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1. Introduction

It has become apparent recently that the duality symmetries of string theory give

rise to predictions about states that are not necessarily BPS [1]. In particular, it

was demonstrated by Sen in [2, 3] that perturbative non-BPS states of one theory,

that are stable due to the fact that they are the lightest states carrying a given

set of charges, can sometimes be identified in the dual theory as bound states of

BPS D-strings and anti-D-strings. Alternatively, these states could be described as

novel non-BPS D-particles [4, 5] that are easily constructed using the boundary state

approach [6, 7, 8, 9, 10, 11]. These, and perhaps other non-BPS D-branes can also

be naturally understood in terms of K-theory [12], where different states that can

decay into one another lie in the same equivalence class.

So far only two cases have been studied in detail. In one of them, the perturbative

non-BPS state in question is a massive state in the ten-dimensional SO(32) heterotic

string that transforms in the spinor representation of SO(32). The dual type I state is

then a Z2-valued non-BPS D-particle [5, 12]. The other case involves the orientifold

theory IIB/ΩI4, where I4 is the inversion of four spatial directions. The relevant
perturbative non-BPS state in this case is the ground state of the string beginning

on a D5-brane and ending on its image, and the dual state is a non-BPS D-particle

in the orbifold of type IIB by (−1)FLI4 [4].
If we compactify the latter theory on a 4-torus, the orbifold is related by T-

duality to type IIA on T 4/I4, which in turn is the orbifold limit of a K3 surface.
On the other hand, IIA on K3 is also related non-perturbatively to the heterotic
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string on T 4, and it should therefore be possible to identify suitable perturbative

non-BPS states of the heterotic string on T 4 with brane states in IIA on K3. This is

all the more interesting since the (BPS) spectrum of the heterotic string is very well

understood, and therefore detailed comparisons can be made.

In this paper we analyse two classes of perturbative non-BPS states in the het-

erotic theory on T 4, and relate them to non-BPS states in the T 4/I4 orbifold of IIA.
The relevant states are a non-BPS D-string (that is T-dual to the non-BPS D-particle

of the IIB orbifold theory), and a non-BPS ‘D-molecule’. Both can be understood as

non-BPS bound states of BPS D-branes; in the first case tachyon condensation takes

place, whereas in the second the bound state is due to an ordinary attractive force.

In each case, we also analyse the stability of these non-BPS states as a function

of the moduli of the theory. Since their masses are not protected against quantum

corrections however, this analysis only holds at weak coupling in either theory, and

therefore we do not expect the masses and regions of stability to be related by the du-

ality. Nevertheless, we find non-vanishing regions of stability for both types of states

in both the heterotic string and the type IIA string descriptions. Furthermore, for

the non-BPS D-string these regions are closely related by the duality transformation.

The orbifold limit of K3 is a rather special point in the moduli space of the

theory, and it is therefore interesting to understand how the various states can be

understood for a smooth K3. To this end we also discuss how the non-BPS states

can be understood in terms of wrapped membranes.

The paper is organised as follows: in section 2 the duality map between the

heterotic string on T 4 and type IIA at the orbifold point of K3 is established. This

is then tested by comparing the masses of certain BPS states of the two theories

in section 3. In section 4 the non-BPS states are analysed in both theories. We

conclude and raise some open problems in section 5.

While this paper was being prepared we obtained the preprint [13] in which the

non-BPS D-string of the type IIA orbifold, as well as its stability and interpretation

in terms of wrapped membranes, is also discussed.

