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1. Introduction

The investigation of matrix models with an external field and logarithmic potentials

was initiated in [1, 2]. These matrix models are related to the so-called NBI matrix

model, which appeared recently in the context of the IIB superstring matrix model [3,

4, 5, 6]. In [5, 6], the following (M)atrix model action was proposed:

SNBI = −
α

4
trY −1[Aµ, Aν ]2 + β trY + 2η tr log Y − 1

2
trΨΓµ[Aµ,Ψ] . (1.1)

It possesses N =2 supersymmetry in the large N limit [5]. The matrix Y plays here
the role of the world-sheet metric to be integrated out in order to obtain the effective

action. Then, the (nonlocal) logarithmic term is a curvature term of the world-sheet

metric. As was shown in [2], the relevant choice of the constant η in front of this

term that leads to a non-Abelian Born–Infeld action for the string coordinates is

η = − 1
4N
, N being the matrix size. However, theories for other values of η were also

considered [7], and the answer for the effective action in the leading order in N was

obtained in [2] for general η.

In the present paper, we derive the constraint equations for the NBI matrix

model, and show their coincidence with the constraint equations for the Kontsevich

matrix model, thereby proving the equivalence of the two models for nonzero η.
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2. The matrix model in the large N limit

We start with the following matrix integral:

Z =
∫
dX e −N tr [XΛ+X

−1+(2η+1) logX] . (2.1)

As shown in [2], it is related to the bosonic part of (1.1) by the following change in

integration variables: Y = N
β
X−1, and by

Λ = − αβ
4N2

[Aµ, Aν ]
2 . (2.2)

The matrix integral (2.1) belongs to a class of generalized Kontsevich models

(GKM) [8]. Such models with negative powers of the matrix X have been previously

discussed in the context of c = 1 bosonic string theory [9]. In [7], the τ -function

approach to such models was developed. There, the parameter η plays the role of

the zeroth time in the corresponding integrable hierarchy. Moreover, at the conformal

point η = 0, this model was shown [7] to have the same Schwinger–Dyson equations

as the U(N) model solved in [10, 11].

For the models of this type, the large N solutions are known explicitly only in

some special cases. The models with cubic potential for X [12] and the combination

of the logarithmic and quadratic potentials [1] were solved by a method based on

Schwinger–Dyson equations, developed first for the unitary matrix models with exter-

nal field [10, 11]. The same technique, being applied to the integral (2.1), also allows

one to find its large N asymptotic expansions in the closed form for arbitrary η [2].

The Schwinger–Dyson equations for (2.1) follow from the identity

1

N3
∂

∂Λjk

∂

∂Λli

∫
dX

∂

∂Xij
e −N tr [XΛ+X

−1+(2η+1) logX] = 0 . (2.3)

Written in terms of the eigenvalues, these N equations read (no summation over

i is implied)− 1
N2
λi
∂2

∂λ2i
− 1

N2

∑
j 6=i
λj

1

λj − λi

(
∂

∂λj
− ∂

∂λi

)
+
1

N
(2η − 1) ∂

∂λi
+ 1

Z(λ) = 0 .
(2.4)

For η = 0, these formulas coincide with the corresponding formulas for the U(N)

model [10, 11].

It is convenient to set

W (λi) =
1

N

∂

∂λi
logZ . (2.5)

This quantity plays an important role in evaluating the large N limit.

We also introduce the eigenvalue density of the matrix Λ:

ρ(x) =
1

N

∑
i

δ(x− λi) . (2.6)
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The density obeys the normalization condition∫
dx ρ(x) = 1 , (2.7)

and in the large N limit it becomes a smooth function.

