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1. Introduction

Major advances in supersymmetric field theory and string theory in various dimen-

sions have led to the understanding that it is common for apparently different quan-

tum field theories to be quantum-mechanically equivalent. Two theories which are

“dual” in this way may be thought of as two choices of variables in a path integral

representation for the same generating functional. Not that such “duality relations”

are new; the relation between position space and momentum space representations

of quantum mechanical systems are of this type; the order-disorder-fermion represen-

tations of the Ising model, the identity of the sine-Gordon model and the Thirring

model, and target-space duality in two-dimensional sigma-models are well known

from two dimensions; and it has long been conjectured that N = 4 supersymmetric
Yang-Mills theory in four dimensions is a conformal field theory with a duality sym-

metry. The developments in the last few years have provided vast amounts of circum-
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stantial evidence for the latter conjecture and have shown that many different duality

transformations exist in higher dimensions with as few as four supercharges (which

is N = 1 supersymmetry in four dimensions and N = 2 supersymmetry in three.)
However, outside of a small number of examples — free field theories, some lat-

tice models, and a few two-dimensional continuum field theories — we do not know

the precise change of variables which would allow the transformation from one rep-

resentation of a theory to a dual representation. In this paper we take a small step

toward making the “mirror symmetry”[1] of three dimensional N = 4 supersymmet-
ric abelian gauge theories explicit. First, focusing on the infrared behavior of these

theories, where mirror symmetry is exact, we present a formula which captures the

essence of the mirror symmetry transformation in the form of a generalized Fourier

transform. This formula encodes most known results in abelian mirror symmetry in

simple ways. Second, we use the formula to derive some new results. We consider

N = 3 Chern-Simons theories [2, 3] and N = 4 theories with BF-type couplings [4]
interacting with matter, and argue they flow in the infrared to lines of fixed points

parameterized by the coefficient of the CS or BF term. As we will show, mirror sym-

metry maps these models to models of the same type while inverting the CS or BF

coupling; the inversion of the CS coupling agrees with [5]. Third, after identifying

the field theory origin of the mirror of the gauge coupling (the so-called “magnetic

coupling”), we use our formula to suggest a mirror for N = 4 SQED which is valid at
all energy scales, not just in the infrared. Finally, we discuss the construction of the

vortex-creation operators in N = 4 SQED, and compute their dimension at large Nf .

2. Preliminaries

We work in Minkowski space with signature (−+ +). The N = 4 superalgebra has
eight supercharges which are doublets under SL(2,R)× SU(2)R × SU(2)N ; the first
factor is the Lorenz group, while the last two are R-symmetries. We use indices

α, β; i, j; a, b for the indices of the defining representation of these three factors. The

abelian gauge theories which are the subject of this paper describe the interaction of

U(1) vector multiplets V and charged hypermultiplets Q. In components the vector
multiplet contains a gauge boson Aµ, a gaugino λ

i
aα and three real scalars Φ

{ij}, while
the hypermultiplet contains a doublet of complex scalars Qa and a doublet of spinors

ψiα. Because N = 4 superspace is often inconvenient, we will use N = 2 superspace
language. The hypermultiplet can be written as two N = 2 chiral superfields Q, Q̃ of
charge 1,−1. The N = 4 vector multiplet consists of an N = 2 real vector multiplet
V whose lowest component is a real scalar and a chiral multiplet Φ whose lowest

component is a complex scalar. In the N = 2 notation only the U(1)N ⊂ SU(2)N
R-symmetry is explicit; the superfield Φ has U(1)N charge 2, while the rest of the

N = 2 superfields are uncharged.

2



J
H
E
P
0
4
(
1
9
9
9
)
0
2
1

The N = 4 supersymmetry algebra has an idempotent outer automorphism
which interchanges SU(2)R and SU(2)N . This automorphism takes an ordinary vec-

tor multiplet, whose scalars transform as a triplet of SU(2)N , into a twisted vector

multiplet [4], whose scalars transform as a triplet of SU(2)R. Similarly, one can define

a twisted hypermultiplet whose bosonic fields form an SU(2)N doublet. Field and

superfield constituents of twisted N = 4 multiplets will be distinguished with a hat,
e.g. Φ̂ for the chiral part of the twisted vector multiplet. Note that Φ̂ has U(1)N

charge 0, while Q̂ and ˆ̃Q, the chiral constituents of the twisted hypermultiplet, have

U(1)N charge 1.

In three dimensions a photon is the electric-magnetic dual of a scalar. The

scalar is periodic if the gauge group is compact, and shifting it by a constant is a

symmetry of the classical theory. This duality transformation takes a free N = 4
vector multiplet into a twisted hypermultiplet with target space R3 × S1 or R4,
depending on whether the gauge group is compact or not. Similarly, a free twisted

vector multiplet is the electric-magnetic dual of an ordinary hypermultiplet.

Yet another type of N = 4 multiplet is a linear multiplet (which also has a
twisted version). Linear multiplets are important because they contain conserved

currents. An N = 4 linear multiplet consists of an N = 2 linear multiplet Σ (a real
superfield satisfying D2Σ = D̄2Σ = 0) and an N = 2 chiral superfield Π with U(1)N
charge 2. The field strength of a vector multiplet F resides in a linear multiplet with

Σ = iDD̄V and Π = Φ. The conserved current in this case is ∗F where ∗ is the Hodge
star; the conservation of ∗F is a consequence of the Bianchi identity dF = 0. The
charge associated to this current is the generator of the shift symmetry of the dual

photon mentioned above. The Noether current associated with the flavor symmetries

of a twisted hypermultiplet also resides in an N = 4 linear multiplet; in this case
Σ = Q̂†Q̂− ˆ̃Q ˆ̃Q

†
, Π = ˆ̃QQ̂. Conversely, the topological current ∗F̂ associated with a

twisted vector multiplet and the flavor current of an ordinary hypermultiplet reside

in a twisted linear multiplet. The latter consists of an N = 2 linear multiplet Σ̂ and
a chiral multiplet Π̂ with U(1)N charge 0.

The action of an N = 4 theory of hypermultiplets and abelian vector multiplets
contains kinetic terms for the hypermultiplets

SH(Q,V) = −
∫
d3x d4θ

(
Q†e2VQ+ Q̃†e−2V Q̃

)
−
[∫

d3x d2θ i
√
2ΦQQ̃+ c.c.

]
,

(2.1)

which include scalar kinetic terms −|DµQ|2−|DµQ̃|2, and kinetic terms for the vector
multiplets

1

g2
SV (V) = 1

g2

∫
d3x d4θ

{
1

4
Σ2 − Φ†Φ

}
, (2.2)
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which include 1
4g2
F 2µν . One can also add mass terms for the hypermultiplets

Sm(Q) = −
∫
d3x d4θ

(
Q†e−2imrθθ̄Q+ Q̃†e2imrθθ̄Q̃

)
−
[∫

d3x d2θ mQQ̃+ c.c.

]

(2.3)

and Fayet-Iliopoulos (FI) terms for the vector multiplets

SFI(V) = ξr

π

∫
d3x d4θ V −

[
iξ

2π

∫
d3x d2θ Φ + c.c.

]
. (2.4)

Here mr ∈ R and m ∈ C together form an SU(2)N triplet while ξr ∈ R and
ξ ∈ C form an SU(2)R triplet. These building blocks suffice to construct the most
general renormalizable action containing only ordinary hypermultiplets and vector

multiplets. The most general renormalizable action for twisted fields is obtained by

putting hats over all fields in (2.1)–(2.4).

If the mass terms and the FI terms are zero, the N = 4 action has SU(2)R ×
SU(2)N R-symmetry, as well as two discrete symmetries which we call P and CP.