2. Heterotic – IIA duality in the orbifold limit

Let us recall the precise relation between type IIA at the orbifold point of K3 and

the heterotic string on T 4; the following discussion follows closely [14]. Denote the

compact coordinates by xi, where i = 1, 2, 3, 4, and the corresponding radii in the

heterotic string theory by Rhi. The sequence of dualities relating the two theories is

given by

het T 4
S−→ I T 4 T 4−→ IIB T 4/Z′2 S−→ IIB T 4/Z′′2 T−→ IIA T 4/Z2 , (2.1)

where the various Z2 groups are

Z
′
2 = (1,ΩI4) , Z

′′
2 = (1, (−1)FLI4) , Z2 = (1, I4) . (2.2)
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Here I4 reflects all four compact directions, Ω reverses world-sheet parity, and FL
is the left-moving part of the spacetime fermion number. The first step is ten-

dimensional S-duality between the (SO(32)) heterotic string and the type I string [15],

which relates the (ten-dimensional) couplings and radii as1

gI ∝ g−1h , RIj ∝ g−1/2h Rhj . (2.3)

The second step consists of four T-duality transformations on the four circles, result-

ing in the new parameters

g′ = V −1I gI ∝ V −1h gh ,
R′j = R

−1
Ij ∝ g1/2h R−1hj ,

(2.4)

where VI =
∏
j RIj and Vh =

∏
j Rhj denote the volumes (divided by (2π)

4) of the T 4

in the type I and heterotic strings, respectively. This theory has 16 orientifold fixed

points. In order for the dilaton to be a constant, the RR charges have to be cancelled

locally, i.e. one pair of D5-branes has to be situated at each orientifold 5-plane. In

terms of the original heterotic theory, this means that suitable Wilson lines must be

switched on to break SO(32) (or E8 × E8) to U(1)16; this will be further discussed
below. The third step is S-duality of type IIB. The new parameters are given by

g′′ = g′−1 ∝ Vhg−1h ,
R′′j = g

′−1/2R′j ∝ V 1/2h R−1hj .
(2.5)

Finally, the fourth step is T-duality along one of the compact directions, say x4. The

resulting theory is type IIA on a K3 in the orbifold limit. The coupling constants

and radii are given by

gA = g′′(R′′4)
−1 = g−1h Rh4V

1/2
h

RAj = R
′′
j = 2V

1/2
h R

−1
hj for j 6= 4

RA4 = (R
′′
4)
−1 = 2−1V −1/2h Rh4 ,

(2.6)

where we have now included the numerical factors (that will be shown below to

reproduce the correct masses for the BPS-states).2 In addition, the metrics in the

low energy effective theories are related as [16]

GAµν = Vhg
−2
h G

h
µν . (2.7)

The appropriate Wilson lines in the heterotic theory on T 4 can be determined in

analogy with the duality between the heterotic string on S1 and type IIA on S1/ΩI1
(type IA). A constant dilaton background for the latter requires the Wilson line

A = ((1
2
)8, 08) in the former [17, 18, 19], resulting in the gauge group SO(16)×SO(16).

1Numerical factors are omitted until the last step.
2In our conventions α′h = 1/2, α

′
A = 1.
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The sixteen entries in the Wilson line describe the positions of the D8-branes along

the interval in type IA. This suggests that the four Wilson lines in our case should be

A1 =

((
1

2

)8
, 08
)
,

A2 =

((
1

2

)4
, 04,

(
1

2

)4
, 04

)
,

A3 =

((
1

2

)2
, 02,

(
1

2

)2
, 02,

(
1

2

)2
, 02,

(
1

2

)2
, 02

)
,

A4 =
(
1

2
, 0,
1

2
, 0,
1

2
, 0,
1

2
, 0,
1

2
, 0,
1

2
, 0,
1

2
, 0,
1

2
, 0
)
, (2.8)

so that there is precisely one pair of D-branes at each of the sixteen orientifold

planes. Indeed, this configuration of Wilson lines breaks the gauge group SO(32) to

SO(2)16 ∼ U(1)16, and there are no other massless gauge particles that are charged
under the Cartan subalgebra of SO(32). To see this, recall that the momenta of the

compactified heterotic string are given as [20]

PL = (PL, pL) =

(
VK + A

i
Kwi ,

pi

2Ri
+ wiRi

)