Simple power counting shows that the derivative of W (λi) in the first term on

the left-hand side of Eq. (2.4) is suppressed by the factor 1/N and can be omitted

at N =∞. The remaining terms are as follows:

−xW 2(x)−
∫
dy ρ(y) y

W (y)−W (x)
y − x + (2η − 1)W (x) + 1 = 0 , (2.8)

where λi is replaced by x. Equation (2.8) can be simplified by the substitution

W̃ (x) = xW (x)− η . (2.9)

After some transformations, using the normalization condition (2.7), we obtain

W̃ 2(x) + x
∫
dy ρ(y)

W̃ (y)− W̃ (x)
y − x = x+ η2 . (2.10)

The nonlinear integral equation (2.10) can be solved with the help of the ansatz

W̃ (x) = f(x) +
x

2

∫
dy
ρ(y)

f(y)

f(y)− f(x)
y − x , (2.11)

where f(x) is an unknown function to be determined by substituting (2.11) into

Eq. (2.10). The asymptotic behaviors of W̃ (x) and f(x) as x → ∞ follow from
eq. (2.10): W̃ (x) ∼ √x − 1/2, and the analytic solution with minimal set of singu-
larities is

f(x) =
√
ax+ b . (2.12)

The parameters a and b are unambiguously determined from Eq. (2.10). We find

that b = η2 and a is implicitly defined by

1 +
1

2

∫
dy
ρ(y)

f(y)
=
1√
a
, (2.13)

or, in terms of the eigenvalues,

1 +
1

2N

∑
j

1√
aλj + η2

=
1√
a
. (2.14)
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Then, the answer for the integral in the large N limit reads [2]

logZ = N2
[(
η2 +

1

4

)
log a +

4η2√
a
− η

2

a

]
+

+N
∑
i

 2√
a

√
aλi + η2 + η log

λi
√
aλi + η2 − η√
aλi + η2 + η

−
+
1

2

∑
ij

log
(√
aλi + η2 +

√
aλj + η2

)
. (2.15)

One can verify directly that ∂
∂a
logZ = 0 and 1

N
∂
∂λi
logZ = W (λi), as far as Eq. (2.14)

holds.

3. The Kontsevich phase

We are interested in the asymptotic expansion of the model (2.1) for large Λ. Then,

the expansion parameters are traces of negative powers of the external matrix Λ.

Conventionally, this regime is called the Kontsevich phase of the solution.

Here an important note is in order. In [2], we did not discuss which branch of

the root—positive or negative—should be chosen in (2.14), since both choices led

to the same answer for the integral in the large N limit (2.15). However, in what

follows, we must fix this sign.

The Kontsevich phase is the strong coupling regime where the expansion in

negative powers of λi is to be performed. Then we see that the dependence is only

on λ
−n−1/2
i , n = 0, 1, . . .

As the first step, we perform the phase analysis for the toy case where all λi’s

coincide, so (2.14) becomes

a

(1−√a)2 = 4(aλ+ η
2), a > 0 , λ > 0 . (3.1)

Then, obviously, the sign of the square term in (2.14) is negative for a > 1 and

positive for 0 < a < 1.

Algebraically, there always (except if η = 0) exist two solutions to (3.1): one

with 0 < a < 1 and another with a > 1. For the Kontsevich phase to be possible,

we demand that the expansion in terms of the so-called times

τk =
1

2k − 1 trΛ
−k+1/2, k = 1, 2, . . . (3.2)

should make sense. So, we assume that∣∣∣∣∣ η
2

aλ

∣∣∣∣∣ < 1 . (3.3)
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Then, from (3.1) and (3.3), we obtain the following phase diagram:

-
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4. Constraint equations in the Kontsevich phase

Now we write (2.4) in terms of the relevant times (3.2). Here, to obtain rigorous

results, the normalizing factor is necessary. From the theory of the generalized

Kontsevich model [8], the proper expression, which has no explicit dependence on

the matrix size N , reads

Z({τn}) =
∫
DX e ΛX+V (X)

e tr ΛX0+V (X0) det−1/2
(
δ
δX
⊗ δ
δX
V (X0)

) . (4.1)

Here X0 is the stationary point, Λ + V
′(X0) = 0, and the determinant in the nor-

malizing factor comes from the quasi-classical integration.

Let us choose the new variables

λi = z
2
i − (η + 1/2)2 . (4.2)

Then the normalizing factor reads

exp

−N∑
i

[2zi − 2η log(zi + η + 1/2)]− 1
2

∑
i,j

log(zi + zj)

 . (4.3)

Note that if we perform the standard Itzykson–Zuber integration, expression

(4.1) for integral (2.1) becomes

Z({τn}) =
det
1≤i≤N
0≤l≤N−1

∣∣∣∣∣∣ξ2ηN−li K−2ηN−l(Nξi)
∣∣∣∣∣∣

∏
i e
−2Nzi(zi + η + 1/2)2ηN(2zi)−1/2∆(z)

, ξi ≡
√
λi, (4.4)

where Kν(x) are Macdonald functions, Kν(x) =
∫∞
−∞ ds e

−2x cosh s+νs, and (4.4) does
not resemble too much the corresponding expression for the Kontsevich matrix model

5
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where Airy functions stand instead ofKν(x). To find the largeN asymptotic behavior

of (4.4), we use the constraint equation method.