To define these discrete symmetries we need to recall how parity transformation acts

on Majorana spinors in three dimensions. Let us define parity as a reflection of one

of the spatial coordinates, say x1 → x′1 = −x1. To ensure parity-invariance of the
Dirac equation we must transform spinors according to ψ → Rψ, where the two-by-

two matrix R satisfies RTR = 1, RTγ0γ1R = −γ0γ1, RTγ0γ2R = γ0γ2. Then parity
acts on N = 2 superspace via x′0 = x0, x′1 = −x1, x′2 = x2, θ′ = Rθ. The chiral

superspace measure d2θ is parity-odd, while d4θ is parity-even. We define P as a

transformation which acts on N = 2 superfields via

V ′(x′, θ′) = V (x, θ), Φ′(x′, θ′) = −Φ(x, θ) ,
Q′(x′, θ′) = Q(x, θ), Q̃′(x′, θ′) = Q̃(x, θ) . (2.5)

The transformation CP is defined by

V ′(x′, θ′) = −V (x, θ), Φ′(x′, θ′) = Φ(x, θ) ,

Q′(x′, θ′) = Q̃(x, θ), Q̃′(x′, θ′) = −Q(x, θ) . (2.6)

We call these transformations P and CP because the gauge field behaves as a polar

vector with respect to P and as an axial vector with respect to CP. It easy to check

that when masses and FI terms are absent, the action is both P and CP-invariant.

Mass terms break P, while FI terms break CP. To define P and CP for twisted

multiplets we simply put hats over all fields in eqs. (2.5) and (2.6).

Let us recall how mirror symmetry works for N = 4 abelian gauge theories
without twisted fields [1]. If we set the hypermultiplet masses and FI couplings to

zero, then the only mass scale in these theories is g2, and they are believed to flow to

nontrivial superconformal fixed points in the infrared, where the scale g2 is washed
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out. Each of these superconformal fixed points has a dual description using the

duality mapping known as mirror symmetry [1]. Under mirror symmetry, electrically

charged particles and Abrikosov vortex solitons are exchanged. The mirror theory is

a twisted abelian gauge theory, i.e. the fundamental degrees of freedom live in twisted

hypermultiplets and twisted vector multiplets. The Higgs branch of one theory is the

Coulomb branch of its mirror; similarly, the mass terms for the hypermultiplets are

mirror to the FI terms for the twisted vector multiplets (which determine the masses

of vortices.) The mapping of flavor symmetries is generally complicated. The U(1)

currents from abelian subgroups of hypermultiplet flavor symmetries are mapped to

the U(1) currents ∗F̂ [1]. The off-diagonal currents of the flavor symmetries are not
seen semiclassically and will not be discussed below.

For example, the mirror of N = 4 U(1) with Nf flavors [we will refer to this
theory as SQED-Nf ] is a twisted U(1)

Nf−1 gauge theory with Nf twisted hypermul-

tiplets Q̂p,
ˆ̃Qp, p = 1, . . . , Nf , where Q̂p has charge +1 under the p

th U(1) factor and

charge −1 under the (p− 1)th U(1) factor [1]. The topological current ∗F of N = 4
SQED is mirror to the Noether current which generates a U(1) global symmetry

transformation Q̂p → eiαQ̂p,
ˆ̃
Qp → e−iα ˆ̃Qp, p = 1, . . . , Nf . It is convenient to choose

the normalization in which Q̂ has charge 1/Nf under this global U(1); then all gauge

invariant operators in the U(1)Nf−1 theory have integer global U(1) charges. Note
that the case Nf = 2 is special, since the mirror theory is isomorphic to the original

one [1].

It is also interesting to consider theories which contain both ordinary and twisted

N = 4 multiplets. A natural way to couple twisted and ordinary vector multiplets
is by means of an N = 4 BF term [4]. It appears that this is the only way to couple
twisted and ordinary fields without introducing operators of dimension higher than

three. The N = 4 BF term has the following form:

SBF (V̂ ,V) = 1
2π

∫
d3x d4θ V Σ̂−

[
1

2π

∫
d3x d2θ iΦΦ̂ + c.c.

]
. (2.7)

Its component form in the Wess-Zumino gauge is given by

SBF =
1

2π

(
−1
2
εmnpAmF̂np + Φ

{ij}D̂{ij} + Φ̂{ab}D{ab} + iλiaαλ̂
aα
i

)
. (2.8)

Here D{ab} and D̂{ij} are the auxiliary fields of the ordinary and twisted vector
multiplets respectively. The authors of [4], who were the first to construct the N = 4
BF coupling, observed that both ordinary and twisted multiplets were required.

Noting the analogy with two dimensions, they correctly conjectured the existence of

a mirror symmetry which would exchange these multiplets. We will see in section 3

that the BF interaction lies at the heart of the mirror transform.

The BF term gives a gauge-invariant mass to both V and V̂. It also breaks P
and CP. Certain discrete symmetries remain unbroken, however. Namely, a trans-
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formation which acts as P (CP) on the ordinary fields and as CP (P) on the twisted

fields is still a symmetry.

When a BF term is present in the action, one can dualize either a twisted vector

multiplet, or an ordinary one, but not both of them simultaneously. Also, in the

presence of the BF term the shift symmetry of the dual photon is gauged. This will

be discussed in more detail in section 4.

We will also need gauge-fixing terms. Their explicit form is unimportant for our

purposes. For example, one can use an N = 2–covariant version of Landau gauge:

SGF (V) =
∫
d3x

(∫
d2θ ΨD̄2V + c.c.

)
, (2.9)

where Ψ is a chiral superfield serving as a Lagrange multiplier. This particular

gauge-fixing term breaks N = 4 supersymmetry down to N = 2 but the correlators
of gauge-invariant quantities remain N = 4-supersymmetric.
As in [1], one can prove nonrenormalization theorems for various branches of

the moduli space. In particular, the metric on the Higgs branch, where ordinary

hypermultiplets have VEVs, does not depend on the gauge coupling of the ordinary

vector multiplets. Similarly, the metric on the twisted Higgs branch, where twisted

hypermultiplets have VEVs, is unaffected by the twisted gauge coupling. On the

other hand, in the presence of the BF term the metric on the Higgs branch does

depend on the twisted gauge coupling. We will see this explicitly in section 4.

3. The mirror transform is a fourier transform

It has been known for some time that most known results of abelian mirror symmetry

can be derived from the properties of N = 4 supersymmetric U(1) gauge theory with
a single charged hypermultiplet (an electron, a positron and their scalar partners.)

This theory, which we will call SQED-1, flows from weak coupling in the ultraviolet

to strong coupling in the infrared, where it becomes a conformal field theory (CFT)

which we will refer to as CFT-1. The fundamental result of mirror symmetry is that

CFT-1 is equivalent to a Gaussian theory [6] — namely, a free twisted hypermultiplet.

SQED-1 has a single abelian global symmetry whose current is ∗F . The associ-
ated charge, the integrated magnetic flux, is the vortex number. We may couple this

current and its superpartners to a background twisted vector multiplet V̂ through a
BF-type interaction (2.7). Then the generating functional for correlation functions

of the current multiplet in SQED-1 can be written as

ZSQED−1[V̂] =
∫
DV DQ exp

(
i

g2
SV (V) + iSGF (V) + iSBF (V̂,V) + iSH(Q,V)

)
.

