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Abstract: In both QCD and supersymmetric QCD (SQCD) with Nf flavors there

are conformal windows where the theory is asymptotically free in the ultraviolet

while the infrared physics is governed by a non-trivial fixed-point. In SQCD, the

lower Nf boundary of the conformal window, below which the theory is confining is

well understood thanks to duality. In QCD there is just a sufficient condition for

confinement based on superconvergence. Studying the Banks-Zaks expansion and

analyzing the conditions for the perturbative coupling to have a causal analyticity

structure, it is shown that the infrared fixed-point in QCD is perturbative in the entire

conformal window. This finding suggests that there can be no analog of duality in

QCD. On the other hand in SQCD the infrared region is found to be strongly coupled

in the lower part of the conformal window, in agreement with duality. Nevertheless,

we show that it is possible to interpolate between the Banks-Zaks expansions in the

electric and magnetic theories, for quantities that can be calculated perturbatively

in both. This interpolation is explicitly demonstrated for the critical exponent that

controls the rate at which a generic physical quantity approaches the fixed-point.
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1. Introduction

In multi-flavor QCD, there is a conformal window [1], namely a region of Nf values

for which the theory is asymptotically free at short distances while the long distance

physics is governed by a non-trivial fixed-point. This is a non-Abelian Coulomb

phase in which quarks and gluons are not confined.

The upper boundary of the conformal window is determined according to the

sign of the β function

β(x) ≡ dx

d ln(µ2)
= − (β0x2 + β1x3 + · · ·) , (1.1)

at small coupling x ≡ αs
π
. When the first coefficient of the perturbative β function [2],

β0 =
1

4

(
11

3
Nc − 2

3
Nf

)
, (1.2)

changes its sign the theory changes its nature from the asymptotically free phase

r ≡ Nf/Nc < 11/2, to the infrared free phase r > 11/2. The transition point in
Nc = 3 QCD is at Nf = 16.5. For r < 11/2 the β function is negative for a

vanishingly small coupling (β0 > 0), but due to the second term which has an

opposite sign (β1 < 0), β(x) reaches a non-trivial zero at some xFP ' −β0/β1 > 0 [3].
xFP approaches zero as r approaches 11/2, and then quarks and gluons are weakly

coupled at all scales. Finally, the smallness of xFP justifies the use of the 2-loop β

function.

On the other hand, the lower boundary of the conformal window, below which

confinement sets in, is much harder to tackle. One approach to confinement, the

so-called metric confinement [4], defines confinement as a phase in which transverse

gauge field excitations are excluded from the space of physical states which is defined

through the BRST algebra. It was shown in [4] that as long as a certain condition is

obeyed by the gauge field propagator, metric confinement is implied. This condition

is most conveniently expressed in the Landau gauge, namely that the absorptive part

of the gluon propagator D(Q2, µ2, g) (in this gauge) is superconvergent,∫ ∞
0−
dk2 ρ(k2, µ2, g) = 0 , (1.3)

where µ2 is the renormalization scale and ρ(k2, µ2, g) = (1/π) Im {D(−k2, µ2, g)}.
Assuming analyticity of the gluon propagatorD(Q2, µ2, g), the superconvergence

relation (1.3) was shown to be a direct consequence of renormalization group invari-

ance, provided D(Q2, µ2, g) vanishes faster than 1/Q2 at large Q2. Due to asymptotic

freedom, the last condition depends only on the sign of the 1-loop anomalous dimen-

sion of the propagator (in the Landau gauge), given by

γ00 = −1
4

(
13

6
Nc − 2

3
Nf

)
. (1.4)

If γ00 is negative the superconvergence relation (1.3) holds.
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Thus, in this approach, a sufficient condition for confinement is that γ00 < 0

and therefore the lower boundary of the conformal window cannot be lower than

r = 13/4. If superconvergence is also a necessary condition (this has not been shown)

then the phase transition should be at r = 13/4. In Nc = 3 QCD this corresponds

to Nf = 9.75, i.e. between 9 and 10 flavors.

A natural question to ask is whether the superconvergence condition necessarily

implies that also quarks are confined. To the knowledge of the authors no complete

answer has yet been given to this question, although it has been shown that the

superconvergence criterion is consistent with a potential that is approximately linear

in some intermediate scales [5].

There are several other approaches to study the phase structure of multi-flavor

QCD, such as the instanton liquid model [7], the gap equation [6, 8] and computer

simulations on the lattice [9, 10]. The new lattice results [10] are inconsistent with old

ones [9] and with the superconvergence criterion for confinement: they indicate that

the phase where no confinement nor chiral symmetry breakdown occurs, stretches

down to Nf = 7, and thus only for 6 flavors and below QCD appears as a confining

theory with chiral symmetry breaking, as we know it in the real world. In spite

of these contradicting evidence, we assume in this paper that the bottom of the

conformal window is as implied by superconvergence.

Recently the presence of a fixed-point in QCD was studied as a function Nf by

considering the perturbative β function [11, 12]. Three approaches where consid-

ered: a direct investigation1 of the equation β(x) = 0 in physical renormalization

schemes [13], the Banks-Zaks expansion [1, 14, 15] and the analyticity structure of

the coupling constant.

The direct investigation of zeros in the QCD β function in physical schemes [11]

shows that at 3-loop, a fixed-point can appear for most effective charges above Nf '
5. However, presence of a fixed-point at the lower end is very sensitive to higher-loop

corrections, and thus cannot be trusted.

The Banks-Zaks expansion is an expansion in the number of flavors down from

the point where β0 changes its sign. The expansion parameter is proportional to

β0, or in Nc = 3 QCD to (16.5 − Nf ). It was found in [11] that Banks-Zaks series
for different QCD observables behave differently: in some cases the coefficients are

small and the expansion is reliable and in other cases it seems to breakdown at order

(16.5 − Nf )3 already around 10 or 12 flavors (see fig. 6 in [11]). Here we further
interpret these results.

In real-world QCD there are Landau singularities in the perturbative coupling,

which signal the inapplicability of perturbation theory to describe the infrared phy-

sics. These non-physical singularities are usually assumed to be compensated by non-

perturbative power-like terms in any physical quantity. Thus causality is realized only

1The relevant refs. appear in [11].
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at the non-perturbative level. The existence of a perturbative fixed-point opens up

the possibility that the perturbative coupling will have no Landau singularities [11,

12]. We will assume that within the conformal window non-perturbative effects are

not important as long as they are not implied by perturbation theory, that is as long

as the perturbative coupling is causal and small. Note that the causality requirement

is stronger than the requirement to have no space-like Landau singularity.

The simplest example where causality of the coupling can be achieved at the per-

turbative level, without additional power corrections, is the 2-loop coupling. In [12]

an exact explicit formula for the 2-loop coupling as a function of the scale was intro-

duced, which enabled a complete understanding of the singularity structure of the

coupling in this approximation. It turns out that the condition for causality of the

2-loop coupling is c ≡ β1/β0 < −β0. This condition translates in Nc = 3 QCD to
Nf ≥ 10.
As stated above the lower boundary of the conformal window implied by super-

convergence is also between 9 and 10 flavors [4]. Thus basing on the superconvergence

criterion, we find that the 2-loop perturbative coupling is causal in the entire confor-

mal window. This suggests that the perturbative analysis in the infrared is reliable

down to the bottom of the window. On the other hand, perturbation theory cannot

describe the infrared physics in the confining phase. We therefore intend to study

more carefully down to what Nf can we trust perturbation theory in the infrared,

and in particular, when does perturbation theory signal its own inapplicability. The

very same questions can be asked also in supersymmetric QCD (SQCD), where more

is known about the phase structure. We therefore study here both QCD and SQCD

and compare the two.

A few years ago Seiberg lead a revolution in the understanding of supersym-

metric gauge theories.2 Of particular interest to us is the phase structure of N = 1

SQCD in which non-Abelian electric-magnetic duality plays a major role [16]. The

general arguments available in the supersymmetric case do not apply in the absence

of supersymmetry and in fact the phase structure of a supersymmetric theory can

be quite different from that of its non-supersymmetric parallel [17, 18]. Still the

comparison can be very enlightening.

SQCD, just like QCD, has a conformal window where the theory is asymptoti-

cally free, and is governed by a non-trivial fixed-point in the infrared. The picture

described in [16] is the following: in the upper part of the conformal window the

fixed-point value of the coupling is small, and thus the theory is weakly coupled at

all scales. The massless fields that appear in the Lagrangian conveniently describe

the physics at any scale. When Nf becomes smaller (for a fixed Nc) the theory

becomes strongly coupled in the infrared. Then, it does not make sense anymore

to describe the physics in terms of the original massless fields. Nevertheless, in the

2For recent reviews see [17, 18].
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infrared limit the theory has an effective description in terms of a dual theory: start-

ing with an original supersymmetric theory with an SU(Nc) gauge symmetry and

Nf massless chiral quark superfields (Qi, i = 1, 2, . . . , Nf) and their anti-fields (Q̃i,

i = 1, 2, . . . , Nf) the dual theory is an SU(Nf − Nc) gauge theory with Nf chiral
quarks superfields (qi, i = 1, 2, . . . , Nf) and their anti-fields (q̃i, i = 1, 2, . . . , Nf), and

an additional superpotential describing a Yukawa interaction between color-singlet

mesons and the quarks superfields:

W =
√
λM ij qi q̃

j . (1.5)

The relation between the theories is referred to as duality since the dual of the

dual theory is again an SU(Nc) gauge theory. In the conformal window the dual

theory, just like the original one, is asymptotically free and has a non-trivial infrared

fixed-point. Contrary to the original theory, the dual theory becomes weakly coupled

as Nf decreases, until the point where it becomes infrared free. Since the dual theory

is weakly coupled when the original one is strongly coupled, and vise-versa, Seiberg

refers to this duality as a non-Abelian generalization of the electric-magnetic duality.

The duality picture is valid also outside the conformal window, where one of the

theories is infrared free and the other is confining, but here we concentrate on the

conformal window.

In [19] (see also [20]) it was shown that the lower boundary of the conformal

window implied by the superconvergence criterion for confinement in SQCD, coin-

cides with the lower boundary implied by duality which is the point where the dual

theory becomes infrared free. This gives additional support to the whole picture,

with the advantage that the superconvergence criterion can be applied also in the

non-supersymmetric case, as it was originally done in [4, 5].

According to Seiberg’s description, in SQCD the electric theory is strongly cou-

pled at the bottom of the window. We shall demonstrate that this strong coupling

behavior manifests itself already at the perturbative level, through appearance of

Landau singularities that make perturbation theory inconsistent.

The purpose of the first part of this paper (sec. 2) is to consider the condition

for the perturbative QCD coupling to be causal as a function of Nf (for a general

Nc), and compare it with the lower boundary of the conformal window set by su-

perconvergence. In sec. 2.1 we study causality at the level of the 2-loop coupling

and in sec. 2.2 we examine the effect of higher orders. Next, in sec. 3, we study the

same issue in SQCD. In sec. 3.1 we investigate the singularity structure of the 2-

loop coupling in the electric theory and study the effect of higher orders. In sec. 3.2

we discuss the dual (magnetic) theory. Sec. 3.3 summarizes the main findings of

sec. 2 and 3. In sec. 4 we consider the Banks-Zaks expansion for the value of the

fixed-point (sec. 4.1) and for the critical exponent γ that controls the rate at which

a generic effective charge approaches the fixed-point in the infrared limit (sec. 4.2).
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In sec. 4.3 we show that the 2-point Padé approximants technique [21] can be used

to interpolate between the Banks-Zaks expansions for a physical quantity in the two

dual theories. The example considered is the critical exponent in the large Nc limit.

2. The conformal window in QCD and the analyticity struc-

ture of the coupling

As explained in the introduction, according to the superconvergence criterion [4, 5]

an SU(Nc) gauge theory with Nf light flavors is confining so long as the anoma-

lous dimension of the gauge field propagator γ00 of eq. (1.4) is negative, i.e. for

r = Nf/Nc < 13/4. This is only a sufficient condition for confinement, and therefore

we can expect a phase transition from the confining phase to a phase which is con-

formally invariant in the infrared, either at r = 13/4 = 3.25 or somewhere above this

line.

Referring to the superconvergence criterion as determining the lower boundary

of the conformal window, we now turn to study the perturbative β function. In

real-world QCD the perturbative running coupling has “causality violating” Lan-

dau singularities on the space-like axis which, according to the common lore, signal

the inapplicability of perturbation theory in the infrared region and the necessity of

non-perturbative power like terms. On the other hand, close enough to the top of

the conformal window causality can be established within the perturbative frame-

work [11, 12]. There the perturbative β function leads to a causal running coupling,

which has a finite infrared limit and no Landau singularities in the entire Q2 plane:

its only discontinuity is a cut along the time-like axis. In this situation the per-

turbative analysis does not signal the need for non-perturbative physics. It is then

possible that perturbation theory by itself describes well the infrared physics.

By definition, in the conformal window the coupling reaches a finite limit in

the infrared. As explained above, in the upper part of the window this finite limit

is obtainable from the perturbative β function. Is it true also away from the top

of the window? In other words, is it the perturbative coupling that reaches a finite

limit? and in this case, can we reliably calculate the fixed-point value in perturbation

theory? In order to address these questions we study here the conditions for a causal

perturbative coupling and compare them to the boundary of the conformal window.

2.1 Causality from the 2-loop β function

The 2-loop β function with β0 > 0 and β1 < 0 is the simplest example where Landau

singularities can be avoided, so it is natural to begin by analyzing this example. It

should be stressed that the 2-loop β function corresponds to a particular choice of

renormalization scheme, the so-called ‘t Hooft scheme, where all the higher-order

6
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corrections to the β function β2, β3 and on vanish. Since the first two coefficients of

the β function are scheme invariant, we shall obtain a criterion for causality which

does not have an explicit dependence on the scheme.