PR = pR =

(
pi

2Ri
− wiRi

)
,

(2.9)

where pi is the physical momentum in the compact directions

pi = ni +Bijwj − V KAiK −
1

2
AiKA

j
Kwj , (2.10)

wi, ni ∈ Z are elements of the compactification lattice Γ4,4, and V K is an element of
the internal lattice Γ16. For a given momentum (PL,PR), a physical state can exist

provided the level matching condition

1

2
P2L +NL − 1 =

1

2
P2R +NR − cR (2.11)

is satisfied, where NL and NR are the left- and right-moving excitation numbers,

and cR = 1/2 (cR = 0) for the right-moving NS (R) sector. The state is BPS if

NR = cR [21], and its mass is given by

1

4
m2h =

(
1

2
P2L +NL − 1

)
+
(
1

2
P2R +NR − cR

)
= P2R + 2(NR − cR) . (2.12)

The massless states of the gravity multiplet and the Cartan subalgebra have

NL = 1 and PL = PR = 0. Additional massless gauge bosons would have to have

NL = 0, and therefore P
2
L = 2. If wi = 0 for all i, this requires V

2 = 2 and pi = 0.

The possible choices for V are then simply the roots of SO(32), and it is easy to

4



J
H
E
P
0
3
(
1
9
9
9
)
0
1
3

see that for each root at least one of the inner products V KAiK is half-integer; thus

pi ∈ Z + 1/2 cannot vanish, and the state is massive. On the other hand, if wi 6= 0
for at least one i, the above requires (V +Aw)2 < 2, and it follows that V +Aw = 0,

i.e. that the massless gauge particle is not charged under the Cartan subalgebra

of SO(32).

3. BPS states

In order to test the above identification further, it is useful to relate some of the

perturbative BPS states of the heterotic string to D-brane states in IIA on T 4/Z2,

and to compare their masses. Let us start with the simplest case — a bulk D-particle.

This state is charged only under the bulk U(1) corresponding to the ten-dimensional

RR one-form C
(1)
RR. It can be described by the boundary state in IIA

|D0; ε1〉 = 1√
2

(
|U0〉NSNS + ε1|U0〉RR

)
, (3.1)

where the two components are defined in the standard way [10], and lie in the un-

twisted NSNS and RR sectors, respectively. Here ε1 = ±1 differentiates a D-particle
from an anti-D-particle. For a suitable normalisation of the two components the

open-closed consistency condition is satisfied [22, 10], and the spectrum of open

strings beginning on one D-particle and ending on another is given by

[NS − R] 1
2

(
1 + ε1ε

′
1(−1)F

)
. (3.2)

The corresponding state in the heterotic string has trivial winding (wi = 0) and

momentum (V = 0, pi = 0), except for p4 = ε1. Level matching then requires that

NL = 1, and therefore the state is really a Kaluza-Klein excitation of either the

gravity multiplet or one of the vector multiplets in the Cartan subalgebra. Its mass

is given by (2.12)

mh(D0) =
1

Rh4
. (3.3)

The corresponding mass in type IIA can be found using (2.6) and (2.7), and turns

out to be

mA(D0) = V
−1/2
h ghmh(D0) =

1

gA
. (3.4)

This is in complete agreement with the mass of a D-particle.

Next consider a D-particle which is stuck at one of the fixed planes. Both its

mass and bulk RR charge are half of those of the bulk D-particle (since prior to

the projection it corresponds to a single D-particle, whereas the bulk D-particle
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corresponds to two D-particles); it is therefore called a ‘fractional’ D-particle [23]. It

also carries unit charge with respect to the twisted RR U(1) at the fixed plane. The

corresponding boundary state is of the form

|D0f ; ε1, ε2〉 = 1
2

[(
|U0〉NSNS + ε1|U0〉RR

)
+ ε2

(
|T0〉NSNS + ε1|T0〉RR

)]
, (3.5)

where |U0〉NSNS and |U0〉RR are the same states that appeared in (3.1), and |T0〉NSNS
and |T0〉RR lie in the twisted NSNS and twisted RR sectors, respectively. Here
ε1 = ±1 and ε1ε2 = ±1 determine the sign of the bulk and the twisted charges of the
state, respectively. Using standard techniques [10, 2, 4] it is easy to see that each

of the components is invariant under the GSO and orbifold projections, and that

for a suitable normalisation of the twisted components the open-closed consistency

condition is again satisfied. Indeed, the spectrum of open strings beginning on one

fractional D-particle and ending on another is given by

[NS − R] 1
4

(
1 + ε1ε

′
1(−1)F

)(
1 + ε2ε

′
2I4

)
. (3.6)