In terms of z-variables, (2.4) becomes

[
− 1
N2

(
z2i − (η + 1/2)2

) 1
2zi

∂

∂zi

(
1

2zi

∂

∂zi

)
− 1
N2

∑
j 6=i

z2j − (η + 1/2)2
z2j − z2i

×

×
(
1

2zj

∂

∂zj
− 1

2zi

∂

∂zi

)
+
2η − 1
N

1

2zi

∂

∂zi
+ 1

]
Z(zi) = 0 . (4.5)

When pushing the normalizing factor (4.3) through derivatives w.r.t. zj-variables,

we replace
(
∂i ≡ ∂

∂zi

)

∂i → ∂i − 2N + 2ηN 1

zi + η + 1/2
−∑

j

1

zi + zj
. (4.6)

Let us introduce the new times

tn+1 =
1

2n− 1
∑
i

1

z2n−1i

+ δn,0
N

η + 1/2
, n = 0, 1, . . . , (4.7)

which differs slightly from the conventional ones defines above by (3.2). As is easily

checked, they are related by a lower triangular transformation, so they are equivalent

from the view point of phase transitions and critical behavior.

Then, the constraint equations for Z({tn}) are obtained after some tedious al-
gebra which we omit here. Collecting all coefficients to the term 1

z2s+4i

≡ ∂
∂zi
ts+2, we

obtain

L̃sZ({tn}) = 0 , s ≥ −1 , (4.8)

where

L̃s = δs,−1

[
− 1

16N2
+ t21
(η + 1/2)2

4N2

]
+ δs,0

(η + 1/2)2

16N2
−

− 1

2N2

∞∑
p=0
p+s≥0

[
−(η + 1/2)2(2p+ 1)tp+1 + (2p− 1)(1− δp,0)tp

] ∂

∂tp+s+1
−

− 1
N

(
∂

∂ts+2
− η + 1/2

2
(1− δs,−1) ∂

∂ts+1

)
−

− 1

4N2

s+1∑
k=1

∂

∂tk

∂

∂ts+2−k
+
(η + 1/2)2

4N2

s∑
k=1

∂

∂tk

∂

∂ts+1−k
. (4.9)

6
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In the convenient conformal field theory notation, (4.9) becomes

L̃s = Vs+1 − (η + 1/2)2Vs + 4ηN

η + 1/2
α2s+3 . (4.10)

where

α2n+1
∣∣∣
n≥0 ≡

∂

∂tn+1
, (4.11)

α−2n−1
∣∣∣
n≥0 ≡ (2n+ 1)tn+1 , (4.12)

[α−2k−1, α2q+1] = −(2k + 1)δk,q , (4.13)

and the operators Vs in the free-field representation are quadratic in αi,

Vq ≡
∑
a,b

δq,a+b+1:α2a+1α2b+1: + 1/4δs,0 , (4.14)

where the normal ordering : : means that all αa with positive indices are on the right

of all αb with negative indices.

For s, t ≥ −1, L̃s satisfy the algebra
[L̃s, L̃t] = 4(s− t)

(
L̃s+t+1 − (η + 1/2)2L̃s+t

)
, (4.15)

from which the Virasoro algebra can be obtained by the lower-triangle replacement

Ls ≡ L̃s +
∞∑
k=1

(η + 1/2)−2kL̃s+k . (4.16)

Performing replacement (4.16) and rescaling Vs, we obtain the Virasoro algebra in

terms of the generators

Ls = −(η + 1/2)2Vs + 4ηN
∞∑
k=2

1

(η + 1/2)2k−3
∂s+k . (4.17)

Amazingly, if we manage to remove the derivative terms in (4.17), then the con-

straints we obtain will be just constraints of the Kontsevich matrix model [13, 14].