The 2-loop renormalization group equation,

β(x) =
dx

dt
= −β0x2 (1 + cx) (2.1)

where t = ln(Q2/Λ2), and [3]

c ≡ β1
β0
=
1

16β0

[
34

3
N2c +

(
1

Nc
− 13
3
Nc

)
Nf

]
(2.2)

can be integrated exactly [12] using the Lambert W function [22]. It was shown

in [12] that if c > 0 a Landau branch point is present on the space-like axis, if

−β0 < c < 0 a pair of Landau branch points appears at some complex Q2 values
and if

c < −β0 < 0 (2.3)

the coupling has a causal analyticity structure, with no Landau singularities.3 We

rederive here these results using a simpler (but less rigorous) approach [23].

Integrating (2.1) we obtain

ln(Q2/Λ2) =
1

β0x
+

1

γ2−loop
ln

[
1

x
− 1

xFP

]
(2.4)

where xFP = −1/c and γ2−loop is the critical exponent at the 2-loop order. γ is defined
as the derivative of the β function at the fixed point,

γ ≡ dβ(x)
dx

∣∣∣∣
x=xFP

. (2.5)

At 2-loop order γ2−loop = −β20/β1.
If c > 0 there is a Landau singularity on the space-like axis. A positive fixed-

point is obtained for c < 0, but this condition alone does not guarantee causality —

there can be Landau singularities in the complex Q2 plane.

Assuming that the singularities are such that |x(Q2)| −→ ∞, we expand (2.4)
around these points in powers of 1/x. The leading term in this expansion gives the

location of the singularity. The phase of the r.h.s. of (2.4) at the singularity is

Φ = ±π 1

γ2−loop
, (2.6)

If |Φ| < π, i.e. if γ2−loop > 1, or −β0 < c < 0, the singularities are in the first sheet
3We always assume asymptotic freedom, i.e. β0 > 0.
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(the time-like axis cut corresponds to |Φ| = π) and if |Φ| > π, i.e. if

0 < γ2−loop < 1 , (2.7)

or c < −β0, the 2-loop coupling is causal. The condition (2.7) (or (2.3)) for a causal
2-loop coupling translates in QCD into the following condition for r upon substituting

β0 and c from eqs. (1.2) and (2.2), respectively:

4r2 +

[
9

N2c
− 83
]
r + 223 < 0 . (2.8)

This leads to an approximately Nc independent critical value for r for any possible

value of Nc (since N
2
c � 9

83
), namely the 2-loop coupling is causal as long as

r > (83− 9√41)/8 ' 3.17 . (2.9)

For lower r, the condition (2.7) does not hold and there appears a pair of complex

singularities in the Q2 plane. If r is reduced further, c becomes positive and then a

Landau branch point appears on the space-like axis. This change occurs at:

r = 34/

[
13− 3

N2c

]
' 2.62 . (2.10)

The results are summarized in figure 1 in the upper plot, where the lower bound-

ary of the conformal window implied by superconvergence (r = 3.25) is compared

to the lower boundary of the region where the 2-loop coupling is causal according

to (2.8), which is asymptotic at large Nc to r ' 3.17. Clearly, the 2-loop coupling
is causal in the entire conformal window. This conclusion holds, of course, also in

the case where the lower boundary of the conformal window is somewhere above the

critical value for superconvergence (r = 3.25). This suggests that the fixed-point in

QCD is always of perturbative origin.

The proximity of the two lines, the upper boundary of the superconvergence

region (r = 3.25) and the lower boundary of the 2-loop causality region (r = 3.17)

does not have any deep meaning. Presence of complex Landau singularities in the

running coupling signals that the coupling becomes strong but it does not necessarily

imply confinement – an example is provided by SQCD (sec. 3).

Due to the closeness of the two lines one might worry that even within the

conformal window the large distance physics cannot be reliably described by pertur-

bation theory. However, we shall see in the next section that 3-loop corrections make

the coupling causal in a wider range, and eventually perturbation theory does seem

reliable down to the bottom of the conformal window.

8
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Figure 1: The conformal window in QCD (upper plot) and SQCD (lower plot) is shown

in the Nf – Nc plane. In both plots the β0 = 0 line, separating the infrared free phase

from the ultraviolet asymptotically free phase is drawn as a continuous black line. This

line is the upper boundary of the conformal window. The lower boundary of the conformal

window as implied by superconvergence is drawn in gray. In the SQCD case, this last

line is also the line below which the dual theory becomes infrared free. In both plots, the

(black) dashed line shows the lower boundary of the region where the 2-loop coupling has a

causal analyticity structure. Below this line and above the dot-dash line there are complex

Landau singularities. Below the dot-dash line there is a space-like Landau branch point. In

the lower plot, we also show in gray the dual lines which describe the analyticity structure

of the dual coupling constant.
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2.2 How relevant is the criterion for causality at 2-loop?

It is natural to wonder whether the singularity structure of the coupling which is

defined by the truncated 2-loop β function is of any physical significance. Of course

we do not doubt the assumption that the theory as a whole is causal. According

to the common lore, the appearance of the non-physical Landau singularity in the

perturbative coupling in real-world QCD is nothing more than a sign of the inappli-

cability of perturbation theory for describing the infrared region. Thus the presence

of Landau singularity indicates the significance of non-perturbative corrections in

the infrared. The interesting point is that close enough to the top of the conformal

window, there may be a possibility to establish causality using only perturbation

theory, as we explain below.

2.2.1 Causality beyond 2-loop — general discussion

In general, the analyticity structure of a coupling based on some higher order β

function,

β(x) = −β0x2
[
1 + cx+ c2x

2 + · · ·] (2.11)

can be completely different from that of the 2-loop coupling (2.1). This is clearly so

if Landau singularities are present: their location and nature generally depend on all

the coefficients of the β function and consequently on the renormalization scheme.

This “instability” should be of no surprise since the weak coupling expansion breaks

down completely when examining the singularities of the coupling.

As an example how the singularity structure changes and becomes more complex

as higher order terms in the β function are included, consider the 1-loop coupling,

the 2-loop coupling and Padé improved 3-loop coupling, defined by

βPA(x) = −β0x2 1 + [c− (c2/c)]x
1− (c2/c)x , (2.12)

which were all analyzed in [12]. The 1-loop coupling has a space-like Landau pole,

the 2-loop coupling can have a causal structure or a pair of complex branch points

or a space-like branch point. The Padé improved 3-loop coupling can be causal but

it can also have both simple poles and branch points (the details appear in [12]).

While these examples show that there is no stability when going to higher orders

if Landau singularities exist, they also indicate that if the 2-loop coupling is causal,

causality may be preserved when higher order corrections are included. In fact, it

is rather simple to explain why this kind of stability be expected in general. When

the 2-loop coupling is causal it is bounded, and in many cases also small, for any

complex Q2. If so the usual perturbative justification holds: the next term in the β

function series which is proportional to a higher power of the coupling is small, and

likewise higher order terms. In this situation higher-order terms are not expected

to have much influence on x(Q2). In other words, absence of Landau singularities
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can be consistently confirmed at the perturbative level, whereas presence of Landau

singularities can only be confirmed or disproved in the full theory by non-perturbative

methods.

The first step in establishing causality in perturbation theory is to examine the

analyticity structure of the 2-loop coupling, as we did above. On one hand the 2-loop

coupling has the advantage that it does not depend on the renormalization scheme.

On the other hand it does not correspond directly to any observable and therefore

it may not be causal. Thus, we are forced to examine higher order corrections

(or renormalization schemes other than the ‘t Hooft scheme), and see whether the

causality condition at 2-loop order is reasonable. The next step is therefore to choose

a representative renormalization scheme, different from the ‘t Hooft scheme, and ask

whether the 3-loop correction to the β function has a significant effect on the infrared

coupling. If the effect of the 3-loop correction is negligible, that is if the coupling is

small enough such that ∣∣β2x2(Q2)∣∣� ∣∣β1x(Q2)∣∣ (2.13)

in the entire complex Q2 plane, then we shall consider that causality is established

at the perturbative level.

To be completely convinced, one might want to check also the magnitude of

higher-order corrections corresponding to 4-loop order and beyond. However, it is

important to remember in this respect, that if we go to high enough order (n), we

will always obtain

|βnxn| >
∣∣βn−1xn−1∣∣ (2.14)

due to the asymptotic nature of the β function series, and thus it does not make sense

to require that all the higher-order terms will be small. In the scenario described

above, namely that the 2-loop coupling is already causal and small it seems reasonable

to require that the 3-loop correction is small and stop there. Clearly, this scenario is

just the simplest case to consider. It is possible that x(Q2) at 2-loop is still not small

enough so as to guarantee |β2x2| � |β1x|, but β2 is negative so x(Q2) at 3-loop is
much smaller, and then higher order corrections are negligible: |β3x3| � |β2x2|. Of
course, in this case the results might depend on the renormalization scheme.

An encouraging observation with regards to the 2-loop analysis is that the con-

dition for causality of the 3-loop coupling is quite modest once the 2-loop coupling is

causal. We will show that the only further requirement is that the 3-loop β function

has a positive root corresponding to the infrared stable fixed-point.

It is most convenient for this demonstration to write the 3-loop β function in the

following form:

β(x) ≡ dx

d ln(Q2)
= −β2x2

[
f1f2 − (f1 + f2)x+ x2

]
, (2.15)
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where f1f2 = β0/β2 and f1 + f2 = −β1/β2, thus:

f1 =
1

2β2

(
−β1 +

√
∆
)

f2 =
1

2β2

(
−β1 −

√
∆
)
, (2.16)

with ∆ = β21 − 4β0β2. Note that in all cases of interest, namely when there is a
positive real zero to the 3-loop β function, the infrared fixed-point is xIR ≡ f2 > 0,
and xUV ≡ f1 is an ultraviolet fixed-point. The corresponding critical exponents are,
for xIR:

γ3−loopIR = β2x
2
IR(xUV − xIR) = x2IR

√
∆ > 0 (2.17)

and for xUV:

γ3−loop
UV

= −β2x2UV(xUV − xIR) = −x2UV
√
∆ < 0 . (2.18)

It is useful to note that

1

γ3−loopUV

+
1

γ3−loopIR

=
1

γ2−loop
= −β1
β20
, (2.19)

where we have used the definition of f1,2. It then follows, assuming 2-loop causal-

ity (2.7), that

0 < γ3−loopIR < γ2−loop < 1 . (2.20)

In order to examine causality at 3-loop we integrate (2.15) and obtain:

ln(Q2/Λ2) =
1

β0x
+

1

γ3−loopUV

ln

[
1

x
− 1

xUV

]
+

1

γ3−loopIR

ln

[
1

x
− 1
xIR

]
. (2.21)

To find the causality condition, we study, as in the 2-loop case, the phase of the

Landau singularity.4 We assume that the only singularities are such that |x(Q2)| −→
∞, and expand (2.21) around these points in powers of 1/x. The leading term in
this expansion gives the location of the singularity. If β2 < 0, then xUV is negative

and the phase of the r.h.s. of (2.21) at the singularity is

Φ = ±π 1

γ3−loopIR

, (2.22)

while if β2 > 0, xUV is positive and the phase is

Φ = ±π
(
1

γ3−loopUV

+
1

γ3−loopIR

)
= ±π 1

γ2−loop
. (2.23)

Using (2.20) we find that in both cases |Φ| > π and it follows that the 3-loop coupling
is causal.

4As opposed to the 2-loop case, where it is also possible to invert [12] the relation (2.4) to

calculate x(Q2) using the Lambert W function, here this cannot be done.
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We showed that if the 2-loop coupling is causal, the 3-loop coupling is also causal,

provided it has an infrared fixed-point. It is not clear whether such a conclusion can

be extended to higher orders. It may be however interesting to note that we already

know from the analysis of [12] another example where similar conclusions hold: this

is the Padé improved 3-loop β function, defined by (2.12). Contrary to the above

examples, this β function is not truncated at some finite order, and thus it could

be expected a priori to behave differently. According to [12] the causality condition

for the Padé-improved 3-loop coupling is c < −β0 and c2 < c2. The first condition
is the same as the condition for the causality of the 2-loop coupling. In fact, the

critical exponent of this coupling is equal to that of the 2-loop coupling, and thus

the condition is 0 < γPA = γ2−loop < 1. The second condition is just the condition to
have a positive infrared fixed-point.

We comment that the inverse statement does not hold: the 3-loop coupling can

be causal even if the 2-loop coupling is not. If β2 is negative and large enough, the

3-loop coupling is causal independently of the sign of β1.

Coming to analyze the conditions for causality or the stability of the causal

solution with respect to higher order corrections (such as (2.13)), we should, in

general solve the renormalization group equation at each order to obtain x(Q2) in

the entire Q2 plane, as was done in [12] for the 2-loop and the Padé improved 3-loop

couplings. However, we shall demonstrate below that it is in fact enough to examine

the effect of higher orders on the infrared limit of the space-like coupling xFP ≡ x(0),
unless the coefficients of the β function are extremely close to the condition where

causality is lost. In most cases when x(Q2) is causal, |x(Q2)| . x(0) in the entire Q2
plane. Of course, when causality is lost x(Q2) diverges at some point while x(0) is

finite, and thus close to the boundary of the causality region x(0) is not indicative

at all. The point is that the region where the maximum value of |x(Q2)| is much
larger than x(0) is quite narrow. To demonstrate this, consider again the example

of 2-loop coupling in Nc = 3 QCD. According to (2.8) this coupling is causal so long

as Nf & 9.683. At the point where causality is lost, |x(Q2)| reaches infinity on the
first sheet (on the time-like axis), while the space-like coupling has its maximum at

x(0) ' 0.88 which is not so large. However, if we move slightly above the causality
boundary, the maximal value of |x(Q2)| in the entire Q2 plane becomes of the order
of x(0). We show this phenomenon in fig. 2 where we plot the region in the complex

coupling plane, into which the entire complex Q2 plane is mapped. The contour itself

corresponds to the cut along the time-like axis (Q2 < 0) and it was computed using

the Lambert W function solution, as explained in [12, 11]. As shown in the plot,

for Nf = 9.7, i.e. very close to the point where causality is lost, the maximal value

of |x(Q2)| on the time-like axis is still significantly larger than x(0). One clearly
identifies here the effects of the singularities that are present on the second sheet.