In the blow up of the orbifold to a smooth K3, the fractional D-particle corresponds

to a D2-brane which wraps a supersymmetric cycle [24]. In the orbifold limit the area

of this cycle vanishes, but the corresponding state is not massless, since the two-form

field B(2) has a non-vanishing integral around the cycle [25]. In fact B = 1/2, and the

resulting state carries one unit of twisted charge coming from the membrane itself,

and one half unit of bulk charge coming from the D2-brane world-volume action term∫
d3σ C

(1)
RR∧(F (2)+B(2)). At each fixed point there are four such states, corresponding

to the two possible orientations of the membrane, and the possibility of having F = 0

or F = ±1 (as F must be integral, the state always has a non-vanishing bulk charge).
These are the four possible fractional D-particles of (3.5). Since there are sixteen

orbifold fixed planes, there are a total of 64 such states.

In the heterotic string these correspond to states with internal weight vectors of

the form

V = ±(02n, 1,±1, 014−2n) , n = 1, . . . , 8 , (3.7)

and vanishing winding and internal momentum, except for p4 = ±1/2. The sixteen
twisted U(1) charges in the IIA picture correspond to symmetric and anti-symmetric

combinations of the (2n+1)’st and (2n+2)’nd Cartan U(1) charges in the heterotic

picture. It follows from the heterotic mass formula (2.12) that the mass of these

states is

mh(D0f) =
1

2Rh4
. (3.8)

As before, this corresponds to the mass

mA(D0f) = V
−1/2
h ghmh(D0f) =

1

2gA
, (3.9)

in the orbifold of type IIA, and is thus in complete agreement with the mass of a

fractional D-particle.

6



J
H
E
P
0
3
(
1
9
9
9
)
0
1
3

Additional BPS states are obtained by wrapping D2-branes around non-vani-

shing supersymmetric 2-cycles, and by wrapping D4-branes around the entire com-

pact space. One can compute the mass of each of these states, and thus find the

corresponding state in the heterotic string. Let us briefly summarise the results:

(i) A D2-brane that wraps the cycle (xi, xj) where i 6= j and i, j ∈ {1, 2, 3} has
mass mA = RAiRAj/(2gA); in heterotic units this corresponds to mh = 2Rhk,

where k ∈ {1, 2, 3} is not equal to either i or j. The corresponding heterotic
state has wk = ±1, pl = 0, (V ± Ak)2 = 2, and NL = 0.

(ii) A D2-brane that wraps the cycle (xi, x4), where i is either 1, 2 or 3, has mass

mA = RAiRA4/(2gA); in heterotic units this corresponds to mh = 1/(2Rhi).

The corresponding heterotic state therefore has pi = ±1/2, wj = 0, V 2 = 2,
and NL = 0.

(iii) A D4-brane wrapping the entire compact space has mass mA =
∏
iRAi/(2gA);

in heterotic units this corresponds to mh = 2Rh4. The corresponding heterotic

state therefore has w4 = ±1, pl = 0, (V ± A4)2 = 2, and NL = 0.

4. Non-BPS states

The heterotic string also contains non-BPS states that are stable in certain domains

of the moduli space. One should therefore expect that these states can also be

seen in the dual type IIA theory, and that they correspond to non-BPS branes. Of

course, since non-BPS states are not protected by supersymmetry against quantum

corrections to their mass, the analysis below will only hold for gh � 1 and gA � 1
in the heterotic and type IIA theory, respectively.