To remove these terms, we shift all of the higher times, leaving the times t1 and t2
unshifted,

t̃k ≡ tk − 4ηN

(η + 1/2)2k+1
1

2(2k + 1)
, k ≥ 3 , t̃1,2 = t1,2 . (4.18)

Explicitly, in terms of the new times,

L−1 = t̃21 + 2
∞∑
m=1

(2m+ 1)t̃m+1
∂

∂t̃m
− 4ηN

(η + 1/2)3
∂1 , (4.19)

Ls =
s∑
m=1

∂

∂t̃m

∂

∂t̃s−m
+ 2

∞∑
m=1

(2m− 1)t̃m ∂

∂t̃m+s
+
1

4
δs,0 − 4ηN

(η + 1/2)3
∂

∂t̃s+2
. (4.20)

This is nothing but the Virasoro algebra that appears in the Kontsevich matrix

model. Therefore, we have proven the equivalence between the model (2.1) and the

Kontsevich matrix model [15].
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5. A large N limits comparison

Let us explicitly compare the model (2.1) after the time changing (4.18) and the

Kontsevich model with the partition function

Z(M) =

∫
dX exp− tr γ {MX2/2− iX3/6}∫

dX exp− tr γMX2/2 , M = diag {m1, . . . , mN} . (5.1)

Let us consider the constraint equation (2.14). We have

1

2n− 1 trM
−2n+1 = t̃n =

1

2n− 1 trZ
−2n+1 +


N

η+1/2
, n = 1 ,

0 , n = 2 ,

− 1
2(2n−1)

4ηN
(η+1/2)2n−1 , n ≥ 3 ,

(5.2)

i.e.,

trM−2n+1 = trZ−2n+1 − 1
2

4ηN

(η + 1/2)2n−1
+
1

2

4ηN

(η + 1/2)3
δn,2 + 2Nδn,1 . (5.3)

Then we obtain, in terms of these shifted variables, (± depends on the branch of the
square root),

1√
a
= 1± 1

2N

∑
j

1√
az2j − a(η + 1/2)2 + η2

= 1± 1

2N
√
a

∑
j

∞∑
n=0

(2n− 1)!!
(2n)!!

1

z2n+1j

((η + 1/2)2 − η2/a)n

= 1± 1

2N
√
a

∑
j

1√
m2j + η

2/a− (η + 1/2)2
+

+2N
√
a− 2N − ηN

η + 1/2
+

η3N

(η + 1/2)3a

]
. (5.4)

Assuming the minus sign and denoting

(η + 1/2)2 − η2/a ≡ 2s , − 2ηN

(η + 1/2)3
≡ γ , (5.5)

we obtain
N∑
i=1

1√
m2i − 2s

= −γs , (5.6)

i.e., the constraint equation of the Kontsevich model itself [13, 14].
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Also, let us recall the answer in the large N limit for the Kontsevich model [13].

If we reconstruct the dependence on the coupling constant γ, then it reads (in the

original notation)

F0 = γ
2s
3

6
+
γ

3

N∑
i=1

{
m3i − (m2i − 2s)3/2 − 3s

√
m2i − 2s

}
−

−1
2

N∑
i,j=1

log

√
m2i − 2s+

√
m2j − 2s

mi +mj
, (5.7)

where s is determined from the constraint equation (5.6).

Let us compare the answer (5.7) with formula (2.15) while accounting for the

normalizing condition (4.3). Then, in variables zi, assuming the minus sign in the

constraint (2.14), we have

F̃0 = N
2η2 log a +

4N2η2√
a
− N

2η2

a
+N

∑
i

2
(
zi −

√
z2i − 2s

)
+

+Nη
∑
i

log

(
z2i − (η + 1/2)2
(zi + η + 1/2)

2

)−
√
z2i − 2s− η/

√
a

−
√
z2i − 2s+ η/

√
a

+
−1
2

∑
i,j

log


√
z2i − 2s+

√
z2j − 2s

zi + zj

 . (5.8)

After a tedious algebra, taking into account (5.3), we obtain

F̃0 = F0 + 2N
2η2 log

η

η + 1/2
+N2

[
7

3
η2 + η − 1

4

]
, (5.9)

where F0 is given by (5.7) with the substitution (5.5). The difference between F̃0 and

F0 is just irrelevant constant terms. This again proves that the two matrix models

under consideration coincide.