On the other hand, already at Nf = 10, the maximal value of |x(Q2)| on the time-like
axis is of the order of x(0).

13



J
H
E
P
0
3
(
1
9
9
9
)
0
2
4

Figure 2: The compact domain in the complex coupling plane which corresponds to the

entire complex Q2 plane according to the 2-loop β function in Nc = 3 QCD with Nf = 10

and Nf = 9.7, i.e. just above the minimal value of Nf required for causality of the 2-loop

coupling (Nf ' 9.683).

We found that the condition for the 2-loop coupling to have a causal analyticity

structure is 0 ≤ γ2−loop < 1, where γ2−loop = 0 corresponds to a free theory, the
limit obtained at the top of the conformal window, and γ2−loop = 1 corresponds to
the point where Landau singularities first appear. At 2-loop order the condition

0 ≤ γ2−loop < 1 is both a sufficient and a necessary condition. It is interesting to
see how this generalizes to higher orders. When the β function has more than one

zero, we should specify at which of them γ is defined. The only root that is relevant

in the asymptotically free phase is the smallest positive zero, the physical infrared

stable fixed-point, and we always refer to this one.

The 3-loop analysis shows that 0 ≤ γ3−loop < 1 is a necessary condition but not a
sufficient one. An example where the 3-loop coupling is not causal although the above

condition is obeyed can be constructed starting with a non-causal 2-loop β function

with β1 < 0 and adding a 3-loop term with β2 positive but small enough such that a

positive zero for the 3-loop β function exists. It then follows from eq. (2.23) that the

3-loop coupling is not causal although γ3−loop can still obey the above condition. We
stress that this example is not representative since usually, as we shall see, β2 < 0 and

then the condition 0 ≤ γ < 1 is both necessary and sufficient also at the 3-loop order.
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In fact the condition 0 ≤ γ < 1 is always necessary for a causal analyticity
structure. The condition γ ≥ 0 is simply the one to have an infrared stable fixed-
point. To show that also γ < 1 is necessary we use the following observation: a causal

structure implies that there is a well defined mapping x(Q2) from the entire complex

Q2 (the first sheet) into a compact domain in the complex coupling plane, such

that for large enough |Q2| the coupling flows to the trivial fixed-point, as implied by
asymptotic freedom.5 As we saw in the example of fig. 2 (these features as completely

general) the space-like axis is mapped to real positive values in the range [0, xFP] and

the time-like axis is mapped to the boundary of this domain in the complex coupling

plane. It follows from the definition of γ in (2.5) that the coupling approaches the

fixed-point according to

x = xFP −
(
Q2

Λ2
eff

)γ
, (2.24)

where Λeff is an observable-dependent QCD scale. If γ > 1, there is a phase Φ = π/γ

in the complex Q2 plane (Q2 = Q20 exp(iΦ)) such that in the limit Q
2
0 −→ 0 the rays

±Φ are mapped by (2.24) to positive real values of the coupling larger than the fixed-
point value (x = x+

FP
). On the other hand a straightforward analysis of the β function

shows that values of the coupling x > xFP either belong to the domain of attraction of

some non-trivial ultraviolet fixed-point or flow to an ultraviolet Landau singularity.

The conclusion is that there is no singularity free mapping that obeys the asymptotic

freedom condition stated above. In particular, if two different ultraviolet fixed-points

are allowed for different values of Q2 it implies the existence of a separatrix, discrim-

inating between the values of Q2 that flow to each of the ultraviolet fixed-points, i.e.

there are singularities in the first sheet of the complex Q2 plane. We stress that the

arguments why 0 ≤ γ < 1 is a necessary condition for a causal analyticity structure
are completely general: they are not based on perturbation theory.

2.2.2 Causality at higher orders in QCD

We would like to examine whether causality can be established in perturbation theory

in the specific case of the conformal window in QCD. Close to the top of the conformal

window, causality is established at the 2-loop level. The infrared coupling is small and

thus the 3-loop term is negligible and condition (2.13) for stability of the perturbative

analysis is obeyed. This is no longer true at the bottom of the window.

We start the discussion in the MS scheme, which has the advantage that the 4-

loop coefficient in the β function is known [24, 25].We shall refer to physical effective

5It was demonstrated in [12] in the particular case of the Lambert W solution for the 2-loop

coupling that in order to define the analytical continuation of x(Q2) from the space-like axis to the

entire first sheet, it is essential to require asymptotic freedom for complex Q2 values.
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Figure 3: The infrared limit of the 2-loop coupling and the 3-loop and 4-loop MS couplings

in large Nc QCD as a function of ε ≡ (11/2) − (Nf/Nc). The dashed line corresponds to
the 20th order Taylor expansion in ε of the 4-loop coupling. The continuous vertical

line represents the bottom of the conformal window implied by superconvergence and the

dashed vertical line shows the 2-loop causality boundary.

charges later. The fixed-point value of the coupling, calculated as an explicit solution

of the equation β(x) = 0 in the large Nc limit at 2-loop and then in the MS scheme

at 3-loop and 4-loop orders is shown in fig. 3 as a function of the distance from the

top of the conformal window,

ε ≡ 11
2
− r = 11

2
− Nf
Nc
. (2.25)

The 2-loop coupling reaches relatively large values towards the bottom of the confor-

mal window, but then the 3-loop and 4-loop couplings take significantly lower values,

and in addition they are very close to each other. These results can be understood

knowing the negative sign of the 3-loop coefficient β2 and the magnitude of successive

terms in the MS scheme, shown in fig. 4. In the latter, the coupling is evaluated at

the fixed-point according to the zero of the 3-loop β function. It is clear from the plot

that the condition for stability of the 2-loop result (2.13) does not hold in the lower

part of the conformal window. It certainly does not hold for r . 4, corresponding to
Nf . 12 since there the 3-loop term is comparable to the 2-loop term. Thus we are
forced to examine causality at higher orders.
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Figure 4: The relative magnitude of the four leading terms in the large Nc QCD β function

in the MS renormalization scheme in the infrared limit, for various values of r = Nf/Nc,

from the top of the conformal window (r = 5.5) down to the bottom (r = 3.25). The

normalization in each plot is such that the leading order term is 1. This means that the

second is: β1x/β0, the third: β2x
2/β0 and the fourth: β3x

3/β0. The value of the coupling

x is calculated as an explicit solution of the equation β(x) = 0, with the 3-loop β function.

Using the coupling as a zero of the 4-loop β function does not change much the results.

Since the 3-loop coefficient in MS is negative for the relevant Nf/Nc values,

the 3-loop β function has a positive real fixed-point, and according to the general

discussion in the previous section, 3-loop causality is implied within the region where

the 2-loop coupling is causal. Now, in order to trust the 3-loop causality, it is required

that the 4-loop term will be small enough. Indeed, as shown in fig. 4 the 4-loop term

in the MS scheme remains small in the entire conformal window. The effect of the

4-loop term on the fixed-point value is shown in fig. 3. Clearly, this is a negligible

effect, and thus perturbative stability is realized at the 3-loop level. It would be

better to check the effect of the 4-loop term on x(Q2) in the entire Q2 plane, but

based on the experience with the 2-loop coupling we expect that in general the space-

like fixed-point value is indicative of the magnitude of x(Q2) in the entire complex

Q2 plane.
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Figure 5: The critical exponent γ in large Nc QCD (SQCD) is shown in the upper (lower)

plot as a function of ε = (11/2) − (Nf/Nc) (δ = 3 − (Nf/Nc)), according to an explicit
calculation from the truncated 2-loop β function and the 3-loop and 4-loop β functions

(the loop order is indicated by the arrows) in the MS (DRED) renormalization scheme as

well as according to the three available partial sums in the Banks-Zaks expansion: leading

order – dotted line, next-to-leading order – dot-dashed line, and next-to-next-to-leading

order – dashed line. In the QCD plot we show also the explicit calculation of γ at the 3-loop

order in various physical renormalization schemes defined from the vacuum polarization

D-function (D), the polarized and non-polarized Bjorken sum-rules (Bj) and the heavy

quark effective potential (V). The vertical arrow in the SQCD plot shows the point where

the positive real zero of the 4-loop β function disappears. The vertical line is the bottom

of the conformal window according to superconvergence and the horizontal γ = 1 line is

the necessary upper bound of γ for a causal analyticity structure.

Next we consider the value of the critical exponent as a function of the distance

from the top of the window. The results of an explicit calculation of γ, in the

large Nc limit, from the 2-loop, 3-loop and 4-loop β functions in MS are shown

in fig. 5 in the upper plot. In agreement with our previous discussion the condition

0 < γ3−loop < γ2−loop < 1 is obeyed in the entire conformal window. The points where
the 2-loop and 3-loop couplings cease to be causal can be identified in this figure as

the points where γ = 1. Since the 4-loop term is small, γ4−loop ' γ3−loop within
the resolution of this plot, and so the perturbative stability which characterises the

coupling exists also for the critical exponent.
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We stress that the results described above are not special to the large Nc limit.

In particular fig. 3 through 5 are qualitatively the same for any Nc.

The above investigation shows that the MS coupling is causal at the 3-loop level

and, given the smallness of the 4-loop term, presumably also at the 4-loop level in

the entire conformal window. However, this coupling does not correspond directly to

any observable quantity. It is important to check whether similar conclusions apply

in physical schemes.

A relevant analysis has been performed in [11]. Fig. 1 in [11] compares the Nf
dependence of c2 ≡ β2/β0 for various physical effective charges. The observation that
c2 for different effective charges are numerically close and that they share the same Nf
dependence indicates that certain properties of the coupling may be generic in spite of

scheme dependence. In particular we note that c2 is negative in the entire conformal

window not only in MS , but also for all the physical effective charges considered.

We conclude that there is a fixed-point at the 3-loop order in all these physical

schemes and, according to the general discussion above, 3-loop causality follows.6

Unfortunately, 4-loop coefficients in physical renormalization schemes are not known

yet.7 Consequently, the stability of the 3-loop causal coupling with respect to higher

loop corrections cannot be studied for physical effective charges like we did in the

MS scheme. However an alternative is provided by the Banks-Zaks expansion, which

can be calculated in physical schemes up to next-to-next-to-leading order term [14,

15, 11]. This will be discussed further in sec. 4.

We comment that the perturbative coupling at the 3-loop order can have a causal

analyticity structure even somewhat below the bottom of the conformal window, i.e.

in the upper part of the confining phase. In this respect, different couplings may

behave differently. We recall that for Nc = 3 the ‘t Hooft coupling, defined by the

truncated 2-loop β function, is causal down to Nf ' 9.68, quite close to the bottom
of the conformal window Nf ' 9.75. This can be compared with the MS scheme
where 3-loop causality is lost at Nf ' 8.5 and to physical renormalization schemes
in which the causality domain is even wider. Based on the results of [11] and the

above type of analysis we find that for the effective charge defined by the vacuum

polarization D-function and the ones associated with the polarized and non-polarized

Bjorken sum-rules 3-loop causality is lost at Nf ' 7.2 while for the effective charge
defined from the heavy quark potential 3-loop causality is lost at Nf ' 8.4.8
Finally we consider the calculation of the critical exponent using physical renor-

6Note that the Padé improved 3-loop coupling is also causal.
7An exception is the effective charge related to the Higgs hadronic decay width. For this quantity

the infrared fixed-point does not even exists in the lower part of the conformal window due to a

large positive 4-loop coefficient. We do not, however, consider this example as representative (see

the discussion in [11]).
8The last result is based on the recently published 2-loop calculation of the static potential in

QCD [26], which corrects a previous result used in [11].
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malization schemes. As long as the fixed point is perturbative, it is natural to expect

that γ could be calculated with a reasonable accuracy starting with the truncated

β function in various renormalization schemes. Since γ is a universal quantity the

results should agree. The results of an explicit calculation of γ in several physical

schemes at the 3-loop order are presented in fig. 5 together with the results in MS .

The schemes we use include the vacuum polarization D-function, the polarized and

non-polarized Bjorken sum-rules (the latter two curves overlap) and the heavy quark

effective potential. The results in the different schemes agree very well close to the

top of the window. The spread increases to about ±15% towards the bottom of the
window and is interpreted as an artifact of using a truncated perturbative expansion.

We shall come back to discuss the accuracy to which γ can be calculated in sec. 4.2.1

in the framework of the Banks-Zaks expansion (see table 5 there).

3. The conformal window in SQCD

The β function in SQCD is given by9

β(x) ≡ dx

d ln(Q2)
= −(B0x2 +B1x3 + · · ·) = −B0x2 (1 + C1x+ · · ·) , (3.1)

where x = α/π = g2/(4π2),

B0 =
1

4
(3Nc −Nf ) , (3.2)

and

C1 ≡ B1
B0
=
1

2
Nc − Nf

3Nc −Nf
N2c − 1
2Nc

, (3.3)

where the coefficients where calculated in [28]. Above the line R ≡ Nf/Nc = 3 the
theory is infrared free, while below this line it is asymptotically free in the ultraviolet.

For R just below 3, B0 is small and positive and B1 is negative, leading to an infrared

fixed-point at a small xFP ' −B0/B1 = −1/C1, making the theory weakly coupled
at all scales. As Nf (and thus R) is decreased, the infrared coupling increases.

According to Seiberg [16], the infrared fixed-point persists even down to such low

Nf that the original degrees of freedom are strongly coupled and then a dual theory

which is based on another gauge group with Ndc = Nf −Nc colors is appropriate to
describe the infrared limit (d stands for a dual variable). Seiberg’s conjecture can

only be understood if the fixed-point is of non-perturbative origin, at least in the

lower part of the conformal window. This is contrary to our previous observation

concerning the perturbative origin of the fixed-point in the non-supersymmetric case.