(3.1)
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We define this functional integral as the sum of its expansion in powers of g2. Since

the theory is abelian, there are no instanton corrections. Power counting and sym-

metries imply that there are no divergences in this expansion, so no counterterms

are needed in (3.1). Since g is the only available scale, the perturbative expansion

is actually an expansion in powers of g2/p where p is momentum. To obtain the

infrared CFT, one needs to resum the perturbative series and take the limit g →∞.
Applying this limit formally to (3.1) we obtain the expression

ZCFT−1[V̂ ] =
∫
DV DQ eiSGF (V)+iSBF (V̂ ,V)+iSH(Q,V) . (3.2)

As mentioned above, CFT-1 is equivalent to a theory of a free twisted hyper-

multiplet Q̂, with the field strength of V being mapped to the abelian U(1) flavor
current of the twisted hypermultiplet. The appropriate path integral is

ZQ̂[V̂] =
∫
DQ̂ eiSH(Q̂,V̂) . (3.3)

The statement of mirror symmetry is ZQ̂[V̂] = ZCFT−1[V̂ ]. The integrals over the
hypermultiplets are quadratic and give a superdeterminant of the supersymmetric

Laplacian K on flat d = 3 N = 4 superspace. Using this, we may write the equiva-
lence of these two generating functionals in the following suggestive form:

Sdet
(
K[V̂ ]

)
=

∫
DV eiSGF (V)eiSBF (V̂,V) Sdet (K[V]) . (3.4)

Mirror symmetry between N = 4 SQED-1 and the theory of a free twisted hyper-
multiplet is thus related to the invariance of the superdeterminant under a Fourier

transform with respect to the background fields. Note that this is highly non-trivial,

as neither superdeterminant is Gaussian.

The relation (3.4) encapsulates many known properties of mirror symmetry and

allows them to be rederived using elementary manipulations. We list a few examples

here.

3.1 Inverse and repeated Fourier transforms

To invert the functional Fourier transform (FFT) we multiply both sides of (3.4) by

exp[−iSBF (V ′, V̂)− iSGF (V̂)], where V ′ is another background vector multiplet, and
integrate both sides of (3.4) over V̂. The physical meaning of these manipulations
is that gauging a global symmetry in one theory corresponds to removing a gauge

symmetry (sometimes called “ungauging”) using a BF coupling in its mirror. If

instead we apply the FFT to Sdet(K[V]) twice, we get Sdet(K[−V]), implying that
the fourth power of the FFT is the identity transformation. (This is also true for the

ordinary Fourier transform on the space of C∞ functions of rapid decrease.) In the
string-theoretic approach of [7] to mirror symmetry, the mirror transform is effected

by a generator S of SL(2, Z) which also satisfies S4 = 1.
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3.2 Mapping of operators

As discussed in sec. 2, mirror symmetry maps hypermultiplet masses to Fayet-

Iliopoulos terms, hypermultiplet flavor currents to topological currents, and the Higgs

branch of moduli space to the Coulomb branch. These mappings can be easily seen

in eq. (3.4). A free hypermultiplet has a Higgs branch parameterized by 〈Q̂ ˆ̃Q〉 and
〈Q̂†Q̂− ˆ̃Q

† ˆ̃
Q〉, while CFT-1 has a Coulomb branch with coordinates 〈Φ〉, 〈Σ〉. That

these branches are exchanged is made clear by taking derivatives of the two sides

of (3.4) with respect to Φ̂, V̂ . Similarly, a constant expectation value for Φ̂ gives a

mass to the hypermultiplet Q̂ while inducing a Fayet-Iliopoulos coupling for V. The
background gauge field Âµ couples to the topological current of CFT1 and to the

flavor current of the free hypermultiplet.

3.3 The convolution theorem

The inverse FFT and the convolution theorem may be applied to derive mirror

symmetry in all other abelian N = 4 theories. For example, to study (twisted)
SQED-Nf , with (twisted) hypermultiplets Q̂i of charge 1, one raises both sides of
eq. (3.4) to the power Nf and then integrates over V̂. On the left-hand side one
gets the partition function of the twisted SQED-Nf . On the right-hand side, the

integration over V̂ removes the vector multiplet which couples equally to all Nf
hypermultiplets. The remaining Nf − 1 vectors and Nf hypermultiplets form the
U(1)Nf−1 theory described in sec. 2. Similar manipulations allow one to find the
mirror of an arbitrary abelian N = 4 theory. The results agree with [8].

3.4 N = 2 mirror symmetry
N = 2 SQED with two oppositely charged chiral superfields Q, Q̃ can be obtained
from N = 4 SQED-1 by coupling the latter to a neutral chiral superfield S via the
interaction

∫
d2θ SΦ, which makes both S and Φ massive [9, 10]. We may identify

the chiral field Φ̂ int he twisted vector multiplet V̂ with S and integrate over Φ̂ on
both sides of (3.4) with weight exp(−i/h ∫ d4θ Φ̂†Φ̂). In our normalization Φ̂ has
engineering dimension 1, therefore h is a parameter of dimension 1. The right-hand

side becomes the partition function of a theory whose infrared (large h) limit is the

same as the infrared limit of N = 2 SQED-1. The left-hand side is a partition
function of an N = 2 theory of three chiral superfields Q̂, ˆ̃Q, Φ̂ coupled via the
superpotential W = Φ̂Q̂ ˆ̃Q. These two theories were shown to be mirror in [9, 10].

Mirror symmetry in all other N = 2 abelian theories can again be derived using the
convolution theorem and the inverse Fourier transform. In all these theories there

are no ultraviolet divergences (if regularization preserves all the symmetries), so our

formal manipulations are presumably justified.
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4. N = 4 theories with BF couplings
In this section we study N = 4 theories which contain both ordinary and twisted
fields coupled via a BF term eq. (2.7). These theories apparently have not been con-

sidered in the literature. We will show that BF couplings are exactly marginal. They

parameterize manifolds of conformal field theories, in analogy to Maxwell couplings

in finite d = 4 N = 2 supersymmetric gauge theories. As in the four-dimensional
case, weakly coupled theories are found near certain boundary points of these man-

ifolds, with the inverse BF couplings serving as expansion parameters for a finite

perturbation series around a free theory. Mirror symmetry acts on these manifolds

by exchanging strongly coupled SCFTs with weakly coupled ones.

To be concrete, let us consider a copy of N = 4 SQED-1 and a copy of its
twisted version, coupled via a BF-term with coefficient k. The classical action of this

theory is

1

g2
SV (V) + 1

ĝ2
SV (V̂) + SH(Q,V) + SH(Q̂, V̂) + kSBF (V, V̂) . (4.1)

The vector multiplets become topologically massive and therefore both the twisted

and ordinary Coulomb branches are lifted. The classical moduli space of this theory

consists of a Higgs branch and a twisted Higgs branch parameterized by the ordinary

and twisted hypermultiplet vacuum expectation values, respectively. These branches

intersect at a single point (the origin.) To determine the metric we must solve the

D-flatness conditions modulo gauge transformations. The D-flatness conditions for

the Higgs branch are

Q†σpQ = k

2π
Φ̂p , p = 1, 2, 3 . (4.2)

Note that the lowest component of the twisted vector multiplet plays the role of the

dynamical Fayet-Iliopoulos term. We expect that eqs. (4.2) can be interpreted as

moment map equations for a hyperkähler quotient [11] (see also [12] for a review).

To see that this is indeed the case, recall that we can dualize the twisted photon

Â into a scalar τ̂ . τ̂ can be combined with Φ̂p into a quaternion

w =
ĝ2τ̂

π
√
2
+ iσpΦ̂p ,

where ĝ is the twisted gauge coupling. In terms of w the kinetic energy of the twisted

vector multiplet takes the form
1

2ĝ2
|∂w|2 .

The metric |dw|2/(2ĝ2) is, up to an overall factor, the standard hyperkähler metric
on R4 (or R3 × S1 if we take the gauge group to be compact.) We can also think of
the complex doublet Q as a quaternion, with metric |dQ|2. Under a constant gauge
transformation from the untwisted U(1), Q transforms as Q → Qeiσ1α. Less trivially,
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w transforms as w → w−kĝ2α/(π√2), as explained below. The hyperkähler moment
equations for this transformation are precisely (4.2). It is well known that this

hyperkähler quotient yields the Taub-NUT metric [12], and thus the Higgs branch is

the Taub-NUT space. This space can be thought of as a circle fibered over R3. The

Taub-NUT metric depends on a single parameter which sets the asymptotic radius

of this circle. In the present case this radius is kĝ. Identical arguments show that

the twisted Higgs branch is also a Taub-NUT space, the asymptotic radius being kg.