4.1 Non-BPS D-string

The simplest examples of this kind are the heterotic states with vanishing winding

and momenta (wi = pi = 0), and weight vectors given by

V = (0m,±2, 015−m) ,
V ′ = (02m,±1,±1, 02n,±1,±1, 012−2n−2m) . (4.1)

The results of the previous section indicate that these states are charged under

precisely two U(1)’s associated with two fixed points in IIA, and are uncharged with

respect to any of the other U(1)’s. There are four states for each pair of U(1)’s,

carrying ±1 charges with respect to the two U(1)’s. In all cases V 2 = 4, and we
must choose NR = cR + 1 to satisfy level-matching. These states are therefore not

BPS, and transform in long multiplets of the D = 6 N = (1, 1) supersymmetry
algebra. Their mass is given by

mh = 2
√
2 , (4.2)

as follows from (2.12); in particular, the mass is independent of the radii.
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On the other hand, these states carry the same charges as two BPS states of the

form discussed in the previous section (where the charge with respect to the spacetime

U(1)’s is chosen to be opposite for the two states), and they might therefore decay

into them. Whether or not the decay occurs depends on the values of the radii, since

the masses of the BPS states depend on them. In particular, the first state in (4.1)

carries the same charges as the two BPS states with p4 = ±1/2, and weight vectors
of the form

V1 = ±(02n, 1, 1, 014−2n) ,
V2 = ±(02n, 1,−1, 014−2n) , (4.3)

where n = [m/2]. The mass of each of these states is 1/(2Rh4), and the decay is

therefore energetically forbidden when

Rh4 <
1

2
√
2
. (4.4)

More generally, the above non-BPS state has the same charges as two BPS states

with wi = 0, and internal weight vectors

V1 = ±
(
0m, 1, 0k, 1, 014−m−k

)
,

V2 = ±
(
0m, 1, 0k,−1, 014−m−k

)
, (4.5)

where again the non-vanishing internal momenta are chosen to be opposite for the

two states. The lightest states of this form have a single non-vanishing momentum,

pi = ±1/2 for one of i = 1, 2, 3, 4, and their mass is 1/(2Rhi). Provided that

Rhi <
1

2
√
2
, i = 1, 2, 3, 4 , (4.6)

the non-BPS state cannot decay into any of these pairs of BPS states, and it should

therefore be stable. Similar statements also hold for the non-BPS states of the second

kind in (4.1).

We should therefore expect that the IIA theory possesses a non-BPS D-brane

that has the appropriate charges and multiplicities. This state is easily constructed:

it is the non-BPS D-string of type IIA, whose boundary state is given as

|D1nonbps; θ, ε〉 = 1√
2

[
|U1; θ〉NSNS + ε√

2

(
|T1; 1〉RR + eiθ|T2; 2〉RR

)]
, (4.7)

where we have used the notation of Sen [2].3 Here θ is the value of the Wilson line

on the D-string, which must be 0 or π in the orbifold, and ε = ±1. The two states in
the twisted RR sector are localised at either end of the D-string (so that the D-string

3This state has also been independently constructed by Sen [13].
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c

RAi

RA4

+- +- +- +-
a b

(-1/2,     )(1/2,     )

Figure 1: Non-BPS D-string (a), and its decay channels (b), (c).

stretches between two orbifold points). Using the standard techniques [10, 2], one can

easily check that each of the boundary components is invariant under the GSO and

orbifold projections, and, for a suitable normalisation of the different components,

the open-closed consistency condition is satisfied. The spectrum of open strings

beginning and ending on the same D-string is obtained as usual by computing the

cylinder amplitude with the above boundary state, and the result is

[NS − R] 1
4

(
1 + (−1)FI4

) (
1 + (−1)FI ′4

)
, (4.8)

where I ′4 is the same as I4, except that it acts on x4 as x4 → 2πRA4 − x4. For each
pair of orbifold points there are four D-strings, which are charged only under the

two twisted sector U(1)’s associated to the two orbifold points. These charges are of

the same magnitude as those of the fractional D-particles, since the ground state of

|T1〉RR is the same as that of |T0〉RR in (3.5). Furthermore, it follows from (4.8) that
the D-strings have sixteen (rather than eight) fermionic zero modes, and therefore

transform in long multiplets of the D = 6, N = (1, 1) supersymmetry algebra.
These states therefore have exactly the correct properties to correspond to the above

non-BPS states of the heterotic theory.