Thus we would like to check that indeed a definite difference exists between the

conformal window in QCD, which is perturbative and the one in SQCD which is not.

This is done here by considering the analyticity structure of the coupling constant

and in the next section, by comparing the Banks-Zaks expansion in SQCD to that
9Capital letters are used here to distinguish SQCD coefficients from QCD ones.
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in QCD. We shall indeed see that already at the perturbative level SQCD is more

strongly coupled than QCD in the lower part of the conformal window. The fact that

the strong coupling nature of SQCD at the lower part of the window is manifested in

perturbation theory is not obvious a priori; strong infrared effects could have been

induced instead by terms invisible to perturbation theory.

Duality [16] provides an intuitive description of the conformal window in SQCD,

which is absent in QCD. The lower boundary of the conformal window in SQCD

is naturally identified as the R ≡ Nf/Nc ratio at which the dual theory undergoes
a phase transition from the asymptotically free phase (inside the window) to the

infrared free phase (below the window). The 1-loop β function coefficient in the dual

theory can be obtained by substituting Nf −Nc for Nc in (3.2):

Bd0 =
1

4
(2Nf − 3Nc) . (3.4)

Thus, the conformal window is 3/2 < R < 3, as shown in the lower plot of fig. 1.

The original theory is weakly coupled, and therefore provides a natural physical

description, for R just below the line R = 3, while the dual theory is weakly coupled

just above the line R = 3/2.

An important consistency check for both duality and the superconvergence cri-

terion for confinement is that the lower boundary of the conformal window in both

approaches coincides [19].10 The observation of [19] is the following: in SQCD the

anomalous dimension of the gluon propagator in the Landau gauge is

γSQCD00 = −1
4

(
3

2
Nc −Nf

)
, (3.5)

which is just proportional to the first coefficient of the β function Bd0 in the dual

theory. As a result, γSQCD00 becomes negative, implying superconvergence and there-

fore confinement for the original theory, as R becomes smaller than 3/2, i.e. exactly

where the dual theory becomes infrared free (Bd0 in (3.4) changes sign).

3.1 The analyticity structure of the SQCD coupling

The purpose of this section is to analyze the singularity structure of the perturbative

SQCD coupling, in parallel with the analysis of the QCD coupling in sec. 2, and in

particular to find when it is consistent with causality.

The first step is to analyse the 2-loop coupling. The 2-loop causality condition

C1 < −B0 translates, using eqs. (3.2), and (3.3), to the following condition for R:

R2 +

[
2

N2c
− 10
]
R + 15 < 0 . (3.6)

10The generalization of this result to other supersymmetric models was examined in [20].
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Similarly to the non-supersymmetric case (see eq. (2.8)), the condition (3.6) leads

to an approximately Nc independent critical value for R for any possible value of Nc
(since N2c � 2/10), namely the 2-loop coupling is causal as long as

R > 5−√10 ' 1.8377 . (3.7)

The crucial observation is that the line (3.7) that limits from below the region

where the 2-loop coupling is causal, is within the conformal window which has its

lower boundary at R = 3/2. This is shown in the lower plot of fig. 1. The situation

encountered here is contrary to the one in non-supersymmetric QCD, where the 2-

loop perturbative coupling is causal in the entire conformal window. This observation

fits the general expectation based on duality, that the fixed-point in SQCD is non-

perturbative in the lower part of the conformal window.

In addition we ask when does the 2-loop coupling develop a space-like Landau

singularity. The condition C1 > 0 translates (using (3.3)) to the following:

R <
3

2− (1/N2c )
, (3.8)

which is asymptotic in the large Nc limit to the lower boundary of the conformal

window, R = 3/2.

Note that in the supersymmetric case, it is natural to use the NSVZ form [28, 29]

of the β function, and thus one may wonder if our results concerning the analyticity

structure of the coupling may vary when using the β function in this form rather than

the truncated 2-loop one. In the appendix we show that both the condition for a

causal coupling and the condition for a space-like Landau singularity are exactly the

same in the two cases, if in the NSVZ form one uses the leading order approximation

for the matter field anomalous dimension.

The next step in the analysis of the perturbative coupling causality, as in the

QCD case, should be to examine the effect of higher order terms in the perturbative

β function. We choose to work in the DRED renormalization scheme [27], assuming

that our conclusions will not depend on this choice.

The explicit solutions of β(x) = 0 for Ncx(0) in the large Nc limit are shown in

fig. 6 as a function of the distance from the top of the conformal window,

δ ≡ 3−R = 3− Nf
Nc
. (3.9)

The 2-loop solution is infinite at the bottom of the window (see (3.8)). Already here

we encounter a situation different from QCD, namely stronger coupling. Since the

3-loop coefficient is negative, the 3-loop solution is smaller. The latter is finite down

to the bottom of the window, but it is still rather large. The fixed-point at 4-loop

order exists only up to δ ' 0.4 (near the 4-loop arrow in the figure). Beyond this
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Figure 6: The infrared limit of the 2-loop coupling and the 3-loop and 4-loop DRED

couplings in large Nc SQCD as a function of δ ≡ 3− (Nf/Nc). The continuous vertical line
represents the bottom of the conformal window implied by superconvergence (or duality)

and the dashed vertical line shows the 2-loop causality boundary.

point there is no positive real solution to the equation β(x) = 0. The reason is that

the 4-loop term in SQCD is positive (like in QCD) and large (contrary to QCD) as

can be learned from fig. 7. This figure shows the relative magnitude of the four

leading terms in the large Nc SQCD β function. The coupling in fig. 7 is evaluated

as the zero of the 3-loop β function.

In the lower plot of fig. 5 we show the value of the critical exponent as a function

of δ according to the 2-loop, 3-loop and 4-loop order large Nc DRED β function.

The necessary condition for a causal structure γ = 1 is reached by both the 2-loop

order, which was discussed above, and 3-loop order solutions for γ well within the

conformal window. The 4-loop result for γ exists of course only up to δ ' 0.4 where
a positive fixed-point exists.

Examining fig. 5 through 7 we can determine where causality can be established

in SQCD at the perturbative level. In the upper part of the conformal window the

3-loop term is small with respect to the 2-loop one, so one can trust 2-loop causality.

As R is decreased the 3-loop term becomes comparable to the 2-loop term and then

one has to consider causality at 3-loop order. The negative sign of β2 guarantees

that the 3-loop coupling is causal at least as long as the 2-loop coupling is. But since

the 4-loop term is very large, the perturbative argumentation fails. Thus in SQCD,

it is possible to establish causality in perturbation theory only in the upper part of

the conformal window. To be specific, two alternative criterions can be considered:

the first is to require that the 3-loop term will be smaller than the 2-loop term. The

two become equal around R ' 1.9, i.e. just above the 2-loop causality boundary.
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Figure 7: The relative magnitude of the four leading terms in the large Nc SQCD β

function in the DRED renormalization scheme in the infrared limit for various values of

R = Nf/Nc, from the top of the conformal window (R = 3) down to the bottom (R = 1.5).

The normalization in each plot is such that the leading order term is 1. This means that the

second is: B1x/B0, the third: B2x
2/B0 and the fourth: B3x

3/B0. The value of the coupling

x is calculated as an explicit solution of the equation β(x) = 0, with the 3-loop β function.

The second is even more restrictive, namely to require that also the 4-loop term is

small, or that the 4-loop β function will have a positive real root. This is realized

only above R ' 2.6.
Maybe the most interesting observation in fig. 7 is the fact that the 4-loop term

in the SQCD β function is larger than the leading terms already very close to the

top of the conformal window. This may be related to the asymptotic nature of the

β function series. The asymptotic behavior is another aspect in which the SQCD β

function is presumably different from the QCD one, a point which certainly deserves

further study.

3.2 Reduction of Couplings in the magnetic theory

In the previous section we studied the singularity structure of the 2-loop coupling

in the electric theory. Our aim here is to perform a parallel analysis in its dual, the

magnetic theory. This is, however, not straightforward since the magnetic theory
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has two couplings, rather than one. The running of the gauge coupling is affected

by the Yukawa interaction of the chiral quark superfields with the mesons, which

is described by the superpotential (1.5). This gives rise to coupled renormalization

group equations of the form

βdx(x, λ) ≡
dx

d ln(Q2)
= −Bd0 x2 − Bd1 x3 − Bd1,λx2λ+ · · · (3.10)

βdλ(x, λ) ≡
dλ

d ln(Q2)
= Cdλ xλ+ C

d
λλ λ

2 + · · · ,

with

Bd0 =
1

4
(2Nf − 3Nc) (3.11)

Bd1 =
1

8
(Nf −Nc) (2Nf − 3Nc)− Nf

8

(Nf −Nc)2 − 1
Nf −Nc

Bd1,λ =
1

4
N2f

Cdλ = −
1

2

(Nf −Nc)2 − 1
Nf −Nc

Cdλλ =
1

2
(3Nf −Nc) ,

where Bd0 and B
d
1 can be obtained by substituting Nc −→ Nf − Nc in B0 and B1,

and the other coefficients where calculated in [30]. Note that in (3.11) we use Nc to

denote the number of colors in the original (electric) theory, and thus the dual theory

has an SU(Nf − Nc) gauge symmetry. This is contrary to the notation used in [30]
that corresponds to an SU(Nc) gauge group in the magnetic theory. In addition,

note that in [30] there is a typo in eq. (64), where a factor of two is missing in the

second term in the second equation.11 The correct factor can be easily obtained by

using eqs. (55), (62) and (63) there. Our coefficients do agree with those in [31].

In order to study the analyticity structure of the coupling in the magnetic theory

one should, in principle, integrate the coupled renormalization-group equation (3.10).

This is, however, rather complicated, and so we choose a simpler approach (which

remains to be further justified) based on the notion of Reduction of Couplings.

It was recently shown by Oehme [31] that there is a unique reduction of the

coupled renormalization-group equation (3.10) to a single-coupling equation such

that the superpotential does not vanish, which is essential for duality. Ref. [31]

describes in detail how to apply the general method of Reduction of Couplings to

this problem. We shall use here only the leading order relation between λ and x. To

obtain the relation between the couplings one assumes

λ(x) = f(Nc, Nf) x+O(x2) (3.12)

11The authors thank D. Anselmi and R. Oehme for their help on this matter.
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and imposes the consistency condition,

βdλ (x, λ(x)) =
dλ(x)

dx
βdx (x, λ(x)) . (3.13)

Using (3.10), the condition (3.13) leads, at leading order, to:

f(Nc, Nf)
[
Cdλλ f(Nc, Nf) + C

d
λ +B

d
0

]
= 0 (3.14)

and for a non-vanishing superpotential, the results is

f(Nc, Nf) =
−Bd0 − Cdλ
Cdλλ

=
NcNf −N2c − 2

2 (Nf −Nc) (3Nf −Nc) . (3.15)

Note that f(Nc, Nf) is positive in the entire conformal window.

With the result (3.15) at hand we can substitute the λ term for f(Nc, Nf) x in

the equation of βdx(x, λ) and obtain a single-coupling renormalization-group equation

which is valid up to 2-loop order:

βdx(x, λ(x)) ≡
dx

d ln(Q2)
= −Bd0 x2 − B̃d1 x3 + · · · , (3.16)

where

B̃d1 = B
d
1 +B

d
1,λ f(Nc, Nf ) . (3.17)

Next, we would like to analyze the analyticity structure of the coupling in the

dual theory, using the reduced β function (3.16). Let us calculate first the condition

for the dual 2-loop coupling to have a causal analyticity structure (the analog of (3.7)

in the original theory). The causality condition, B̃d1/B
d
0 < −Bd0 , yields

18R3 − 64R2 +
[
65 +

2

N2c

]
R− 15 < 0 , (3.18)

which again leads to an approximately Nc independent critical value for R for any

possible value of Nc (since N
2
c � 2/65), namely the 2-loop coupling in the dual

theory is causal as long as

R . 1.8357 . (3.19)

As with the original theory, the 2-loop causality region of the dual perturbative

coupling does not cover the far-end of the window. Note (fig. 1) that the regions

of a causal 2-loop coupling in the two dual descriptions, (3.7) and (3.19) do not

overlap. This fits the intuition on which duality is based, i.e. that when one theory is

weakly coupled its dual is necessarily strongly coupled. Since we assume that within

the window a consistent perturbation theory implies small non-perturbative effects,

an overlap would lead to contradiction: it would suggest that two different weakly

coupled theories can describe the same infrared physics.
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In fig. 1 the 2-loop causality boundaries in the two theories are very close. How-

ever, if one adopts a conservative attitude that perturbation theory actually breaks

down above the 2-loop causality boundary (taking into account the large 4-loop

correction) the perturbative regions of the two theories will be more separated.

One can also find the condition to have no space-like Landau singularity in the

2-loop reduced coupling. The requirement B̃d1 < 0 translates into the condition

3R3 − 12R2 +
[
13 +

1

N2c

]
R− 3 < 0 , (3.20)

which yields (for N2c � 1/13) ,
R . 2.314. (3.21)

Note that this line is below the top of the window, and thus in the upper part of the

conformal window the dual coupling has a space-like singularity.

3.3 Summary

To conclude this part, let us summarize the differences between QCD and SQCD

with respect to the analyticity structure of the coupling in comparison with the

boundaries of the conformal window (fig. 1).

In QCD, the region of a causal 2-loop coupling covers the entire conformal win-

dow (supposing the lower boundary is determined by superconvergence: r = 3.25).

As r is reduced further (below r ' 3.17), the 2-loop coupling develops a couple of
Landau branch points at complex Q2 values. At even lower r, below r ' 2.62, a
Landau branch point appears on the space-like axis.

Studying higher loop effects we showed that the 3-loop term is important in the

lower part of the conformal window, and so the 3-loop coupling should be referred

to as a zeroth order approximation in the infrared. The next observation is that the

3-loop coefficient is negative in the conformal window both in MS and in all the

physical effective charges for which the 3-loop coefficient has been computed. This

means that the 3-loop coupling is causal at least where the 2-loop coupling is, i.e. in

the entire conformal window, and in many cases, depending on β2, also somewhat

below this region into the upper part of the confining phase. The 3-loop solution is

reliable according to the usual perturbative justification: the 4-loop term in the β

function, at least in MS , is small enough not to affect the 3-loop solution.