6. Higher genus expressions

In this section, we set the Kontsevich coupling constant γ = 1. The higher genus

contributions in the Kontsevich model are expressed in terms of the so-called mo-

ments Ik,

I0 = − 1
N

N∑
i=1

1√
m2i − 2s

, Ik =
∂k

∂sk
I0 , k > 0 . (6.1)

Then, for g > 1, we have [14]

Fg =
∑∑

k=2
(k−1)lk=3g−3

〈τ l22 τ l33 · · · τ l3g−23g−2 〉g
1

(1− I1)2(g−1)+
∑
lp

I l22
l2!

I l33
l3!
· · · I

l3g−2
3g−2
l3g−2!

, (6.2)

9
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i.e., Fg is a finite sum of monomials in Ik/(1− I1)(2k+1)/3 with coefficients being the
intersection indices on the moduli space [15]. For g = 1, F1 =

1
24
log 1

1−I1 .
Now we rewrite the expression (6.2) via the moments of the model (2.1). Let us

introduce the new moments Jk

Jk = −(2k − 1)!! 1
N

N∑
j=1

1

(aλj + η2)k+1/2
, k = 0, 1, 2, . . . (6.3)

We are interested only in transformation law for Ik with k > 0 since the only de-

pendence on the moment I0 is via the constraint equation (5.6). Then, Eq. (5.3)

implies

(I1 − 1) → a3/2(J1 + 2/η2) ,
Ik → ak+1/2(Jk + 2/η2k) ,

i.e., the expression (6.2) becomes

FNBIg =
∑∑

k=2
(k−1)lk=3g−3

〈τ l22 τ l33 · · · τ l3g−23g−2 〉g
1

(J1 +
2
η2
)2(g−1)+

∑
lp

3g−2∏
k=2

(Jk +
2
η2k
)lk

lk!
, g > 1

(6.4)

and

FNBI1 =
1

24
log

[
a3/2(J1 + 2/η

2)
]
. (6.5)

Therefore, expression (2.15) for genus zero, taking into account the normalizing

factor (4.3) and the expressions (6.5), (6.4) completely determine the partition func-

tion of the model (2.1) for all genera. These expansions are, however, ill-defined for

η → 0, which corresponds to the U(N) model, and for η ∼ 1/N , which corresponds
to the model defined in [5].

Remark 1 The last observation above is related to the initial constraints (4.8).

Note that we can consider a “minimal reduction,” where all times tk but the time t1
are equal to zero. Then this partition function is entirely determined from the action

of L̃−1 on Z,(
4η

η + 1/2
+ 2t1

)
∂F
∂t1

∣∣∣∣∣
t2=t3=...=0

−N2(η + 1/2)2t21 + 1/4 = 0 ,

where

t1 ≡ 1
N

N∑
i=1

z−1i + (η + 1/2)
−1|t2=t3=...=0=

1

N

N∑
i=1

λ
−1/2
i + (η + 1/2)−1 ,

i.e.,

∂F
∂t1

∣∣∣∣∣
t2=t3=...=0

=
η + 1/2

4

[
N2((η + 1/2)t1 − 2η) + (2ηN)2 − 1/4

(η + 1/2)t1 + 2η

]
. (6.6)
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Remark that F becomes a polynomial in t1 for

η = ± 1
4N
,

and this is exactly the point corresponding to the IIB superstring model [5].

On the other hand, from expressions (6.4), (6.5) it is clear that in this case all

Jk = 0 for k > 0, so there is no t1-dependent contributions from g > 1 and only
1
16
log a comes from the genus one term. One can compare with expression for F1

coming from (6.6) and, taking into account the constraint equation (2.14), one finds

an exact coincidence of the two expressions, i.e.,

F1|t2=t3=...=0 = −1/8 log(2 + 1/N trλ−1/2) =
1

16
log a .

Remark 2 The string susceptibility in the large N limit can be obtained by dif-

ferentiating twice w.r.t. the string coupling constant η. One should check that after

the first differentiation of (2.15), the stationary condition still holds, so the total

derivative coincides with the partial one and, as a result, we have

d2 logZ

dη2
=
∂2 logZ

∂η2
= 2N2(log a + 3) . (6.7)
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