We should not, however, expect that the corresponding masses are related by the

duality map, since for non-BPS states the masses are not protected from quantum

corrections. Let us consider for example the case where the D-string is suspended

between two orbifold points that are separated along x4 (fig. 1a). Its classical mass

is given by

mA(D1nonbps) =
RA4√
2gA
. (4.9)

The numerical factor can be determined by comparing the boundary state of the

non-BPS D-string (4.7) to that of a BPS D-string between two fixed planes in the

(T-dual) type IIB orbifold (eq. (3.16) of [2]). The units of the two orbifold theories

are simply related by replacing gA with gB, and since the coefficient of the untwisted

NSNS component is greater by a factor of
√
2 for the non-BPS D-string, its mass is

given by (4.9). In heterotic units, this mass is ∝ 1/Vh, and therefore does not agree
with (4.2).
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The open string NS sector in (4.8) contains a tachyon. However, since the tachyon

is (−1)F -odd, and since I4 reverses the sign of the momentum along the D-string,
the zero-momentum component of the tachyon field on the D-string is projected

out. Furthermore, since I4I ′4 acts as x4 → x4− 2πRA4, the half-odd-integer momen-
tum components are also removed, leaving a lowest mode of unit momentum. As a

consequence, the mass of the tachyon is shifted to

m2T = −
1

2
+
1

R2A4
. (4.10)

For RA4 <
√
2 the tachyon is actually massive, and thus attains its vacuum value

at the origin. On the other hand, for RA4 >
√
2 the tachyon has a non-zero vac-

uum expectation value, and the lowest momentum mode describes a kink-anti-kink

configuration along the D-string, in which the tachyon field vanishes at the two end-

points of the D-string, and approaches its vacuum value in-between. For RA4 >
√
2

the state is therefore more appropriately described as a pair of fractional BPS D-

particles located at either fixed point, and carrying opposite bulk charges (fig. 1b).

Alternatively, the ground state of the NS sector open string between the above two

fractional BPS D-particles has a mass

m2 = −1
2
+ (πRA4T0)

2 = −1
2
+
(
RA4

2

)2
, (4.11)

and so becomes tachyonic for RA4 <
√
2, indicating an instability to decay into the

non-BPS D-string. The D-string can therefore be thought of as a bound state of two

fractional BPS D-particles located at different fixed planes. This is also confirmed

by the fact that the classical mass of the D-string (4.9) is smaller than that of two

fractional D-particles (3.9) when

RA4 <
√
2 , (4.12)

and thus the D-string is stable against decay into two fractional D-particles in this

regime. In terms of the heterotic string, this decay channel corresponds to (4.3). The

regimes of stability of the non-BPS state in the two dual theories, (4.4) and (4.12),

are qualitatively the same, given the duality relation (2.6).

Other decay channels become available to the D-string when the other distances

RAi (i = 1, 2, 3) become small. In particular, the D-string along x
4 can decay into

a pair of D2-branes carrying opposite bulk charges, i.e. a D2-brane and an anti-D2-

brane, and wrapping the (xi, x4) cycle (fig. 1c). Since the mass of each D2-brane in

the orbifold metric is RAiRA4/(2gA), the D-string is stable in this channel when

RAi >
1√
2
, i = 1, 2, 3 . (4.13)

The D-string can therefore also be thought of as a bound state of two BPS D2-branes.

This decay channel can also be understood from the appearance of a tachyon on the
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D-string carrying one unit of winding in the xi direction, when RAi < 1/
√
2 [13],

or alternatively from the appearance of a tachyon between the two D2-branes when

RAi > 1/
√
2. In terms of the heterotic string, these decay channels are described

by (4.5), and again the domains of stability are qualitatively the same. There are

analogous regimes of stability for D-strings stretched between any two fixed points.

In the blow up of the orbifold to a smooth K3, the non-BPS D-strings correspond

to membranes wrapping pairs of shrinking 2-cycles. Since such curves do not have

holomorphic representatives, the states are non-BPS. For each pair of 2-cycles there

are four states, associated with the different orientations of the membrane; the mem-

brane can wrap both cycles with the same orientation, or with opposite orientation.