In SQCD, the region of a causal 2-loop coupling 1.8377 . R < 3 does not cover
the lower part of the conformal window (the lower boundary is at R = 1.5). Below

R ' 1.8377 the 2-loop coupling develops a couple of Landau branch points at complex
Q2, and below R ' 1.5, i.e. below the conformal window (see eq. (3.8)) the 2-loop
coupling has a space-like Landau singularity. Studying higher orders we find that

the 3-loop term is significant, and like in QCD it leads to a smaller coupling and to a

larger causality region. But since the value of the coupling is still not small enough,
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and the 4-loop term is large, the 3-loop solution cannot be trusted. This means that

the perturbative analysis in the electric theory is reliable only in the upper part of

the conformal window. In the dual (magnetic) theory the reduced 2-loop coupling

is causal only in the region: 1.5 . R . 1.8357. This coupling even has a space-like
Landau singularity inside the window, for R & 2.314.
Our main conclusions from this analysis are the following:

(a) In QCD perturbation theory seems consistent in the infrared within the entire

conformal window, and even somewhat below it. It then seems natural to as-

sume that non-perturbative corrections are small, at least within the conformal

window.

(b) The previous assumption implies that in QCD the fields are, in some sense,

weakly coupled even at the bottom of the window. This is contrary to SQCD

where the electric fields are strongly coupled at the bottom of the window, one

of the assumptions on which duality is based (see (d) below). We conclude that

in QCD there is no dual description of the infrared in terms of some alternative

degrees of freedom which are weakly coupled near the bottom of the window.

(c) We found that the fixed-point in SQCD at the far-end of the conformal window

cannot be explained in terms of the perturbative β function.

(d) The regions where the electric and magnetic 2-loop couplings in SQCD are

causal do not overlap. Perturbation theory is never meaningful in the infrared

in both the electric and magnetic descriptions of the same model. This is

in accordance with the assumption on which duality is based that when the

electric theory is weekly coupled, the magnetic is necessarily strongly coupled

and vice-versa.

(e) In SQCD perturbation theory signals its own inapplicability indicating that

the coupling becomes strong within the window. This fits the same general

philosophy on which the assumption in (a) is based: the strong coupling nature

of the theory at the bottom of the conformal window should manifest itself

already in perturbation theory.

4. Banks-Zaks expansion in SQCD vs. QCD

In the previous sections we saw that in QCD perturbation theory yields a consistent

description of the infrared physics even in the lower part of the conformal window:

the coupling is causal and stable with respect to higher-loop corrections. On the

other hand, in SQCD causality cannot be achieved at the perturbative level in the

lower part of the conformal window.
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In order to examine the effect of higher order corrections we used an explicit so-

lution of the equation β(x) = 0 in the MS scheme and in physical schemes in QCD,

and in the DRED scheme in SQCD. Another natural way to study the value of the

physical quantities in the infrared is the Banks-Zaks expansion, i.e. a power series

solution to the equation β(x) = 0, in terms of the distance from the top of the confor-

mal window. In QCD, the expansion parameter is ε ≡ (11/2)− (Nf/Nc) = 6β0/Nc
and the expansion has the form:

xFP = z1ε + z2ε
2 + z3ε

3 + · · · , (4.1)

where zi are independent of Nf . Since the coefficients of the β function are polyno-

mials in Nf , it is possible to write them as follows. The 2-loop coefficient:

c =
β1

β0
= − 1
a0
+ c1,0 , (4.2)

where a0 is proportional to ε (and to β0) and c1,0 is independent of Nf . The 3-loop

coefficient:

c2 =
β2
β0
= c2,−1

1

a0
+ c2,0 + c2,1a0 + c2,2a

2
0 , (4.3)

where c2,i are independent on Nf , and so on. Then the leading terms in the Banks-

Zaks expansion for a generic effective charge are [14, 15],

xFP = a0 + (c1,0 + c2,−1) a20 + · · · (4.4)

We identify a0 = z1ε and note that z1 is the same for any effective-charge (or coupling)

due to the universality of c. However, already z2 depends on the effective-charge (or

coupling) under consideration — according to eq. (4.4) it depends on the 3-loop

coefficient of the effective-charge β function.

We stress that the ultimate justification of the presence of a fixed-point near

the top of the conformal window, and thus of the very existence of the conformal

window, is through this expansion [1, 14]. On the other hand, it is a priori not at

all clear how far into the conformal window one can trust the expansion. We will

be interested in particular in calculating the coupling and the critical exponent in

QCD at the bottom of the conformal window and in estimating the reliability of this

calculation. We will show that a calculation of this sort cannot be done in SQCD in

the lower part of the conformal window.

4.1 Banks-Zaks expansion for the coupling

4.1.1 Banks-Zaks expansion for the coupling in QCD

As in the previous sections we start by considering the MS scheme. The advantage

is that the coefficients of the β function are known up to 4-loop order [25]. This

will enable us to compare the infrared limit obtained from the explicit solution of
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β(x) = 0 (fig. 3) which seems quite reliable at the 3-loop and 4-loop orders, to that

of the Banks-Zaks partial-sums. A disadvantage of this scheme is that the coupling

constant is not directly related to any measurable quantity. The dependence of

the Banks-Zaks expansion on the effective charge or coupling under consideration,

which was investigated in [11], first appears at the next-to-leading order term in the

expansion — see eq. (4.4). This dependence becomes significant at the next-to-next-

to-leading order level.

According to [11] the next-to-next-to-leading order coefficient in the Banks-Zaks

expansion for the MS coupling is rather large, making the corresponding term in

the expansion comparable to the leading order terms already within the conformal

window. Here we shall further analyze the expansion for the MS coupling explain-

ing the source of the large next-to-next-to-leading coefficient. For physical effective

charges this coefficient is smaller than in MS , hence the expansion is more reliable.

The coefficients of the β function in the MS scheme are known up to 4-loop

order [24, 25]. The three first Banks-Zaks coefficients in the expansion of xFP
MS
(4.1)

are then determined:

z1 =
16

3

Nc

25Nc
2 − 11 (4.5)

z2 =
16

27

Nc
[
548Nc

4 − 1066Nc2 + 231
]

(
25Nc

2 − 11)3
z3 =

32

243

Nc J(
25Nc

2 − 11)5 ,

with

J = 52272 + (389235− 1341648ζ3)N2c + (−719758 + 3362832ζ3)N4c +
+(−1148400ζ3 − 1105385)N6c + (990000ζ3 + 730529)N8c .

Let us examine whether the Banks-Zaks
order Nc = 2 Nc = 3 Nc →∞
ε 0.539 0.505 0.480

ε2 0.620 0.601 0.585

ε3 1.03 0.933 0.880

Table 1: Ncx
FP

MS
in QCD at the bottom

of the conformal window as a function of

order in the Banks-Zaks expansion.

expansion (4.1) is still reliable at the bot-

tom of the conformal window. Table 1 sum-

marizes the results for Ncx
FP

MS
(this normal-

ization is used in order to consider both fi-

nite Nc cases and the large Nc limit) accord-

ing to (4.1) and (4.5) at the lower bound-

ary of the conformal window, namely at ε =

11/2 − 13/4 = 9/4 for Nc = 2, Nc = 3 and
Nc −→ ∞. The results are presented as a function of order in ε: order ε stands for
the leading term in (4.1), order ε2 stands for the sum of the first two terms in (4.1),

an so on.

Our first conclusion from table 1 is that there is no significant dependence on

Nc: there is no much difference between Ncx
FP

MS
for Nc = 2 and for Nc =∞.
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As mentioned above, the O(ε3) term at the bottom of the window is larger than
the O(ε2) term there. Note that it is also comparable to the leading O(ε) term.
This clearly raises doubts concerning the reliability of the expansion. On the other

hand, solving explicitly β(x) = 0 we found in sec. 2 that the 4-loop fixed-point value

is almost identical to the 3-loop one down to the bottom of the conformal window

(fig. 3). This calls for a more detailed examination of the relation between the Banks-

Zaks expansion and the explicit solution, which we conduct in the next section.

4.1.2 The reliability of the Banks-Zaks expansion in QCD at the bottom

of the conformal window

The purpose of this section is to under-
order β(x) = 0

ε 0.480 2-loop 2.1818

ε2 0.585 3-loop 0.7495

ε3 0.880 4-loop 0.7667

Table 2: Ncx
FP

MS
in large Nc QCD at

the bottom of the conformal window as

a function of order in the Banks-Zaks

expansion and from an explicit solution

of the equations β(x) = 0 for the trun-

cated β function at each order.

stand the reason for the large O(ε3) term in
the Banks-Zaks expansion in MS , and finally

to estimate the reliability of the fixed-point

value. The analysis we present is for the case

Nc −→ ∞, but the results for low Nc are
qualitatively the same.

Let us compare first the numerical val-

ues obtained at the bottom of the window

from the explicit solution vs. the correspond-

ing partial sum in the Banks-Zaks expansion

(table 2).

This comparison is shown also in

Figure 8: The infrared value of the coupling at

the bottom of the conformal window (Nf/Nc =

13/4) in large Nc QCD, calculated as an explicit

solution of the equation β(x) = 0 (circles), com-

pared with the corresponding order partial sum

in the Banks-Zaks expansion (crosses). The hor-

izontal axis is the loop order of the calculation:

2, 3 and 4-loop results in MS are shown.

fig. 8. We see that the two calcula-

tion procedures agree. Referring to

the explicit solution as the best esti-

mate at hand, we can estimate the un-

certainly in the value of the infrared

coupling from the difference between

the two calculation procedures. For

the xFP
MS
the uncertainty is no more

than ±25%.
Let now investigate the relation

between the explicit solutions and the

Banks-Zaks expansion. At 2-loop or-

der, the functional form of the fixed-

point value in the large Nc limit is

Ncx(0) = Nc

(−1
c

)
=

16ε

75− 26ε .
(4.6)
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At higher loop orders, the result is a more complicated function of ε. At any order the

explicit solution has a finite convergence radius in powers of ε, and thus we expand

it, and compare the expansion to the function itself. Such a comparison is shown in

fig. 9 at the bottom of the conformal window, i.e. for ε = 2.25.

In the upper plot, corresponding

Figure 9: The infrared value of the coupling at

the bottom of the conformal window (Nf/Nc =

13/4) in large Nc QCD, calculated as an explicit

solution of the equation β(x) = 0. Three cases

are shown in the three plots, from top to bot-

tom: the 2-loop β function and the 3-loop and

4-loop β functions in the MS renormalization

scheme. The horizontal line is the value of the

infared coupling calculated from β(x) = 0, and

the symbols represent the partial sums in the

expansion in powers of ε ≡ (11/2) − (Nf/Nc) of
this solution. The cross symbols represent these

partial sums that will not be altered by inclusion

of higher order corrections to the β function, i.e.

they represent the Banks-Zaks partial sums.

to the 2-loop case, we see that the ex-

pansion in ε converges very slowly to

the explicit solution. This can be un-

derstood knowing that Ncx(0) is a ge-

ometrical series in ε (4.6) and that ε at

the bottom of the window is already

quite close to the convergence radius

which is ε = 75/26 ' 2.88, the point
where c vanishes. Since we know from

the comparison with the explicit so-

lutions at higher orders that close to

the bottom of the conformal window

the 2-loop value for Ncx(0) is unreal-

istically large12 we should not regard

the slow convergence of the series in

ε corresponding to (4.6) as indicative

of a problem of the Banks-Zaks series

as a whole. It just means that higher

orders are important.

In the 3-loop case in fig. 9 (mid-

dle plot) the Banks-Zaks partial sum

at order O(ε2) is much closer to the
explicit solution and the convergence

at higher orders in ε is much acceler-

ated as compared to the 2-loop case.

In the 4-loop case in fig. 9 (lower

plot) the partial sums of the ε expan-

sion diverge badly beyond the O(ε3)
term or so. The reason is that the

convergence radius of the ε series of the explicit solution is about ε ' 1, i.e. signif-
icantly smaller than ε = 2.25 which corresponds to the bottom of the window and

to fig. 9. This also explains why the O(ε3) term in the Banks-Zaks series, which
is fully determined at the 4-loop level, is larger than the O(ε2) term. The explicit
solution is a well defined function of ε in the entire conformal window in all the cases

12This is related to the discussion in sec. 2 concerning the necessity to start from the 3-loop term

in order to establish perturbative causality in the lower part of the window.
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considered. It turns out however that in the 4-loop case this function does not have

a converging power expansion beyond ε ' 1. This fact is shown also in fig. 3: around
ε ' 1 the series departs from the explicit solution itself.
We note that for the available examples the ε series that correspond to increasing

loop-order solutions have an ever decreasing convergence radii: it is ε ' 2.88 in the
2-loop case, ε ' 2.787 in the 3-loop case and ε ' 1 in the 4-loop case. This may
be related to large order behavior of series: since the Banks-Zaks expansion is based

on the factorially growing perturbative coefficients, it is natural to expect that it is

also an asymptotic series with zero radius of convergence. Such a behavior will be

avoided only if some systematic cancellation of the factorially growing ingredients

occurs. If indeed the asymptotic nature of the Banks-Zaks series is reached at the

order O(ε3) the best estimate of the fixed-point value from the expansion is obtained
by truncating the series after the minimal term, in this case, the next-to-leading

term.

A comparison between the fixed-point value from the Banks-Zaks expansion and

the explicit solution of β(x) = 0 can be also conducted in physical renormaliza-

tion schemes. In the absence of full 4-loop perturbative coefficients, one cannot

obtain an explicit solution at the 4-loop level. On the other hand, the O(ε3) is cal-
culable [14, 15, 11] and thus the next-to-next-to-leading order partial sum can be

compared with the explicit solution of the 3-loop effective charge β function. Such

a comparison was performed in [11] for the effective charge which is defined from

the vacuum-polarization D-function. As shown in fig. 7 there, the two calculation

methods nicely agree down to the bottom of the conformal window (Nf ' 10 in the
figure) and even below.