Note that these results are in agreement with the nonrenormalization theorem stated

in section 2, which says that the metric on the Higgs branch (resp. twisted Higgs

branch) does not depend on the gauge coupling (resp. twisted gauge coupling).

Let us recall why the dual photon τ̂ transforms additively, τ̂ → τ̂ − kα, under a
constant gauge transformation. In short, the BF coupling A ∧ F̂ can be interpreted
as a coupling of the gauge field A to a topological current ∗F̂ generating the shift
of the dual photon. This means that the shift symmetry is gauged, A being the

corresponding gauge field, so a gauge transformation of A must be accompanied by a

shift of τ̂ . A more detailed argument goes as follows. In order to dualize the twisted

gauge field Â we need to treat its field strength F̂ as an unconstrained 2-form and

impose the Bianchi identity dF̂ = 0 via a Lagrange multiplier τ̂ . Then the action

takes the form
− 1
4π
εmnpF̂mn(kAp + ∂pτ̂ ) + · · · ,

where dots denote terms which are manifestly invariant with respect to gauge trans-

formations A → A + dα. The action will be invariant if we also transform τ̂ as

τ̂ → τ̂ − kα.
Our discussion of the metric was classical, but one can show that there are no

quantum-mechanical corrections. Indeed, supersymmetry tells us that the metric is

hyperkähler, and we also know that it has SU(2)R isometry (SU(2)N for the twisted

Higgs branch) which rotates the three complex structures. This, together with the

known asymptotic behavior, uniquely determines the metric [13].

In the infrared limit we must take both gauge couplings to infinity, and then

the moduli space becomes a pair of R4’s intersecting at the origin. For infinite

gauge couplings the one-particle poles in the propagators of the vector multiplets

move to infinity; nevertheless the vector multiplets cannot be ignored, since the BF

term remains and induces a nontrivial interaction between the ordinary and twisted

hypermultiplets, whose strength depends on k. The theory at the origin of the moduli

space is a nontrivial CFT (as the moduli space is not smooth there) with N = 4
SUSY and unbroken SU(2)R × SU(2)N symmetry.
For k →∞ the vector multiplets decouple, so the CFT at the origin becomes a

direct sum of a free hypermultiplet and a free twisted hypermultiplet. It is straight-

forward to set up perturbation theory in 1/k. Using the approach of Refs. [14, 15]

it is easy to show that the coefficient of the BF-term k is not renormalized, so the

CFT at the origin is an exactly marginal deformation of the theory with k = ∞,
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i.e. of a free theory. In fact, the high degree of supersymmetry ensures that there

are no ultraviolet divergences in this expansion. The dimension of any operator can

be computed as a power series in 1/k. The dimensions of operators in short repre-

sentations of the superconformal algebra are determined by their SU(2)R × SU(2)N
quantum numbers: ∆ = jR+jN for scalar primary operators, where jR and jN are the

SU(2)R and SU(2)N spins [16]. The dimensions of operators in long superconformal

multiplets depend on k, in general.

In the opposite limit, k → 0, ordinary and twisted multiplets do not couple to
each other and the theory flows to a direct sum of CFT-1 and twisted CFT-1. Note

that this theory is mirror to the theory at k → ∞. One may conjecture that more
generally the CFT at large k and the CFT at small k are mirror to each other. To

show that this is indeed the case, consider the following generating functional for the

CFT with BF coupling k:

Zk[U , Û ] =
∫
DV DV̂ Sdet

(
K[V̂ ]

)
Sdet (K[V]) exp

(
ikSBF (V̂,V)+

+iSGF (V) + iSGF (V̂) + iSBF (V̂,U) + iSBF (Û ,V)
)
. (4.3)

Differentiating Zk with respect to U and Û generates all the correlations functions
of ordinary and twisted vector multiplets. Now we substitute the right-hand side

of (3.4) for Sdet (K[V]) and Sdet
(
K[V̂]

)
and perform Gaussian integrals over V and

V̂ . The result turns out to be
Z−1/k

[
−1
k
U ,−1

k
Û
]
exp

(
− i
k
SBF (Û ,U)

)
. (4.4)

This means that the connected correlation functions of V and V̂ in CFTs with BF
couplings k and −1/k are related by a trivial rescaling. The two-point functions in
addition differ by a contact term.

Our discussion can be easily generalized to theories with Nf > 1 and larger gauge

groups. For example, take Nf copies of CFT-1, each with a hypermultiplet of charge

1. Take a similar set of copies of twisted CFT-1, and couple the vector multiplets to

the twisted vector multiplets via a BF term, giving the action

SH(Qi,Vi) + SH(Q̂i, V̂i) +
∑
i,j

kijSBF (Vi, V̂j).

This yields a manifold of N = 4 SCFTs parameterized by the matrix k. Mirror
symmetry acts on this manifold by k → −k−1. When k is nondegenerate, the
Coulomb branches are lifted. The metrics of the Higgs and twisted Higgs branches

can be computed as in the Nf = 1 case above and, for finite Maxwell couplings, turn

out to be of the Lindström-Roček/Lee-Weinberg-Yi (LR/LWY) type [17, 12].

In summary, N = 4 theories with BF couplings are similar in many respects to
certain finite N = 2 theories in four dimensions. Both types of theories are finite in

perturbation theory and have exactly marginal couplings (real in d = 3 and complex
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in d = 4) which are acted upon by a duality transformation. In d = 3 this duality is

mirror symmetry, while in d = 4 it is electric-magnetic duality.

5. N = 3 theories with Chern-Simons couplings
It is believed impossible to write down an N = 4 supersymmetric Chern-Simons
(CS) action coupled to matter. However, an N = 3 CS action exists [2, 3]. One
simply identifies the ordinary and twisted vector multiplets appearing in the BF

action (2.7). This identification obviously breaks SU(2)R × SU(2)N symmetry down
to its diagonal subgroup SU(2)D and, less obviously, breaks N = 4 SUSY down to
N = 3. Under SU(2)D the four supercharges of N = 4 decompose as 1 + 3. The
identification breaks the singlet while the triplet survives. We will see the properties

of these theories are very similar to those considered in the previous section.

Let us briefly review N = 3 SUSY theories. The basic multiplets are the hyper-
multiplet and the vector multiplet. The hypermultiplet contains an SU(2)D-doublet

of scalars Qa and an SU(2)D-doublet of spinors ψa. The vector multiplet contains

a triplet of real scalars Φ{ab}, a triplet of spinors λ{ab}, a singlet spinor λ0, and a
gauge boson Aµ. An N = 3 action for hypermultiplets automatically has N = 4
SUSY. In particular an N = 3 sigma-model must have a hyperkähler target space. If
restrict ourselves to renormalizable theories, then the most general N = 3 action for
hypermultiplets interacting with abelian vector multiplets is the sum of the N = 4
action and the N = 3 Chern-Simons term for the vector multiplets
∑
i,j

kijSCS(Vi,Vj) =
∑
i,j

kij

4π

(∫
d3xd4θ ΣiVj −

[∫
d3xd2θ ΦiΦj + c.c.

])
. (5.1)

Here kij is a real symmetric matrix.
1 In what follows the parameters kij will be

referred to as Chern-Simons couplings, while the coefficients of the Maxwell terms

will be called gauge couplings, as before. Note that the N = 4 theories with BF
couplings considered above form a subset of the set of N = 3 CS theories.
N = 3 gauge theories have in general both Coulomb and Higgs branches. When

kij is nondegenerate, all vector multiplets become massive and the Coulomb branch

is lifted, while the Higgs branch remains (if the number of hypermultiplets exceeds

the number of vector multiplets.) Quantum corrections cannot lift this branch but,

unlike the N = 4 case, they can modify its metric. The form of the quantum

corrections to the metric is tightly constrained by the requirement that the metric

be hyperkähler.