In either case the net bulk charge due to B = 1/2 can be made to vanish by turning

on an appropriate world-volume gauge field strength (F = ±1 in the first case, and
F = 0 in the second). The decay of the non-BPS D-string into a pair of fractional

BPS D-particles is described in this picture as the decay of this membrane into two

separate membranes, that wrap individually around the two 2-cycles.

The entire discussion above also has a parallel in the T-dual theory, type IIB

on T 4/Z′2. The fractional BPS D-particles are T-dual to BPS D-strings stretched
between pairs of orbifold points, and the non-BPS D-string we found is T-dual to

the non-BPS D-particle that was constructed in [4]. As was demonstrated by Sen [2],

this state can be obtained as a bound state of two fractional BPS D-strings carrying

opposite bulk charges, and appropriate twisted charges. For sufficiently large RB,

the D-string pair develops a tachyonic mode and decays into the non-BPS D-particle.

4.2 Non-BPS D-molecule

The heterotic theory also contains states that are charged under a single U(1) associ-

ated with one fixed plane in the IIA orbifold, but that are uncharged with respect to

any other U(1). The lightest such states have NL = 0 and an internal weight vector

of the form

V = ±(02n, 2,±2, 014−2n) . (4.14)

Since V 2 = 8, we must choose NR = cR + 3 to satisfy level matching. The state is

therefore non-BPS4 and its mass is given by

mh = 2
√
6 . (4.15)

This state may decay into two BPS states of the form (3.7), or into two non-BPS

states of the form (4.1). The latter possibility is energetically forbidden since 2 ×
2
√
2 > 2

√
6, and the former is possible provided that Rh4 > 1/(2

√
6). In the heterotic

theory, this non-BPS state is therefore stable if 5

Rh4 <
1

2
√
6
. (4.16)

4The degeneracy of the state is rather large, and it actually contains 60 long supermultiplets.
5We are only considering possible decay processes into states with trivial winding number.
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The above suggests that the dual type IIA theory contains a bound state of two

fractional D-particles which are located at the same fixed plane, and which carry

opposite bulk charges. In the previous subsection we saw that a bound state of

two fractional D-particles of opposite bulk charge that are located on different fixed

planes could be better described as a non-BPS D-string. Let us therefore attempt

to describe the above state as a non-BPS D-particle at a fixed plane. The associated

boundary state would then be given by

|D0nonbps;±〉 = c
(
|U0〉NSNS ± |T0〉RR

)
, (4.17)

where |U0〉NSNS and |T0〉RR are the same states as in (3.5), and c is a normalisa-
tion factor which will be determined below. The resulting spectrum of open strings

beginning and ending on this D-particle is given by

[NS − R] c2
(
1 + (−1)FI4

)
. (4.18)

In order for this to make sense as the spectrum of an actual open string theory, the

normalisation should be c = 1/
√
2. On the other hand, the magnitude of the twisted

charge in (4.17) would then be
√
2 in units of the twisted charge associated to the

fractional BPS D-particles (3.5).6 Furthermore, the spectrum of open strings between

the non-BPS D-particle and a fractional BPS D-particle is the same as above, except

that the overall factor is c/2 rather than c2. For this to make sense we need c = 1,

rather than c = 1/
√
2. With this normalisation, the charge (and mass) in (4.17) is

then precisely twice the twisted charge of a fractional BPS D-particle, and the state

described by (4.17) is not stable. This is consistent with the fact that the open string

spectrum is now doubled, and therefore cannot describe an open string that begins

and ends on a single D-particle. The situation is also different from the case of the

non-BPS D-string in that the pair of fractional BPS D-particles that carry opposite

bulk charges but equal twisted charges does not exhibit a tachyonic instability, as

follows from (3.6).

On the other hand, one should expect that two such fractional D-particles can

bind, since their interaction is of the form

V (r) = − a
r7
+
b

r3
, a, b > 0 ,

where the first term is the ten-dimensional (bulk) contribution, and the second term

is the six-dimensional (twisted) contribution. Unlike the case of two BPS D-particles

at different fixed planes, this bound state does not correspond to a new D-brane; it is

most appropriately referred to as a ‘D-molecule’. The D-molecule carries two units of

twisted charge, but no bulk charge, and is therefore still restricted to the fixed plane.