As noted above, in physical renormalization schemes the Banks-Zaks coefficients

(and in particular the next-to-next-to-leading coefficients) are smaller than in MS

[11, 15], and so the expansion seems more reliable. For example, for Nc = 3 we

have [11]:

xMSFP = a0 + 1.14 a
2
0 + 23.27 a

3
0 + · · ·

xD
FP
= a0 + 1.22 a

2
0 + 0.23 a

3
0 + · · ·

xVFP = a0 − 0.86 a20 + 10.99 a30 + · · · , (4.7)

where D stand for the effective charge defined from the vacuum polarization D-

function and V stands for the one defined from the heavy quark potential. In fact,

the O(a30) coefficient in xVFP is the largest amongst all the O(a30) coefficients for the
effective charges considered in [11].13

13The result presented above for the O(a30) coefficient in xVFP is different from the one in [11].
The latter was calculated based on a wrong 2-loop coefficient, which has now been corrected thanks

to [26].
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We conclude that calculation of infrared quantities can be performed either as an

explicit solution of the equation β(x) = 0 or by the Banks-Zaks expansion. Although

the expansion probably has a zero convergence radius in general, and bad conver-

gence properties already for the available 4-loop example (MS ), it seems to give

a reasonable estimate at the next-to-leading and the next-to-next-to-leading orders

within the entire conformal window. Infrared quantities appear to be perturbatively

calculable in general even at the bottom of the conformal window. Note, however,

that the accuracy is observable dependent. Some quantities, like the vacuum po-

larization D-function, can be determined with high accuracy, whereas for others the

accuracy is not as good: as mentioned above, the MS coupling can be determined

within ±25% accuracy.

4.1.3 Banks-Zaks expansion for the coupling in SQCD

Let us now turn to the supersymmetric case and consider the Banks-Zaks expansion

for the value of the DRED coupling at the fixed-point. The expansion parameter is

δ ≡ 3− R = 3− (Nf/Nc):

xFP
DRED

= Z1δ + Z2δ
2 + Z3δ

3 + O(δ4) . (4.8)

The coefficients of the β function up to 4-loop are taken from [27]. The resulting

Banks-Zaks coefficients read:

Z1 =
2

3

Nc
N2c − 1

(4.9)

Z2 =
1

3

Nc

(N2c − 1)

Z3 =
1

54

Nc [(17 + 18ζ3)N
4
c + (−25 + 18ζ3)N2c + 8]
(N2c − 1)3

. (4.10)

Table 3 summarizes the results for
order Nc = 2 Nc = 3 Nc →∞
δ 1.33 1.13 1

δ2 2.33 1.97 1.75

δ3 8.00 5.38 4.16

Table 3: Ncx
FP
DRED in SQCD at the bottom

of the conformal window as a function of

order in the Banks-Zaks expansion.

Ncx
FP
DRED, according to (4.8) and (4.9), at

the bottom of the conformal window, i.e.

at δ = 3− 3/2 = 3/2.
There is a clear contrast between the

supersymmetric case (table 3) and the non-

supersymmetric case (table 1). Indeed ta-

ble 3 shows that the Banks-Zaks series for

Ncx
FP
DRED
, at the bottom of the conformal window, cannot be trusted at all, since the

next-to-leading term is comparable to the leading one and the third order term is

much larger than both. In addition, the value of the coupling itself (as much as it

can be determined) is larger than in QCD.
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It is interesting to compare the explicit
order β(x) = 0

δ 1 2-loop ∞
δ2 1.75 3-loop 4

δ3 4.16 4-loop no solution

Table 4: Ncx
FP
DRED in SQCD for Nc → ∞

at the bottom of the conformal window as

a function of order in the Banks-Zaks ex-

pansion, and from the explicit solution of

β(x) = 0.

solutions to the equations β(x) = 0 at in-

creasing loop order (fig. 6), and the Banks-

Zaks expansion. In table 4 we show the

values of the infrared coupling at the bot-

tom of the window as determined by the

two methods.

It is clear from table 4 and from fig. 6

that the perturbative analysis fails to de-

termine the infrared value of the coupling

in the lower part of the conformal window. It thus seems, also from this point of

view, that perturbation theory is inapplicable to describe the infrared physics there.

4.1.4 Banks-Zaks expansion for the coupling in the magnetic theory (dual

SQCD)

In a similar manner we consider the Banks-Zaks series in the dual theory, where the

expansion parameter is δd = R− (3/2),14

xFPdual = Z
d
1δd + Z

d
2δ
2
d + Z

d
3δ
3
d + O(δ4d). (4.11)

The coefficients can be calculated either from the reduced β function (3.16), or

directly from the coupled β function (3.10), assuming both infrared couplings are

vanishingly small. Since the β function in the magnetic theory is known at present

only up to the next-to-leading order term, only the leading order coefficient in the

Banks-Zaks expansion can be calculated. The result is:

Zd1 =
112

3

Nc
N2c − 4

(4.12)

The infrared value of the Yukawa coupling is given by

λFP =
16

3

1

Nc
δd +O(δ2d). (4.13)

Let us now examine the magnitude of the infrared coupling in the magnetic

theory at the top of the conformal window (having only one term, we cannot inves-

tigate the behavior of the series as we did for the electric theory and for the non-

supersymmetric case). Using the leading term in (4.11) with (4.12) and δd = 3/2

we find that for Nc = 3, xFP ' 168/5 = 33.6, and for Nc =∞, NcxFP ' 56. In both
cases, it is clear that the coupling is much too large to be perturbative (which also

14Note that both expansion parameters δ and δd are chosen to be positive inside the conformal

window.
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implies that these values are meaningless). The conclusion is that the fixed-point

of the dual theory cannot be described by perturbation theory at the far-end of the

window.

An interesting unrelated observation is that for Nc = 2, the Banks-Zaks expan-

sion is completely ill-defined due to the pole at N2c = 4 in (4.12). In the absence of

the Banks-Zaks expansion it seems hard to establish the existence of a fixed-point.

In fact, as we explain below, the problem is specific to the point around which the

expansion is done, and therefore it may not imply anything special for the rest of

the conformal window for Nc = 2.
15 The original theory in this case (at the bottom

of the conformal window) is an SU(2) gauge theory with Nf = 3. The implied dual

theory has a color group of Nf − Nc = 1, which means that there are no gluons.
Mathematically, this appears as an ill-defined expansion since the point where the

next-to-leading coefficient of the β function B̃d1 vanishes (see eq. (3.17)) coincides

with the point where Bd0 vanishes,
16 and thus the ratio Bd0/B̃

d
1 which is usually used

to define the expansion parameter δd is not arbitrarily small near the point B
d
0 = 0

but is finite there.

4.2 Banks-Zaks expansion for the critical exponent

The critical exponent γ has a special status since it is a universal quantity [32]: it

determines the rate at which any perturbative coupling or effective-charge approaches

its infrared limit.17 In addition, discussing the analyticity structure of the coupling

we found that the value of γ is indicative of a causal coupling. Thus it is interesting

to study the Banks-Zaks expansion and its break-down for this particular quantity.

Let us start with a brief review of the definition and the basic properties of γ.18

The critical exponent is defined as the derivative of the β function,

β(x) = −β0x2
(
1 + cx+ c2x

2 + · · ·) (4.14)

at the fixed-point:

γ ≡ dβ(x)
dx

∣∣∣∣
x=xFP

= −β0xFP
[
2 + 3 c xFP + 4 c2 (xFP)

2 + · · ·] (4.15)

from which eq. (2.24) follows.

As already mentioned γ is universal, i.e. independent of the renormalization

scheme. To be precise, this statement is true so long as the transformations relating

the different schemes are non-singular (see ref. [32, 33] and appendix B in ref. [15]

and references therein).

15The authors are in debt to D. Anselmi for explaining this point.
16For any Nc > 2, B̃

d
1 becomes negative already at lower Nf/Nc, before B

d
0 vanishes.

17γ in QCD was discussed in various papers; see for instance [14, 15, 33, 11].
18The notation is again that of QCD, but the same equations are relevant in SQCD, with the

replacement of ε by δ, βi by Bi, c by C1, and so on.
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The Banks-Zaks expansion for γ can be calculated using (4.15) together with

the Banks-Zaks series for xFP, yielding a Banks-Zaks series of the form,

γ = g1ε
2 + g2ε

3 + g3ε
4 + · · · (4.16)

Note that contrary to a generic effective charge, the expansion for γ begins with an ε2

term. A further difference is that the coefficients of (4.16) have an additional factor

of Nc, as compared to those of (4.1).

It was shown in [14] that the coefficients gi are universal, i.e. they are the same

for any effective-charge x. This is in agreement with what is expected on general

grounds, since γ itself is independent of the renormalization scheme in which the β

function is defined, and the expansion parameter ε is a well defined physical quantity.

An additional interesting observation [14] is that the first two terms in the Banks-

Zaks expansion for γ are determined from the 2-loop β function:

γ = g1ε
2 + g2ε

3 + · · · =
(
g1
z21

) [
a20 + c1,0a

3
0 + · · ·

]
(4.17)

where a0 = z1ε and c1,0 are defined in (4.2). Since g2 is fixed by the 2-loop β function

which is the leading order in which the Banks-Zaks fixed-point can be discussed, it

makes sense to regard the first two orders g1ε
2 + g2ε

3 together as the leading term.

We shall see below that in both QCD and SQCD g2ε
3 is comparable to g1ε

2 for values

of ε such that the expansion for the coupling is still reliable.19 However, according

to the explanation above this should not be regarded as an indication of the break

down of the series – it is the magnitude of the next term g3ε
4, that depends also on

the 3-loop and 4-loop coefficients of the β function, which must be examined in order

to assess the reliability the expansion.

4.2.1 The critical exponent in QCD

Again, we start with QCD where the coefficients of the Banks-Zaks series for γ

in (4.16) are:20

g1 =
8

9

N2c
25N2c − 11

(4.18)

g2 =
16

27

N2c (13N
2
c − 3)

(25N2c − 11)2

g3 = − 8N2c H

243 (25N2c − 11)5
,

19In QCD it is the case in all the physical renormalization schemes that where examined in [11],

since always c2,−1 < 0. Thus it turns out that the next-to-leading coefficient in (4.4) is smaller in
absolute value than the one in (4.17).
20The third order coefficient of the Banks-Zaks expansion for γ has been calculated for the first

time in [15].
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order β(x) = 0 MS D Bj F1 V

ε2 0.180

ε3 0.320 2-loop 0.818 0.818 0.818 0.818 0.818

3-loop 0.466 0.330 0.340 0.337 0.413

ε4 0.284 4-loop 0.463

Table 5: γ in large Nc QCD at the bottom of the conformal window as a function of

order in the Banks-Zaks expansion and as an explicit calculation from the truncated β

function in MS and in various physical schemes: D-vacuum polarization D-function, Bj

and F1-polarized and non-polarized Bjorken sum-rules and V -heavy quark potential. The

gaps in the table are due to the fact that the next-to-leading term O(ε3) of the Banks-Zaks
series depends only on the 2-loop β function, while the next-to-next-to-leading term O(ε4)
is determined by the 4-loop β function [14, 15, 11].

with

H = 3993 + (571516− 894432 ζ3)N2c + (−1599316 + 2241888 ζ3)N4c +
+(−765600 ζ3 + 865400)N6c + (660000 ζ3 − 366782)N8c ,

Our aim is to see whether γ can be calculated from this expansion even at

the bottom of the conformal window, and then with what accuracy. Fig. 5 (upper

plot) shows, in addition to the results of the explicit calculation in various schemes,

the following Banks-Zaks partial sums: g1ε
2, g1ε

2 + g2ε
3, and g1ε

2 + g2ε
3 + g3ε

4 as a

function of ε. The next-to-leading term is relatively large, but as explained in the

previous section this should not be taken as an indication for the breakdown of the

expansion. The relevant observation is that the next-to-next-to-leading term is just

a small correction. At this level the Banks-Zaks series for γ seems reliable.

The comparison between the explicit calculation based on a truncated β func-

tion and the Banks-Zaks partial sums, shown in fig. 5 (upper plot) raises again the

question of the relation between the two calculation procedures, especially in the MS

scheme.

Table 5 summarizes the numerical values obtained at the bottom of the conformal

window (like the plot, the numbers correspond to Nc −→ ∞ but the results at low
Nc are similar).

Considered separarately, both the Banks-Zaks expansion and the explicit calcu-

lation in MS seem reliable. Still the disagreement between them is about 40%. In

order to understand better the source of this discrepancy we compare in fig. 10 the

explicit results for γ with the partial sums in the ε expansion of these results, at the

bottom of the window. In the 2-loop (upper plot) and 3-loop (middle plot) cases the

ε series converges to the value for γ, while in the 4-loop case, the series diverges since

its convergence radius is smaller than the value of ε at the bottom of the window,

ε = 2.25.
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Figure 10: The critical exponent γ at the bottom of the conformal window (Nf/Nc =

13/4) in large Nc QCD, calculated explicitly from the truncated β function. Three cases

are shown in the three plots, from top to bottom: the 2-loop β function and the 3-loop

and 4-loop β functions in the MS renormalization scheme. The horizontal line is the value

of γ calculated from the truncated β function, and the symbols represent the partial sums

in the expansion of γ in powers of ε ≡ (11/2) − (Nf/Nc). The cross symbols represent
these partial sums that will not be altered by inclusion of higher order corrections to the β

function, i.e. they represent the Banks-Zaks partial sums which are renormalization scheme

invariant.

The comparison in fig. 10 suggests that the explicit calculation (right column in

the table) is equivalent to some resummation of higher order terms in ε, and explains

the disagreement between the two calculation procedures. Such a resummation is

necessarily scheme dependent since it should reflect the spread between the differ-

ent schemes when using a truncated β function. Finally, at the available order in

perturbation theory we can determine the critical exponent to be γ = 0.4± 0.1.