1We take the gauge group to be noncompact, i.e. Rn rather than U(1)n. Since we take all

hypermultiplets to have unit charge, the coefficients kij must be rational in the compact case; then

there is a basis where all kij and all hypermultiplet charges are integers. Note that Green’s functions

which are well-defined in the non-compact case are identical in the compact case and are continuous

functions of k.
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Consider first N = 3 SQED-1 with a CS coupling k and infinite bare gauge
coupling. In this case there is no moduli space: the Coulomb branch is lifted be-

cause the CS term gives the vector multiplet a topological mass, while the Higgs

branch is lifted because integrating out the vector multiplet produces a potential for

the hypermultiplet. When k → ∞ the vector multiplet decouples, and the theory
becomes a theory of a free massless hypermultiplet, with N = 4 supersymmetry and
SU(2)R× SU(2)N R-symmetry. Since the coefficient of the CS term is not renormal-
ized [14, 15], the theory with k 6= ∞ is an exactly marginal deformation of the free
hypermultiplet, in analogy to the BF theory considered earlier. One can perform an

ordinary Feynman diagram expansion in 1/k, which by power counting and super-

symmetry is completely finite. Since there are no dimensionful parameters, there is

no wave-function renormalization of the hypermultiplet. This also follows from the

fact that chiral gauge-invariant operators like QQ̃ belong to short representations

of N = 3 superconformal algebra, and their dimension is determined entirely by
their SU(2)D spin via ∆ = jD. The dimensions of nonchiral operators will generally

depend on k.

In the opposite limit k → 0 we obtain N = 4 SQED-1 with infinite gauge
coupling, i.e. CFT-1, which is mirror to the free hypermultiplet found as k →∞. As
in the BF case, we are led to the conclusion that N = 3 SQED-1 with CS coupling
k is dual to N = 3 SQED-1 with CS coupling −1/k. (The inversion of the CS
coupling was previously argued, using branes in Type IIB string theory, in [5].) The

generating functional of CFT-1 with CS coupling k is

Zk[U ] =
∫
DV Sdet (K[V]) exp

(
ikSCS(V,V) + iSGF (V) + iSBF (U ,V)

)
. (5.2)

Upon using eq. (3.4) and performing the Gaussian integral over V this becomes

Z−1/k

[
−1
k
U
]
exp

(
− i
k
SCS(U ,U)

)
. (5.3)

This shows that the connected correlators of V at CS coupling k and CS coupling
−1/k are related by a simple rescaling (and a shift by a contact term for the two-point
function).

Our discussion can be easily generalized to theories with more multiplets. Con-

sider Nf copies of CFT-1 and couple the vector multiplets together as in (5.1). The

theories at the origin of moduli space make up a manifold of N = 3 SCFTs param-
eterized by the matrix k. Mirror symmetry acts on this manifold by k → −k−1.
For generic k there is no moduli space; the only solution of the classical D-flatness

equations
1

2π

∑
j

kijΦ
p
j = Q

†
iσ
pQi ≡ Hpi , |Φi|2|Hi|2 = 0 , (5.4)

(no sum on i) is the trivial one, Φ = Q = Q̃ = 0. In general, we may search for
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solutions as follows. The second set of equations in (5.4) requires that we divide

the indices i into two sets, which without loss of generality (through relabeling) we

may take to be I = 1, 2, . . . , n and r = n + 1, . . . Nf , and set H
p
I = 0,Φ

p
r = 0. The

equations

kIJΦ
p
J = 0

have nontrivial solutions if kIJ has zero determinant. If this is the case, then Φ
p
J =∑

v c
p
ve
v
J , where the e

v
J are the zero modes of the minor kIJ , and c

p
v are three sets of

coefficients, p = 1, 2, 3. If we expand the photons AµJ as A
µ
J =
∑
v b
µ
v (x)e

v
J + · · ·, then

the fields bµv (x) do not couple to themselves via CS terms, so their dual scalars τv
may be defined in the usual manner. The fields bµ(x) do couple to other photons, via

BF-type terms. As a result of this the scalars τv transform additively under gauge

transformations of other photons. Meanwhile, the other equations

Hpr =
1

2π
krJΦ

p
J

fix the expectation values of Qr up to a gauge transformation. As in the BF case,

these equations can be interpreted as moment map equations for a hyperkähler quo-

tient. When Maxwell terms are present, the corresponding hyperkähler metric is

again of the LR/LWY type [17, 12]. An interesting issue is whether there are quan-

tum corrections to this metric. The hyperkähler property of the metric and the

presence of triholomorphic U(1) isometries (coming from the shift symmetries of the

dual photons) ensure that the quantum metric remains of the LR/LWY type. How-

ever, these considerations still allow the parameters of the metric to depend on the

elements of the matrix k in an arbitrarily complicated manner. We have not resolved

this issue completely.

These results contain, as special cases, our results on N = 4 theories with BF
couplings and the mirror relations considered in [5]. Furthermore, the general N = 3
CS theory can be reduced to this example by linear field redefinitions and possible

addition of decoupled (k =∞) vector and/or hypermultiplets.
It is interesting to note that duality of certain Chern-Simons theories with respect

to the inversion of the CS coupling has been conjectured to underlie the structure of

the phase diagram of quantum Hall liquids; see for example [18, 19, 20].

6. Piecewise mirror transformations

Up to this point we have limited ourselves to discussing mirror transformations ap-

plied to a theory as a whole, converting all ordinary multiplets to twisted multiplets

and vice versa. However, nothing prevents us from applying the mirror transform,

as given in eq. (3.4), to one hypermultiplet or twisted hypermultiplet at a time. We

will call this operation a “piecewise mirror transform.” In general a theory with p

hypermultiplets and q twisted hypermultiplets will have 2p+q piecewise-mirror de-

scriptions.
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To illustrate this we consider the simplest non-trivial example. Take U(1) with

two hypermultiplets, one of charge 1 and one of charge q. The usual mirror transform

converts its infrared conformal field theory to that of twisted U(1) with two twisted

hypermultiplets of charge 1 and −1/q. (Note the sign of a hypermultiplet charge can
be changed by a field redefinition.) If instead we apply a piecewise mirror transform

to the hypermultiplet of charge 1, using eq. (3.4), we will find a theory with the

following content: a vector multiplet coupled to a twisted vector multiplet with a BF

coupling k = 1, a hypermultiplet of charge q coupled to the vector multiplet, and a

twisted hypermultiplet of charge 1 coupled to the twisted vector multiplet. Rescaling

the vector multiplet, we may set the hypermultiplet charge to 1 and the BF coupling

to k = 1/q. Thus, U(1) with hypermultiplets of charge 1, q is piecewise-mirror to the

BF theory in eq. (4.1) with coupling k = 1/q.

If instead we apply the piecewise mirror transform to the hypermultiplet of charge

q, we will similarly find a BF theory with coupling k = −q. This is the mirror of the
previous BF theory. The following four theories are thus piecewise-mirror

BF(Q̂, V̂,V,Q)[k = −q]
CFT-2(Q1,Q2,V)[q1 = 1, q2 = q] CFT-2(Q̂1, Q̂2, V̂)[q1 = 1, q2 = −q−1]

BF(Q,V, V̂, Q̂)[k = q−1]

Note that the self-duality (up to a sign) of U(1) with two hypermultiplets of equal

charge is equivalent to the self-duality (up to a sign) of the BF theory with k = 1.

As a final comment, we note that the compactness of U(1) requires that the

ratio of the charges of the hypermultiplets be rational. It follows from this, and from

mirror symmetry, that both q and k must be rational. This is consistent with the

condition on k that we mentioned earlier.

