there is a supermultiplet with a tree-level mass splitting. All splittings are of

order αFφ ∼ mW to start with, and B cannot come out bigger than that.

7. Gauging an R-symmetry

In the first section, independent of supergravity, we could have pointed out that the

shift µ2 → µ2/φφ† is remarkable as it automatically defines a deformation of the
RG flow of a supersymmetric theory, into the flow of a softly broken one. In this

section we study under what conditions one can define a more general deformation

µ → µeV/3, where V is now a genuine vector superfield, and the factor 3 is chosen

for later use. Indeed we will just need to discuss the case V = VDθ
4, since µ →

µeV/3/(φφ†)1/2 parametrizes the most general shift.
Let us consider first a Wess-Zumino model with superfields Qi, i = 1, . . . , N , and

Yukawa couplings λijk. To be slightly more general, we indeed define the soft terms

by the formal shift

Zi(µ) = eqiVZi
(
µeV/3

) −→ m2i = −
(
qi +

γi

3

)
VD . (7.1)

In order to check if these soft masses do represent an RG trajectory we verify that

they satisfy the evolution equations. By use of the results of ref. [9] the general RG

equation at all orders has the form

dm2i
d lnµ

= − ∂γi

∂ lnλ2klm

(
m2k +m

2
l +m

2
m

)
, (7.2)

where summation over k, l,m is understood. It is easy to check that eq. (7.1) solves

the one above if qk + ql + qm = 0 for any λklm 6= 0. Notice that the q’s can thus
be considered charges of a background gauge symmetry, see eq. (7.1). Moreover,

whatever the structure of λklm, we can always define a consistent RG deformation

with all q’s vanishing. The situation changes when we turn to a gauge theory. In

addition to the shift of eq. (7.1), the superfield gauge couplings are defined by

Ra =
1

g2a (µe
V/3)

. (7.3)

We can do the same check we did for the WZ model. The Yukawa sector gives

the same constraint on the q’s as before. The constraint from the gauge sector is

determined by eq. (2.7) for Ra|D (remember that R|D is the coefficient of a non-local
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operator [9]). By using eqs. (7.1) and (7.3), and mλ = 0, eq. (2.7) implies(
b−

∑
i

Tiγi

)
VD

3
=

(∑
i

Ti(−qi − γi/3)
)
VD

3
, (7.4)

which, conveniently rewritten in terms of ri = qi + 2/3, is

Nc +
∑
i

Ti(ri − 1) = 0 . (7.5)

This is just the condition for an R-symmetry of charges ri to be non anomalous.

Notice also that the Yukawa constraint for ri is also ri+rj+rk = 2 for each λijk 6= 0.
Thus we have established that the general deformation µ → µeV can only work for

theories with a non-anomalous R-symmetry. Unfortunately the MSSM does not have

such a symmetry, so we cannot use this deformation to improve the AMSB scenario.

A possibility would be to add the suitable matter multiplets at the weak scale [24].

It is remarkable that by the above arguments in rigid supersymmetry a gauged

R symmetry has emerged. This brings us back to our natural arena: supergravity.

Indeed, maybe less instructively, we could have derived this new deformation simply

by gaugingR in supergravity. This is done in the formalism of ref. [25], by introducing

a connection eV under which the compensator has charge −2/3, and matter fields
have charge ri. The lagrangean is then given by∫

d4θφφ†e(ri−2/3)VQiQ
†
i +

∫
d2θφ3W (Qi) , (7.6)

where W (Qi) must have charge 2 to match the charge of φ
3.7 Notice that when V

gets a D-term we get at tree level m2i = −(ri − 2/3)VD = −qiVD in agreement with
eq. (7.1).

8. Conclusions

Theories of supersymmetry breaking induced by the conformal anomaly [5] present

several interesting properties. They are simple to realize, very predictive and the

induced soft masses are independent of flavor physics. Nevertheless, they have a big

drawback: they lead to tachyons (in particular, the sleptons).

Here he have reexamined these theories focusing on their ultraviolet decoupling

property. We have shown that decoupling is lost whenever a singlet (a modulus)

remains light below the high-energy threshold. These non-decoupling effects have

been used to solve the tachyon problem.

7Indeed the usual R-symmetry is a combination of the one here defined (which commutes with

supersymmetry) with the axial symmetry of the superconformal group. Both symmetries are for-

mally broken by the VEV of the real component of the compensator.
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In our first model, named anti-GMSB, the anomaly mediated masses are modified

by heavy vectorlike fields in such a way that they end up being positive at low-energy

(except for the Higgs). The model is still quite predictive since the spectrum depends

only on the number N and the mass M of the vectorlike fields. Furthermore, the

soft masses are also flavor independent if the mass of these fields is below the scale

of flavor. Phenomenologically the model is quite interesting since it presents a mass

spectrum different from other scenarios. For instance, for N = 4 the gluino is the

lightest gaugino. The lightest scalar can be the down squark, but it is more typically

the right-handed slepton. Depending on µ and tan β the LSP is either the lightest

scalar or a combination of zino and neutral Higgsino. Although the µ-parameter

cannot be predicted, it can be generated by the simple mechanism explained in

section 6. Unlike other scenarios, the gravitino is very heavy ≈ 10 TeV since it gets
its mass at tree-level.

A realistic mass spectrum can also be found in theories with extra U(1)’s broken

at high-energies. After integrating out the heavy U(1) sector, non-decoupling rem-

nants can again avoid the problem with tachyons. Flavor independence of the soft

masses is guaranteed in this case if the U(1)-charges are flavor independent.

In the models considered so far supersymmetry breaking was originating from

the F -term of the gravitational multiplet. In the last section we have generalized

this to include a D-term as a new source of supersymmetry breaking. This requires

gauging an R-symmetry and consequently enlarging the MSSM field content.

We want to conclude by emphasizing that the theories considered here make

testable predictions on the sparticle spectrum. This encourages us to further explore

their phenomenology at present and future experiments.
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