4.2.2 The critical exponent in SQCD

In the SQCD case, in the original (electric) theory, the expansion for the critical

exponent is

γ = G1δ
2 +G2δ

3 +G3δ
4 + · · · (4.19)
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and the coefficients Gi are:

G1 =
1

6

N2c
(N2c − 1)

G2 =
1

18

N2c (2N
2
c − 1)

(N2c − 1)2

G3 = − 1
216

N2c [(−1 + 18ζ3)N4c + (2 + 18ζ3)N2c − 5]
(N2c − 1)3

. (4.20)

The numerical values of γ as calculated from the partial sums G1δ
2, G1δ

2 +G2δ
3,

and G1δ
2 +G2δ

3 +G3δ
4 is shown in fig. 5 (lower plot) as a function of δ within the

conformal window. It is clear from the plot that the expansion is useless at the

bottom of the window since G3δ
4 is comparable to G1δ

2 and to G2δ
3.

4.2.3 The critical exponent in the magnetic theory (dual SQCD)

Finally we consider the Banks-Zaks expansion for the critical exponent in the dual

SQCD theory,

γ = Gd1δ
2
d +G

d
2δ
3
d +G

d
3δ
4
d + · · · (4.21)

There are two ways to calculate this quantity, one, which has been used in [35], is

based directly on the coupled renormalization group equations (3.10) and the other

is based on the reduced equation (3.16). We show that both methods give the same

Banks-Zaks expansion.

Calculating γ in the magnetic theory directly from the coupled renormalization-

group equations (3.10) is more involved, since there are two couplings. As mentioned

above, a similar calculation was performed in [35]. The latter ref. presents a calcu-

lation of the leading-order term in the expansion, but in fact, as we shall see, the

2-loop gauge β function together with the one-loop Yukawa β function fixes also the

next-to-leading order term, just like in QCD and in the SQCD electric theory.

Let us briefly describe the method and then give the results. The generalization

of γ to a two coupling theory is the following matrix:

Γ =



dβdx
dx

dβdx
dλ

dβdλ
dx

dβdλ
dλ




∣∣∣∣∣∣∣∣∣
FP

. (4.22)

The next step is to diagonalize the matrix. This yields two eigenvalues: γ1 and γ2.

Therefore a physical quantity behaves in the infrared like

xFP − x = K1
(
Q2

Λ2
eff

)γ1
+K2

(
Q2

Λ2
eff

)γ2
(4.23)

and then asymptotically only the minimal eigenvalue is important. Thus we conclude

that γ = min {γ1, γ2}.
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Taking the derivatives of the coupled β functions (3.10) at the fixed-point we

find the matrix elements of (4.22):

dβdx
dx

∣∣∣∣
FP

=
392

3

N2c
N2c − 4

δ2d +
1120

9

N2c (4 + 13N
2
c )

(N2c − 4)2
δ3d + · · ·

dβdx
dλ

∣∣∣∣
FP

= −784 N4c
(N2c − 4)2

δ2d −
448

3

N4c (−36 + 65N2c )
(N2c − 4)3

δ3d + · · ·

dβdλ
dx

∣∣∣∣
FP

= −4
3

(N2c − 4)
N2c

δd − 8
9

(13N2c + 28)

N2c
δ2d + · · ·

dβdλ
dλ

∣∣∣∣
FP

=
28

3
δd +

8

9

(79N2c + 76)

N2c − 4
δ2d + · · ·

The eigenvalues are

γ1 =
28

3
δd +

8

9

205N2c + 76

N2c − 4
δ2d + O(δ3d) (4.24)

γ2 =
56

3

N2c
N2c − 4

δ2d −
64

9

(17N2c + 2)N
2
c

(N2c − 4)2
δ3d + O(δ4d) ,

The two eigenvalues are positive reflecting the infrared stability of the fixed point.

The smaller eigenvalue is γ = γ2.

We note that these eigenvalues do not agree with the leading order calculation

in [35]. The reason21 is that ref. [35] uses the β function as it appears in [30] – see

the comment concerning [30] below eq. (3.11).

The second method to calculate γ in the magnetic theory is to use the reduced

renormalization group equation. Here we have a single coupling and thus the deriva-

tive of the β function (3.16) at the fixed-point immediately yields the relevant γ.

Performing this calculation we indeed find the same value as appears in (4.24) for

γ2. The non-relevant perturbation corresponding to γ1 does not even appear when

using this procedure.

As stressed above the critical exponent can be (and was) calculated up to the

next to leading order term from the available coefficients in the magnetic theory

β function. This conclusion is transparent in the reduction method: the 2-loop

reduced β function is fully determined from the 2-loop gauge β function and the

1-loop Yukawa β function. In particular it does not depend on the 2-loop Yukawa

β function. Like in QCD and in the electric SQCD cases, it follows that γ can be

computed up to the next to leading order term. On the other hand, this conclusion

is non-trivial when calculating γ from the coupled β functions. It turns out that

the next to leading order terms in the matrix elements of Γ, likewise in the larger

eigenvalue γ1, do depend on the (unknown) 2-loop terms of the Yukawa coupling β

function. On the other hand, the relevant eigenvalue γ2 does not depend on these

2-loop terms.
21The authors are in debt to D. Anselmi for his help on this matter.
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We emphasize that the first method described above, i.e. to use the coupled β

function in order to define γ as a matrix, and then take the minimal eigenvalue, is a

completely general procedure. It is guaranteed that the second method that uses the

reduced β function will also give the correct value of γ once we choose the reduced

solution that belongs to the infrared stable fixed-point, which we did. Note that

there exists in this case another possible reduction that corresponds to λ = 0 [31, 34]

and an unstable infrared fixed-point. Since λ = 0 means a zero superpotential, this

reduction cannot correspond to the dual of an electric theory. Had we used this

reduction instead of the relevant one we would have obtained different values for the

infrared fixed-point and for γ.

Contrary to QCD and the electric SQCD theory, higher order corrections to the

coupled β functions of the magnetic SQCD theory are not known. As a result we

cannot study the behavior and the break-down of the Banks-Zaks series beyond the

next-to-leading order term in this case.

4.3 Interpolating between the original theory and its dual

The results of the previous sections indicate that in SQCD the electric theory is

strongly coupled when the magnetic theory is weakly coupled and vise-versa. These

results are in accordance with Seiberg’s description of the conformal window. Since

calculations are usually limited to the weak coupling regime, it is in general impossible

to compare between results obtained in the two theories. An interesting example of

how the two theories can be compared for the infrared limit of a specific physical

quantity, the total “hadronic” cross section ratio in e+e− annihilation, Re+e−, is
discussed in ref. [34].

We find it useful to express the relation between the infrared limit of physical

quantities in terms of the relation between the corresponding effective charges. For

instance, we can define an effective charge in the original (electric) theory,

Re+e−(Q
2) ≡ a + b xRe+e− (Q2) , (4.25)

where a and b are Nc and Nf dependent constants, and another effective charge in

the dual (magnetic) theory,

Rde+e−(Q
2) ≡ ad + bd xdRe+e− (Q

2) . (4.26)

For a non-zero Q2 the quantities in the two theories are not related, but in the

infrared limit duality relates them. Close to the fixed-point we have:

xRe+e− (Q
2) = xRe+e− (0)−

(
Q2

Λ2
eff

)γ
(4.27)

xdRe+e− (Q
2) = xdRe+e− (0)−

(
Q2

Λ2
effd

)γd
,
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According to duality, we have in the infrared limit, Rde+e−(0) = Re+e−(0), i.e.

a+ b xRe+e− (0) = ad + bd x
d
Re+e−

(0) (4.28)

and

γ = γd . (4.29)

The last equality was shown to follow from duality in [35] where γ was identified as

the anomalous dimension of the Konishi current, which is part of the superconformal

algebra. A natural extension of duality would be to conjecture [36] that also the

terms that describe the approach to the infrared fixed-point are the same in the two

dual theories. In this case it makes sense to set the convention such that Λeff = Λeffd.

From Seiberg’s description of the conformal window it seems reasonable to as-

sume that taking into account the physical information from both the electric and

magnetic descriptions together, we may be able to describe the infrared limit in

the entire window. In the following we give an example how this can be achieved

in practice by interpolating between the Banks-Zaks expansions in the electric and

magnetic theories.

The quantity we consider is the critical exponent γ which was calculated in

the original and the dual theories in the previous section. As explained above, the

calculations in the two theories correspond to the same physical quantity.

We choose to analyze the critical exponent in the largeNc limit (a similar analysis

is possible for any Nc ≥ 3). Using the expansions for γ in electric theory (4.19) and
in the magnetic theory γ = γ2 (4.24), we obtain in the large Nc limit the following

partial-sums, respectively:

γ =
1

6
[3−R]2 + 1

9
[3− R]3 +

(
− 1
12
ζ3 +

1

216

)
[3− R]4 + · · · (4.30)

γ =
56

3

[
R− 3

2

]2
− 1088
9

[
R− 3

2

]3
+ · · ·

Fig. 11 presents the functional form of γ, according to the above expansions. In

the original theory we show G1δ
2 +G2δ

3 and G1δ
2 +G2δ

3 +G3δ
4, and in the dual

theory we show Gd1δ
2
d +G

d
2δ
3
d. Each of the two expansions can be trusted just in some

limited region around the expansion point. It is quite clear from this figure, especially

if one compares the results obtained in both descriptions, that the perturbative

result cannot be extrapolated to the far-end of the conformal window. Thus, a

straightforward comparison between the results obtained in the two dual description

is impossible. On the other hand, it makes sense to interpolate between the two.

We use the 2-point Padé approximants method to interpolate between the two

series (4.30). The general idea is to construct a rational function which yields both

the known series (4.30) in the original and dual theories when expanded in a Taylor

series at R = 3 and R = 3/2, respectively. The calculation technique is explained in
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Figure 11: The critical exponent γ in largeNc SQCD, is shown as a function of R = Nf/Nc
in the conformal window. In the original theory (expansion around R = 3) we show two

Banks-Zaks partial sums, according to (4.30): second order partial sum – dot-dashed line;

third order partial sum – dashed line. In the dual theory (expansion around R = 3/2)

we show the second order partial sum as a dot-dashed line. The continuous line shows

the [4/4] interpolating 2-point Padé Approximant of eq. (4.31). The dotted line shows the

[4/5] approximant which is based on Gd3 = 0 and serves as a rough measure of the error for

the [4/4] interpolating function.

detail in chapter 8 in [21]. The resulting approximant is:

γPA =
{
392 [3−R]2 [R− (3/2)]2

}/{
23814 ζ3 + 10881− (47628 ζ3 − 22734)R+
+ (34398ζ3 + 17685)R

2− (10584ζ3 + 6216)R3+
+ (1176 ζ3 + 880)R

4
}
. (4.31)

This approximant is a rational polynomial of order [4/4]. Note that the numerator

in (4.31) contains the double zero at both ends of the conformal window as im-

plied by (4.30). In principle, there could be further possible [N/M] approximants,

based on other rational polynomials. But, given the particular form of (4.30), other

approximants cannot be constructed at this order.

The interpolating γPA of (4.31) is shown in fig. 11 together with the lines describ-

ing the partial-sums (4.30) which correspond to the Banks-Zaks expansions around

R = 3 and R = 3/2. We stress that in order to construct (4.31) we used nothing but

the information contained in the coefficients of (4.30). A priori, a Padé pole could

have appeared within the conformal window, which would probably mean that this

interpolation technique is inappropriate. We find that such a pole does not appear.

On the other hand, the convergence radius of the δ and δd expansions of (4.31) are

rather small due to complex Padé poles. This should not be a surprise, as we expect

the all order result to have zero radii of convergence in terms of δ and δd.
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Another interesting observation is that duality suggests an alternative way to

define the expansion parameters for both the original and the dual theory. Referring

to the original degrees of freedom, we defined R ≡ Nf/Nc, and then the expansion
parameters were: in the original theory δ ≡ 3 − R, which is small at the top of the
window and in the dual theory δd ≡ R− (3/2), which is small at the bottom of the
window. If we instead start with the dual theory, then we consider the ratio

R̃ ≡ Nf/Ndc =
Nf

Nf −Nc =
R

R− 1 (4.32)

and define the following expansion parameters:

δ̃ ≡ R̃− 3
2
=

δ

4− 2δ
δ̃d ≡ 3− R̃ = 4δd

1 + 2δd
. (4.33)

It is then possible to repeat the calculation of the Banks-Zaks coefficients in terms

of δ̃ in the electric theory and δ̃d in the magnetic theory. An alternative way to

calculate the expansion in terms of δ̃ and δ̃d would be simply to use the expansion of

(4.30): substituting δ and δd in terms of δ̃ and δ̃d, according to (4.33) in (4.30) and

Taylor expanding to the maximal order to which the coefficients are fixed (order δ̃4

in the electric theory and order δ̃3d in the magnetic theory) we find:

γ =
8

3

[
R̃− 3

2

]2
− 32
9

[
R̃− 3

2

]3
+

(
−256
27
− 64
3
ζ3

)[
R̃− 3

2

]4
+ · · ·

γ =
7

6

[
3− R̃

]2
− 13
18

[
3− R̃

]3
+ · · · (4.34)

Note that the functional form and therefore the numerical values of the truncated

expansions for γ using the δ̃ and δ̃d variables is different (at any finite order) from

those using the δ and δd variables. On the other hand, γ is a physical quantity

and therefore it cannot depend on such an arbitrary choice of expansion parameter.

This is a disadvantage of using truncated series: they do not respect the invariance

property of the full function γ(Nf/Nc) to the choice of expansion parameter.