It is easy to apply the piecewise mirror transform to other models, including the

Chern-Simons theories of the previous section and the non-conformal field theories

of the next.

7. Mirror symmetry away from the infrared limit

In this section we give a field-theoretic interpretation of the so-called “magnetic

coupling”2 [1] and explain how the mirror transform can be extended away from

the infrared limit. The “magnetic coupling” affects the metric on the Higgs branch,

as will be reviewed below, and is mirror to the gauge coupling. However, its field

theory origin has not previously been determined. As we will now show, it is a

2The term “magnetic coupling” is an unfortunate misnomer, as the relation between this interac-

tion and the electric gauge interaction is not electric-magnetic duality. Mirror symmetry exchanges

particles and vortices, which couple (in the absence of a Chern-Simons coupling) to different pho-

tons.
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Fermi-type coupling — that which is induced between (twisted) hypermultiplets by

the exchange of a massive auxiliary (twisted) vector multiplet to which they are

minimally coupled. We will refer to the theory of a single hypermultiplet coupled to

this massive auxiliary vector multiplet as super-Fermi theory (SFT).

An indirect way to check that the gauge and super-Fermi couplings are mirror,

and that the super-Fermi coupling is indeed the constant term in the metric on the

Higgs branch, is to consider SQED-2 (with fields V,Q1,Q2) and its mirror of the same
form (with twisted fields V̂ , Q̂1, Q̂2). We will take the bare electric and “magnetic”
couplings to be infinite.

The Coulomb branch is parameterized by the SU(2)N triplet ~Φ and the scalar τ

which is the electromagnetic dual of the photon. The metric is specified in terms of

a harmonic function G(~Φ)

ds2 = G(~Φ)(d~Φ2) +G−1(~Φ)(dτ + ω · d~Φ)2 , (7.1)

where ∇× ω(~Φ) = ∇G(~Φ). In the presence of a mass term ~m (a triplet of SU(2)N)

for Q1 and a mass term −~m for Q2 the function G is given by

G =
1

|~Φ− ~m| +
1

|~Φ + ~m| . (7.2)

We may obtain SQED-1 by integrating out Q2, i.e. by taking m large while keeping
~φ = ~Φ− ~m fixed. In this limit we get

G ≈ 1|~φ| +
1

2|~m| . (7.3)

The constant term in G is the gauge coupling induced at one-loop by integrating out

the massive field Q2; the one-loop integral leads to a Maxwell term 1
2m
SV (V). The

low-energy theory is SQED-1 with an effective coupling g2eff = 2m.

In the mirror theory, the same branch appears as the Higgs branch, which is

parameterized by three fields ~N , triplets of SU(2)N which are bilinear in the twisted

hypermultiplets, along with a fourth scalar whose relation to the underlying fields

is more complex. The metric on the Higgs branch similarly depends on a harmonic

function Ĝ of ~N and a possible Fayet-Iliopoulos parameter ~ξ which is mirror to the

mass term ~m:

Ĝ =
1

| ~N − ~ξ| +
1

| ~N + ~ξ| . (7.4)

The mirror of taking ~m = ~Φ− ~φ is to take ~ξ = ~N − ~n. For |~ξ| ≈ | ~N | � |~n|, the field
Q̂2 condenses and gives mass to V̂ , leaving the field Q̂1 behind. In the limit where ξ
is large Ĝ becomes

Ĝ =
1

|~n| +
1

2|~ξ| . (7.5)
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What is the interpretation of the constant term in Ĝ? It must be the coupling of

the leading dimension-four operator induced in this broken gauge theory — which is

obviously the super-Fermi interaction for Q1 induced by the massive photon.3
A more direct argument involves the computation of the metric in the presence

of the super-Fermi interaction. To give a precise definition of this interaction, let us

multiply both sides of eq. (3.4) by exp(iSV (V̂)/g2) and integrate over V̂. The left
hand side becomes the partition function of twisted N = 4 SQED-1 with bare gauge
coupling g, while the right-hand side corresponds to N = 4 SQED-1 with infinite
bare gauge coupling coupled via a BF term to a twisted vector multiplet V̂. The
action of the latter theory is

S = SH(Q,V) + SBF (V̂ ,V) + 1
g2
SV (V̂) . (7.6)

This is what we call the super-Fermi theory (SFT). Since the action for V̂ is quadratic
it can be integrated over, leaving the action S = SH(Q,V) + g2SV aux(V) with

SV aux(V) = − 1
4π2

∫
d3x

∫
d4θ

{
1

4
Σ
1

�Σ− Φ
† 1
�Φ
}
, (7.7)

which in the Landau gauge becomes an explicit mass term for V,

SV aux(V) = − 1
4π2

∫
d3x

∫
d4θ

{
V 2 − Φ† 1�Φ

}
. (7.8)

Thus V acts as an auxiliary field at the classical level. After integrating it out, we find
by direct if tedious computation that the action for Q is that of a sigma-model with
the Taub-NUT target space. Moreover, the asymptotic radius of the circle parame-

terized by τ agrees with that computed from the mirror SQED-1 theory. (Another

way of doing the same computation, using hyperkähler quotients, was explained in

section 4.) The hyperkähler property of the metric ensures that there are no quantum

corrections to this result.

So far we showed the moduli space metrics of SQED-1 with finite gauge coupling

and twisted SFT agree, i.e. that the two theories are equivalent in the extreme

infrared everywhere on the moduli space. We now claim that this equivalence is

exact, so that N = 4 SQED-1, in its renormalization group flow from weak to strong
coupling, is mirror to twisted SFT at all energy scales.

This seems to be a very strong claim, as most known field theoretic dualities

have been established only in the infrared or for conformal field theories. However,

3Note that string theory considerations also support this claim. A D3 brane of finite length L

which ends on two parallel NS5 (D5) branes contains as its lightest multiplets a massless N = 4
U(1) vector multiplet (hypermultiplet) and a massive hypermultiplet (vector multiplet) of mass of

order ∼ 1/L [7]. The gauge coupling of the vector multiplet in the NS5 case is also of order 1/L,
and so the gauge coupling in one theory is related to the mass of a vector multiplet in its mirror.
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if one has two well-defined exact descriptions of an ultraviolet fixed point, then all

perturbations of this fixed point and the resulting renormalization group flows can

be described using the two sets of variables. This is the case here. The ultraviolet

fixed point of which SQED-1 is a perturbation is a free theory of a hypermultiplet

and a vector multiplet which are not coupled to one another. This CFT has a mirror

description as a copy of twisted CFT-1 along with a vector multiplet to which it is

not coupled. Consider the relevant perturbation given on one side by coupling the

vector multiplet to the flavor current of the hypermultiplet, and on the other side

by coupling the vector multiplet to the global current ∗F̂ of the twisted CFT-1 via
a BF term. This makes the first theory into SQED-1 with a weak gauge coupling

and the second into a theory of a twisted hypermultiplet coupled to an auxiliary

vector multiplet, which induces a large super-Fermi coupling. The gauge coupling

in SQED-1 grows, and in the infrared the theory becomes CFT-1. The super-Fermi

coupling in the mirror theory shrinks, and in the infrared the twisted hypermultiplet

becomes free. To restate the claim, mirror symmetry implies

UV : free Q + free V ⇐⇒ twisted CFT-1(Q̂, V̂) + free V

⇓ ⇓ ⇓

flows to SQED-1(Q,V) [coupling g2] ⇐⇒ twisted SFT(Q̂, V̂,V) [coupling 1/g2]

⇓ ⇓ ⇓

IR : CFT-1(Q,V) ⇐⇒ free twisted Q̂
(7.9)

A corollary of this equivalence is that all correlation functions of Σ and Φ in

SQED-1 must precisely agree with those of the U(1) current multiplet in the twisted

SFT. This can be seen explicitly from our master equation eq. (3.4). To this end

multiply both sides of eq. (3.4) by

exp

{
i

g2
SV (V̂) + iSBF (V̂,V ′) + iSGF (V̂)

}

and integrate over V̂. After performing a Gaussian integral over V̂ on the right-hand
side and shifting the integration variables, one gets

∫
DV̂ exp

{
i

g2
SV (V̂) + iSGF (V̂) + iSBF (V̂,V ′)

}
Sdet

(
K[V̂ ]

)
=

=

∫
DV exp {ig2SV aux(V) + iSGF (V)} Sdet (K[V − V ′]) . (7.10)
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Here the left-hand side is the generating functional for the correlation functions of

Σ̂ and Φ̂ in (twisted) SQED-1, while the right-hand side is the generating functional

for the correlators of the hypermultiplet’s U(1) flavor current in SFT.