(This is to be contrasted with the (threshold) bound state of two fractional BPS D-

6We thank A. Sen for pointing this out.
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particles carrying equal bulk charges and opposite twisted charges, which corresponds

to a bulk BPS D-particle). Since the above interaction comes from the one loop open

string diagram, it is O(gA). At weak coupling the mass of the D-molecule is therefore
well approximated by the mass of the two fractional D-particles, i.e. 1/gA.

The decay channels described above for the heterotic string correspond in IIA to

the decay of the D-molecule into a pair of fractional BPS D-particles or into a pair

of non-BPS D-strings. Here it is the former which is energetically forbidden. On

the other hand, the mass of two non-BPS D-strings is
√
2RAi/gA, and is therefore

smaller than that of the D-molecule if RAi < 1/
√
2. The D-molecule is thus stable

in the type IIA theory when RAi > 1/
√
2.

Unlike the non-BPS D-string, the stability domains of the D-molecule are qual-

itatively different in the two theories, i.e. at weak and strong IIA coupling. At weak

IIA coupling only the decay into non-BPS states is possible, whereas at strong IIA

coupling, only the decay into BPS states is allowed. As the coupling is varied from

weak to strong, the energy levels must therefore cross over, and we expect that at

intermediate coupling, both decay channels will be available.

In the blow up to a smooth K3 the D-molecule corresponds to two D2-branes

wrapping a shrinking 2-cycle. The world-volume gauge field must be F = −1 on one
of the membranes, to cancel the bulk charge due to B = 1/2 on the 2-cycle. The

(conditional) stability of this particle implies that the two wrapped D2-branes should

form a (non-threshold) bound state in a non-vanishing region of moduli space.

4.3 Other non-BPS states

There exist also other non-BPS states in the heterotic string that are stable in certain

regions of the moduli space, such as states transforming in the spinor representation

of SO(32), e.g. V = ((1/2)16). In D = 10 this state has been identified with a Z2-

valued non-BPS D-particle in the dual type I string [3, 5, 12]. Going through the

sequence of duality transformations in (2.1) suggests the following interpretation for

this state: after the four T-dualities the D-particle becomes a non-BPS D4-brane

in IIB on T 4/Z′2. Under S-duality this transforms into a non-BPS (non-Dirichlet)
4-brane. The final T-duality then gives a non-BPS 4-brane in IIA on T 4/Z2. Like the

type I D-particle, this 4-brane is Z2-valued. Perhaps this 4-brane can be understood

as a bound state of an NS-5-brane and an anti-NS-5-brane, in analogy with the D-

brane case. However, it is not yet clear what the analogue of the tachyon condensation

would be.

5. Conclusions

In this paper we have analysed the duality between the heterotic string on T 4 and

the type IIA string on K3 for states that are not necessarily BPS. In particular,

type IIA string theory on T 4/Z2, which is the orbifold limit of K3, admits a non-
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BPS D-string as well as a non-BPS D-molecule, which are related by the duality

map to perturbative non-BPS states in the heterotic string, and therefore probe the

duality beyond the regime of BPS states. The D-string is also related by T-duality

to the non-BPS D-particle of the related orbifold of type IIB string theory, which

was constructed in [4].

These states are not stable everywhere in moduli space. We have determined

their regions of stability in both the heterotic and type IIA pictures, and we have

found these regions to be of non-vanishing size in both cases. For the case of the

non-BPS D-string, the regions of stability are also qualitatively related by the duality

map. Since the masses of non-BPS states are not protected by supersymmetry, this

was not guaranteed a priori.

It would be interesting to understand these branes in terms of the K-theoretic

framework proposed by Witten [12]. More generally, it would be interesting to anal-

yse systematically the various non-BPS Dirichlet-branes in orbifolds and orientifolds

of type II theories, and relate them to the K-theory predictions.
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