Finally, we come back to the 2-point Padé Approximant (4.31) and ask how this

function behaves under this change of expansion parameter. One can construct a

[4/4] 2-point Padé approximant starting from the series (4.34) and compare it, as a

function of Nf/Nc to the [4/4] 2-point Padé approximant of (4.31). One would find

that the two functions are identical. The reason is that the transformation relating

R to R̃, and then also the transformations relating δ and δd to δ̃ and δ̃d, are all

homographic transformations of the argument of the Padé approximant. It is then

guaranteed by a mathematical theorem (see [21, 37]) for each expansion separately,

that the diagonal Padé function is invariant. Note that this theorem holds in our
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example which is a diagonal [4/4] rational function, but it does not hold for non-

diagonal rational polynomials. It is interesting to mention that the same invariance

property of Padé approximants was shown to be significant in a different context [37],

where Padé approximants are used to resum perturbative series in QCD.

This invariance property of the diagonal 2-point Padé approximants with respect

to the choice of expansion parameter, indicates that it is a good candidate to serve

as an approximation to the function γ(Nf/Nc).

In order to have a rough estimate of the accuracy of this approximation pro-

cedure, we suggest the following: let us construct a higher approximant based on

a guess for the higher order coefficients of the expansion. We choose to “add” a

coefficient in the Banks-Zaks expansion in the magnetic theory, Gd3. Not knowing

anything about higher order coefficients of the coupled β functions that are needed

to determine this coefficient, we just use Gd3 = 0. We do not expect it to be a good

guess (especially considering the presumably asymptotic nature of the expansion)

but we use it just to check the sensitivity of the calculation. With a value of Gd3 at

hand, we can obtain a (non-diagonal!) [4/5] rational polynomial that reproduces the

first three terms in each expansion: the first three correct coefficients in the electric

theory, and the first two correct coefficients in the magnetic theory, with the third

coefficient put to zero. The resulting [4/5] approximant is also shown in fig. 11. We

refer to the difference between the [4/4] approximant of (4.31) and the latter as a

rough estimate of the error of the interpolation which is due to the lack of knowledge

of higher order corrections.

This exercise suggests that although the partial-sums can be considered to be a

good numerical approximation to the physical quantity γ only in some limited domain

around the boundaries of the conformal window, an interpolating Padé approximant

can be a good approximation for γ in the entire conformal window.

Unfortunately, in the absence of non-perturbative calculations, it is impossible

to validate duality, nor to check our prediction for γ in the interior of the confor-

mal window. This calculation can surely be improved if higher-order terms in the β

function of either the electric or the magnetic theory will be available. It is of course

possible that there exist non-perturbative corrections that limit in principle the ac-

curacy of this calculation. One should note, however, that although the Banks-Zaks

expansions we started with (4.30) are presumably asymptotic series, with zero radius

of convergence, the resulting function (4.31) is well-defined in the entire conformal

window. Thus combining the information from the two theories in this 2-point Padé

method, is in fact also a way to resum the divergent series.

If there were many known terms in the electric Banks-Zaks expansion one could

use some resummation technique of this single series (such as Borel resummation or

the application of an ordinary Padé approximant), hoping to get a vanishing value

for γ at the other side of the conformal window, thus adding a further consistency

check to the duality conjecture.
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It is important to stress that if there was a phase transition somewhere within

the conformal window, controlled by non-perturbative effects that are inaccessible

from neither side of the conformal window, our interpolation procedure would not

have been meaningful. However, the phase structure picture drawn in [16] suggests

a completely smooth transition between the top of the conformal window where the

electric theory is weakly coupled and the bottom of the window where the dual theory

is weakly coupled.

We emphasize that the interpolation for γ serves here just as an example, and

the method can be applied in general to any physical quantity that can be calculated

in perturbation theory in both the original and the dual theories, such as the one in

eq. (4.28).

5. Conclusions

The purpose of this paper is to understand the nature of the non-trivial infrared

fixed-point that appears in asymptotically free theories such as QCD and SQCD

if the number of light flavors is large enough. The main question we deal with is

whether this fixed-point always originates within perturbation theory, or is it due to

non-perturbative physics.

Since more is known on the phase structure of SQCD, it is natural to discuss this

theory first. The argument for the presence of a fixed-point in SQCD in [16], just

like in QCD [1], is a purely perturbative one based on the 2-loop β function. On the

other hand, Seiberg’s picture of the conformal window [16] assumes that the electric

theory is strongly coupled near the lower boundary of the conformal window, and

thus the fixed-point there is non-perturbative. Therefore, our first task dealing with

the SQCD case was to confirm that the electric theory is strongly coupled at large dis-

tances near the bottom of the conformal window. Indeed we showed by considering

the analyticity structure of the coupling and by examining the Banks-Zaks expansion,

that the presence of the fixed-point at the far-end of the conformal window cannot be

established in perturbation theory: it is a non-perturbative fixed-point. Our investi-

gation further shows that the perturbative analysis signals its own inapplicability to

describe the infrared already before the dual theory becomes weakly coupled.

In order to describe the infrared physics in the entire conformal window it is

useful to combine the information from perturbative calculations in both the electric

and magnetic descriptions. We suggest to use an interpolation method – a 2-point

Padé approximant – that combines the Banks-Zaks expansions around the two ends

of the conformal window into a single formula. This method was demonstrated

in sec. 4.3 for the critical exponent, but in fact it is applicable to any physical

quantity which is calculable in perturbation theory in both theories. The invariance

property of the diagonal 2-point Padé approximant under the change of expansion

parameter (a change which is motivated by the symmetrical realization of duality in
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the conformal window) makes it appropriate to describe γ(Nf/Nc). Still, this is of

course not an exact calculation: it is quite clear that further corrections, both such

that are accessible by perturbation theory in either the electric description or the

magnetic one, and eventually such that are not, do exist.

The lower boundary of the conformal window in the non-supersymmetric case is

not as well established. If the superconvergence criterion is only a sufficient condition

for confinement and not a necessary one, the conformal window may be narrower

than shown in fig. 1 (upper plot). On the other hand, there are evidence from lattice

simulations [10] indicating that the confining phase transition occurs at lower Nf . In

spite of these contradicting findings, we refer to the lower boundary of the conformal

window as the one implied by superconvergence.

Considering the analyticity structure of the coupling and the Banks-Zaks expan-

sion, we find that perturbation theory in QCD is self consistent even at the lower

boundary of the conformal window. The most important evidence supporting this

conclusion are:

(a) the 2-loop and 3-loop couplings have a causal analyticity structure in the

entire conformal window. At 3-loop order this is guaranteed provided β2 < 0,

which holds in MS and in all physical schemes for which 3-loop coefficients are

available.

(b) thanks to the small 4-loop term in the MS scheme, the standard perturba-

tive justification holds down to the infrared limit, and the 3-loop solution for

xMS (Q
2) can be trusted in the entire Q2 plane.

(c) calculation of infrared quantities from the Banks-Zaks expansion are in reason-

able agreement with the explicit solutions even at the bottom of the conformal

window – see fig. 8 here and fig. 7 in [11].

A crucial assumption we have made is that non-perturbative corrections are

small within the conformal window so long as they are not implied by inconsistency

of perturbation theory. This assumption makes sense provided no chiral symmetry

breaking takes place within the conformal window (this is known to be the case in

SQCD). Usually when chiral symmetry is broken, one expects quarks to develop

dynamical masses. Then at momentum scales below these masses quarks will decou-

ple from the dynamics. This would clearly invalidate the perturbative analysis that

takes into account Nf massless quarks. In particular decoupling could make effective

charges non-monotonous with scale and thus invalidate the notion of a single valued

β function. In the absence of chiral symmetry breaking, and in particular within the

conformal window, it is natural to expect that effective charges evolve monotonously

with scale. Thus the monotonicity property conjectured for specific observables by

various suggested generalizations [39] of the c-theorem [38] could actually be a generic

property of all effective charges within the conformal window.
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Consistency of perturbation theory together with the assumption that also non-

perturbative effects are small implies that QCD is, in some sense, weakly coupled

even at the bottom of the conformal window. The weak coupling nature of the

QCD might be a disappointing message to anyone wishing to extend the notion

of duality beyond the supersymmetric case. On the other hand, the fact that the

infrared coupling is basically controlled by the perturbative β function opens up the

possibility to analyze various physical quantities in the infrared near the confining

phase transition. An example of such analysis is that of [6] which explains the phase

transition at the bottom of the window through decoupling of quarks due to chiral

symmetry breaking.

The analyticity structure of the coupling seems to be indicative of the reliability

of perturbation theory in the infrared in both QCD and SQCD. A priori one might

suspect that not much could be gained by analyzing the singularity structure of the

coupling which is scheme dependent. It turns out, however, that several character-

istics of the β function are generic. One simple example, which is crucial for our

analysis, is the negative sign of β2 for physical schemes (and MS ) in QCD in the

entire conformal window. It is not clear to us how general this property is.

The most important universal infrared property of the β function is the critical

exponent which turns out to be the key parameter in the condition for a causal

analyticity structure. The condition 0 ≤ γ < 1 is necessary for a causal coupling at
any loop order and even beyond perturbation theory, while in practice at the 3-loop

order it is usually also sufficient. γ = 0 corresponds to a free theory, as obtained at

the top of the conformal window. In the supersymmetric case, duality implies that γ

is the same in both theories, and thus γ vanishes also at the bottom of the window,

where the magnetic theory is free. In terms of the electric theory the vanishing of

γ can be most simply interpreted as corresponding to a smooth change of the β

function as Nf/Nc crosses its critical value: the β(x) curves continuously change

from curves that cross the x axis at two near-by points to ones that do not cross the

x axis at all. The critical curve corresponding to β(x) at the bottom of the window

just touches the x axis from below: γ = 0 implies a double zero.

In QCD we trust perturbation theory down to the bottom of the window and

find that γ 6= 0 there. On the other hand, it is clear that for some effective charges,
such as the one associated with the potential between heavy quarks, there is no scale

invariant behavior at large distances in the confining phase and hence the fixed-

point must disappear as the lower boundary of the conformal window is crossed.

The disappearance of the fixed-point with a non-vanishing γ implies that the above

picture of a smooth change of the β function cannot be realized. In this case, when

the lower boundary of the window is crossed there is a discontinuous change in the

form of the β function for x > xFP. This discontinuity, however, does not imply

a jump in the coupling x(Q2) at any finite Q2 but only at the infrared limit itself.

Finding that in QCD γ can be perturbatively calculated and that it does not vanish
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at the bottom of the conformal window is a further indication of the absence of a

dual description of the infrared in terms of some other weakly coupled fields.
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A. The analyticity structure of the NSVZ coupling

In sec. 3 we analyze the singularity structure of the 2-loop coupling in SQCD. Another

natural choice for the SQCD β function, at the same level of approximation, is the

NSVZ form with the matter field anomalous dimension calculated to first order [28,

29]. It is interesting to see whether the condition for causality of the coupling with

this choice for the β function agrees with that of the 2-loop choice.

The NSVZ β function at this order is:

β(x) = −B0x2 1− E1x
1−Dx , (A.1)

where B0 is given in (3.2),

E1 =
Nf

3Nc −Nf
N2c − 1
2Nc

(A.2)

and

D =
Nc

2
. (A.3)

The β function in the NSVZ form yields, of course, the scheme invariant 2-loop β

function of (3.1) upon expansion, with C1 = D − E1 (see eq. (3.3)).
Exact integration of the β function (A.1) yields a coupling constant that can

be written explicitly as a function of the scale parameter t = ln(Q2/Λ2) using the

Lambert W function:22

x(Q2) =
1

E1

1

1 +GW (z)

z =
1

G
exp

[
1

G

(
−1 + B0

E1
t

)]
, (A.4)

22This solution is very similar to the one presented in ref. [12] for the 2-loop and Padé improved

3-loop coupling.
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where W (z) is defined by [22]:

W (z) exp [W (z)] = z (A.5)

and

G ≡ 1− D
E1
. (A.6)

Next, one should specify the branch of the Lambert W function such that asymp-

totic freedom will be obeyed (x should be real and positive at large (space-like) Q2 > 0

and approach zero as t −→ ∞). Since we are interested in the asymptotically free
case where B0 > 0, we find that also E1 > 0 and thus the sign of G determines both

the sign of z and its magnitude in the ultraviolet:

(a) if G > 0, z > 0 and approaches infinity in the ultraviolet (z −→ 0 in the
infrared). Then the relevant branch on the space-like axis is the principle

branch W0(z), which is a monotonically increasing positive function of z for

z > 0; W0(z) −→ ∞ as z −→ ∞ thereby assuring asymptotic freedom. G > 0
is obtained whenever E1 > D > 0. The singularity structure in the Q

2 plane

can be analyzed following the lines of [12]. There are two possibilities (for

G > 0): if B0/(E1G) > 1, i.e. if B0 > E1 − D, there is a pair of Landau
branch points at complex Q2 values. On the other hand if B0/(E1G) < 1, i.e.

B0 < E1 −D, there are no Landau singularities and the analyticity structure
is consistent with causality.

(b) if G < 0, z < 0 and approaches zero in the ultraviolet (z −→ −∞ in the in-
frared). In this case, the relevant branch isW−1(z) which turns to minus infinity
for z −→ 0−, thereby assuring asymptotic freedom. The singularity structure
is simple: there is a single Landau branch point at z = −1/e corresponding to
a certain Q2 > 0 on the space-like axis (tsing = (E1/B0)[1−G+G ln(−G)]).

Note that contrary to the 2-loop or Padé improved 3-loop couplings in QCD, a simple

pole from the denominator of (A.5) does not appear, since whenever W is real, its

sign is the same as that of G, and thus it is guaranteed that 1 +GW > 0.

We conclude that the condition for a causal coupling is G > 0 and B0/(E1G) < 1,

where in fact the more restrictive condition is the second one. Thus, the NSVZ

coupling is causal whenever

B0 < E1 −D. (A.7)

The condition (A.7) coincides with the condition for causality of the 2-loop coupling

B0 < −C1. Similarly, the condition to have a space-like Landau singularity in the
NSVZ coupling, D > E1, coincides with the corresponding condition in the 2-loop

coupling: C1 > 0.
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