An interesting implication of this result is that the perturbative expansion of

equation (7.10) in g is the superrenormalizable SQED expansion around a free theory,

while the perturbation series in 1/g is the usual nonrenormalizable SFT expansion

around a free theory. The former expansion is finite, while the latter requires renor-

malization and fails in the ultraviolet. We see that despite the failure of the usual

perturbative expansion in SFT, the theory still has a perfectly well defined UV fixed

point, as in the five and six dimensional field theories considered first in [21, 22].

It is also instructive to consider the current-current correlation function in SQED.

For example, consider SQED-1 with a non-zero Fayet-Iliopoulos term ~ξ, which gives

the hypermultiplet an expectation value, 〈Q†~σQ〉 = ~ξ/(2π). If |ξ| � g2, the photon

is massive (m2V ≈ g2ξ/π) and stable, and shows up as a single particle state in the

two-point function of ∗F . In addition there are much heavier semiclassical vortex
states, with m2Q̂ = ξ2, which can be pair-produced by the current. Note that the

vortex mass is protected by a BPS bound while that of the photon is not. As we

reduce |ξ|/g2, the photon and vortex masses approach each other. It is possible,
for sufficiently small |ξ|, that the photon becomes unstable and decays into vortices,
leaving no stable one-particle states in this channel. Does this occur?

For small |ξ| the original variables are strongly coupled, so we must use the
mirror variables, which describe massive vortices of mass |ξ| weakly interacting via
a short-distance potential. The potential energy of a configuration of vortices is

zero, but for a configuration of both vortices and antivortices it is negative. It is

known that two non-relativistic particles with an attractive delta-function potential

in two spatial dimensions have a single bound state with exponentially small binding

energy [23]. We therefore expect a single irreducible supermultiplet of stable vortex-

antivortex bound states. This supermultiplet is an ordinary N = 4 vector multiplet.
It therefore appears that there is a stable massive vector multiplet in the theory for

any value of |ξ|/g2, only merging into the continuum of vortex-antivortex states at
ξ = 0. We believe this is a new result that could not have been derived without the

identification of the magnetic coupling.

Let us find the binding energy of this bound state. The coefficient of the delta

function in the low-energy non-relativistic theory is logarithmically divergent. To

obtain a sensible result we must match it to the coefficient of the Fermi interaction in

the relativistic SFT theory. Supersymmetry ensures the relativistic Fermi interaction

receives only finite corrections, which are small if |ξ| � g2. Matching requires a

cutoff, which should be at the scale of the breakdown of the non-relativistic theory,

that is, of order |ξ|. Putting this together with the known result [23], we find the
binding energy is of order −|ξ|e−g2/2π|ξ|.
The results of this section can be easily extended to theories with more fla-
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vors. We mention one amusing example with a self-mirror renormalization group

trajectory. Consider CFT-2, the infrared limit of SQED-2, which is self-mirror. The

theory has two global symmetry currents, a flavor current and a topological current

exchanged under mirror symmetry. Using a vector multiplet V and a twisted vector
multiplet V̂, we may gauge both currents with equal couplings. The resulting theory
∫
DV0 DV̂ DV e

i

g2
[SV (V)+SV (V̂)]eiSBF (V̂ ,V0) Sdet (K[V0 + V]) Sdet (K[V0 − V]) ,

(7.11)

(here gauge fixing terms and couplings to background sources are omitted for brevity)

flows from CFT-2 plus free vector and twisted vector multiplets in the ultraviolet to

CFT-2 in the infrared. The flow can easily be seen, using eq. (3.4), to be self-mirror

at all scales.

8. Vortex-creation operators

Up to this point our discussion has been mostly concerned with the action of mirror

symmetry on conserved currents and their superpartners. But if we want to make

precise the statement that mirror symmetry exchanges particles and vortices [10], we

need to understand vortex-creation operators in SQED.

The gauge-invariant vortex-creation operators are associated with some of the

most poorly understood aspects of mirror symmetry. Mirror symmetry unambigu-

ously implies that such operators must be present in the CFTs that are found at the

origin of moduli space. However, the only hint as to how to define them is found far

along the moduli space of the Coulomb branch, where all of the charged matter is

massive. There, the low-energy theory involves only the vector multiplet, and one

may safely replace each photon with its dual scalar τ . Vortex creation operators

are known to be proportional to eiτ . From mirror symmetry we know that some

of the vortex-creation operators are chiral, in the N = 2 sense, and so, if the real
scalar φ in the N = 2 vector multiplet has an expectation value, a natural form
for a vortex-creation operator is e(iτ+φ/g

2), where g2 is the low-energy effective gauge

coupling. However, a number of puzzles surround this choice. How are these opera-

tors to be continued to the origin of moduli space, where there is a CFT involving

massless charged matter which prevents naive definition of τ? What is to be done

about the paradox that φ remains dimensionful in the CFT but no scale g2 remains

in the theory? Assuming these problems are resolved, how does the operator obtain

its correct conformal dimension? How does it acquire its abelian global charges? For

N = 4 SQED, where this operator should be part of an SU(2)N multiplet, what
are the other operators in the multiplet and how is the nonabelian global symmetry

realized? For those cases where there are hidden flavor symmetries [1, 10] which

must act on these operators, how do those symmetries appear?
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We will now attempt to provide answers to some of these questions. To set

the stage, let us recall how to construct operators with nonzero vortex charge in

an arbitrary abelian gauge theory in three dimensions (formally). Consider a U(1)

gauge field coupled to massless matter. Formally integrating over matter fields, we

get a nonlocal effective action for the gauge field Aµ. Gauge invariance tells us that it

can be regarded as a functional Seff(F ) of the field strength F = dA. Let us change

variables in the path integral from Aµ to F µν ; since F µν satisfies the constraint

dF = 0, we must implement it using a Lagrange multiplier τ :∫
DAµ δ(∂µAµ)eiSeff{F (A)} ∝

∫
DF µν Dτ exp

(
iSeff(F ) +

i

2π

∫
d3x τdF

)
.

(8.1)

Note ∗F has dimension 2 (as demanded of a conserved current by the conformal
algebra) so τ is dimensionless and, in analogy to a free boson in two dimensions, can

be exponentiated. It follows from (8.1) that τ is canonically conjugate to εijFij, so

that the symmetry transformation generated by the current ∗F acts additively on τ
and multiplicatively on einτ . Our normalization is such that eiτ carries a unit of this

charge, the integrated magnetic flux.

Since a vortex worldline carries magnetic flux, any operator which creates a

vortex must be proportional to eiτ [10]. To see this, consider the correlation function

of two such operators∫
DF µνDτ exp

{
iSeff(F ) +

i

2π

∫
d3xτdF

}
eiτ(x)e−iτ(y) . (8.2)

The integration over τ gives a factor of δ[dF − 2πδ(x) + 2πδ(y)]. Thus, the Bianchi
identity is violated by two pointlike sources of magnetic flux — pointlike nondynami-

cal Dirac monopoles, which are instantons in three dimensions. On the Higgs branch,

where flux is confined into particle-like vortex solitons, these pointlike instantons will

indeed be sources for these solitons.

A SUSY-covariant extension of this procedure can be constructed following [17],

where it was shown how to dualize an N = 2 vector multiplet to a chiral multiplet
on the Coulomb branch of the moduli space. The superspace effective action for

the U(1) vector multiplet V is regarded as a functional of Σ = iDD̄V . Σ satisfies

supersymmetric Bianchi identities D2Σ = 0 = D̄2Σ. If we impose this constraint

explicitly by introducing a Lagrange multiplier chiral superfield T which couples to

Σ via
∫
d3xd4θ Σ(T + T †), then we may replace integration over V by integration

over an unconstrained real superfield Σ. The partition function for an N = 2 theory
takes the form∫

DΣDT exp
(
iSeff (Σ) +

i

4π

∫
d3xd4θ Σ(T + T †)

)
. (8.3)

The normalization in (8.3) is such that the imaginary part of the lowest component

of T is τ , so eT has vortex charge +1.
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Consider now N = 2 orN = 4 SQED-Nf . The mirror ofN = 2 SQED-Nf differs
from that of N = 4 SQED-Nf , which was described in sec. 2, only by the presence of
an extra neutral chiral superfield which couples to

∑
p Q̂p
ˆ̃Qp [9, 10]. In both cases the

mirror U(1)Nf−1 gauge theory has N = 2 chiral primary operators V+ = Q̂1 . . . Q̂Nf

and V− =
ˆ̃Q1 . . .

ˆ̃QNf . Their vortex charges are +1 and −1, respectively. They live in
a short representation of the N = 2 or N = 4 superconformal algebra, and therefore
their dimensions are related to their R-charges. In N = 4 SQED-Nf the dimensions
are fixed to be the canonical dimension, Nf/2. In N = 2 SQED-Nf the dimensions
are not known, since the theory has a one-parameter family of R-currents from which

it is not clear how to select the relevant one, but in the large Nf limit the R-charges

and dimensions can be determined using mirror symmetry, as we will now explain.

As is well-known, non-supersymmetric QED is completely solvable in this limit

(see [24]). The effective action for the photon given by integrating out Nf massless

electrons is simply Leff ∝ NfF
µν [−�]−1/2Fµν plus higher orders in the field strength.

As always, in the large Nf limit all scattering is suppressed and the theory becomes

Gaussian; since the photon propagator is nonstandard, it is known as a “generalized

free field.”4 Similarly, for N = 4 SQED in the large Nf limit one gets

ZNf [V̂] =
∫
DV eiSBF (V̂,V)+iSGF (V) [Sdet (K[V])]Nf (8.4)

≈
∫
DVeiSBF (V̂,V)+iSGF (V) exp

{
iNf

16

∫
d3x

∫
d4θ
(
Σ[−�]− 12Σ− 4Φ†[−�]− 12Φ

)}
,

with an analogous expression forN = 2 SQED. Thus the vector multiplet is described
by a supersymmetric generalized free field. The dimensions of matter fields Q, Q̃ in

SQED-Nf are canonical up to corrections of order 1/Nf [24], so the mesons Q̃pQp
and their mirrors Sp [9, 10] have dimension 1. It follows that the dimensions of Q̂p

and ˆ̃Qp, which couple to Sp in the superpotential W = SpQ̂p
ˆ̃Qp, are canonical, so V+

and V− both have dimension Nf/2.
Consider now operators eT and e−T in N = 2 or N = 4 SQED-Nf , where T is

the dual photon superfield defined above. These operators are (naively) chiral and

have vortex charge +1 and −1, and the operators V+ and V− should therefore be
proportional to them. The dimensions of e±T match those of V± in the large Nf
limit, as we now show by computing the two-point function of the lowest component

4In position space the photon propagator is proportional to 1/x2. It was pointed out long ago

that this is the same as the four-dimensional photon propagator projected down onto a three-

dimensional hyperplane. We may observe that it is also the projection onto the boundary of

four-dimensional Anti-de Sitter space of a photon propagating on that space. To be more precise,

for a background gauge field coupled to the three-dimensional current ∗F , the induced propagator
in three-dimensions will also be [−�]−1/2 ∼ 1/x2, as though it were a free massless vector field on
AdS4. This is not to suggest largeNf (S)QED has a (super)gravity dual; the form of the propagator

is fixed by conformal invariance alone.
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of e±T . Using (8.4) and performing the Gaussian integral over Σ we find:

〈eT (x)eT †(y)〉 ∼
∫
DT exp

(
T (x) + T †(y)− i

2π2Nf

∫
d3zd3z′T (z)[−�]3/2T †(z′)

)
.

(8.5)

T is dimensionless and its propagator [−�]−3/2 is logarithmic in position space, so
the operator eT has a well-defined dimension. Performing the Gaussian integral over

T in (8.5) we find that eT has dimension Nf/2.

In summary, we have clarified several issues. The field τ can still be defined

at the origin of the moduli space without difficulty, as long as one first integrates

out the massless charged matter and re-expresses the resulting non-local action Seff
using Fµν . The complex scalar which is exponentiated is

T |θ=0 = iτ − 1
8π

δSeff

δΣ

∣∣∣
θ=0

,

a non-local expression which nonetheless agrees with expectations far along the

Coulomb branch. With proper normalization, the dimensions of the vortex oper-

ators e±T have been shown to match those of V± in the large Nf limit, where Seff
can be computed.

However, this is not the whole story. Apart from their vortex charge, the op-

erators V± carry non-zero and equal abelian R-charges. This is connected with the
fact that in N = 4 SQED-Nf there is an operator relation of the form V+V− ∼ ΦNf .
It is impossible for eT and e−T to satisfy these constraints. Even more confusing
is the fact that in N = 4 SQED-Nf the operators V+ and V †− actually belong to a
spin-Nf/2 multiplet of SU(2)N .

To resolve these issues, care should be taken in the definition of the operators e±T .
As in two dimensions, the presence of a logarithmic propagator implies the need for an

infrared regulator, which should be supersymmetry-preserving. This regulator may

carry global symmetry charges, which might resolve some of the remaining puzzles.

It is also possible that one must account for fermionic zero-modes of the pointlike

Dirac monopoles that e±T are intended to represent.

As a last comment, we note that one of the most important unsolved problems

in mirror symmetry is the mapping of the full nonabelian flavor symmetries. N = 4
SQED-Nf has an SU(Nf ) flavor symmetry, but in the mirror description only the

diagonal generators are visible classically, with the rest emerging through quantum

effects [1]. This can be seen from the fact that operators in nontrivial representa-

tions of SU(Nf ) appear in the mirror theory as a combination of operators built from

fundamental fields with other operators built from vortex-creation operators [10]. A

proper definition of the vortex-creation operators is a prerequisite for an understand-

ing of the hidden symmetries.

23



J
H
E
P
0
4
(
1
9
9
9
)
0
2
1

9. Outlook

We have found an elegant formula, eq. (3.4), which summarizes many known results

of mirror symmetry. The formula states that the superdeterminant of the N = 4 su-
persymmetric Laplacian on three-dimensional Minkowski space is its own generalized

Fourier transform. We have used it to find new superconformal field theories with

exactly marginal couplings, on which mirror symmetry acts as strong-weak coupling

duality. We have established mirror relations between non-conformal theories which

are valid at all energy scales. Finally, we have made some progress toward under-

standing how to define the vortex-creation operators which appear in these theories.

However, many questions remain. We do not have the precise change of variables

underlying mirror symmetry, which requires a clearer understanding of vortex oper-

ators. We have no proof of our formula from first principles, and see no hint of a

reformulation of the theory in which it would be manifest. Lastly, we have no idea

how to generalize it to non-abelian gauge theories. We hope that future research will

overcome these obstacles to a more profound understanding of duality.
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