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1. Introduction

Brane Boxes are good objects for studying aspects of N = 1 supersymmetric chi-

ral gauge theories in four dimensions and their corresponding dimensional reductions.
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These objects correspond to a simple generalization of the idea in [1]. In [1], a Dp

brane is stretched in between a pair of two NS branes with one direction being finite.

The low energy effective field theory which lives on the Dp brane is therefore a p + 1

dimensional theory compactified on an interval with length given by the distance be-

tween the two NS branes. For small enough interval, the field theory on the brane is

p dimensional. In addition, the NS branes impose boundary conditions which remove

some of the fields which live on the D-brane as well as reduce the supersymmetry by

half. The resulting theory is a p dimensional theory with 8 supercharges and p is less

or equal to 6. When two brane intervals touch each other there are additional massless

multiplets. with 8 supercharges, these correspond to bi-fundamental hypermultiplets

which transform under the two gauge groups which leave on the two brane intervals.

Brane boxes [2] are a generalization of this idea to a two dimensional interval. A

Dp brane is stretched in between two pairs of two NS branes with two directions being

finite. The low energy effective field theory which lives on the Dp brane is therefore

a p + 1 dimensional theory compactified on two intervals with each length given by

the distance between the two corresponding NS branes. For small enough interval,

the field theory on the brane is p − 1 dimensional. The NS branes impose boundary

conditions which remove more fields which live on the D-brane as well as reduce the

supersymmetry by a further half. The resulting theory is a p − 1 dimensional theory

with 4 supercharges and p is less or equal to 5. There are additional states which are

massless when two brane boxes touch. With 4 supercharges, these correspond to bi-

fundamental chiral multiplets which transform as fundamental and anti-fundamental

of the corresponding gauge groups. A superpotential term is present when three such

boxes meet. Three chiral multiplets form into a dimension 3 singlet operator which

contributes to the superpotential.

Using these rules, a large class of finite chiral N = 1 supersymmetric gauge theories

were constructed in [3]. The beta functions of the gauge theories are directly related

to the bending of the branes. Models with vanishing beta function correspond to

configurations with no bending. An important class of models was introduced which

are not finite but still have some exact marginal operators. Such models obey a “sum

of diagonal rule”. This rule was independently considered in [4] from a different point

of view and is discussed in the next paragraph.

The bending of the branes remains an open question. For weak coupling the NS

branes are much heavier than the D branes and are weakly affected by them. For finite

string coupling, NS branes which have no balance of D branes ending on them start to

bend. It is an important problem to understand such a bending. This information will

provide us an understanding of the dynamics of strongly coupled chiral gauge theories.

A first step towards understanding such a bending was done in [4]. A constraint on the

possible ranks of four gauge groups which meet on a vertex of four brane boxes was

derived. This condition requires smoothness of asymptotic bending. In some cases like

supersymmetric Yang-Mills theories we need not expect such smoothness and so there
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is a large class of gauge theories for which this condition is too restrictive. Nevertheless,

models which do obey these conditions are nicely behaved models which can teach us

a lot on the dynamics of the corresponding gauge theories. As a simple example, brane

configurations which satisfy these conditions are anomaly free [4]. Other aspects of the

brane boxes and their beta function were considered in [5].

In a different approach, initiated in [6], branes on singularities were analyzed and

were shown, in some cases, to have gauge theories which are identical to models de-

rived in the approach discussed above. In this paper we study this correspondence

by showing that the two approaches are related by T-duality along two directions. A

similar analysis for theories with 8 supercharges appears in [7]. In theories with four

supercharges, the constructions of [8, 9] were shown to be equivalent to brane box

construction in [2], using T-duality along one direction.

The paper is organized as follows. In section 2 we present two different constructions

which lead to four dimensional N = 1 supersymmetric gauge theories. We start by

reviewing the Brane Box Models of [2]. Then we proceed to review the branes at

singularities of [6, 10, 11, 12, 13]. Other related work appears in [14, 15, 16, 17]. We

describe the rules which lead to the calculation of the gauge groups, the matter content

and the particular cubic interaction terms in the superpotential. One important set

of Brane Box models has non-trivial identifications when going around the circle on

which they are defined. These models are reviewed in this section to be discussed as

the general models in the next sections. The models of branes at singularity which are

studied in this paper correspond only to Abelian discrete subgroups of SU(3). Non-

Abelian subgroups are harder to map to Brane Box Models and are left for further

study.

In section 3, we present a constructive method of building a Brane Box Model from

a given singularity model. The construction is formal and serves as a prepartion to a

T-duality relation between the two types of setups.

In section 4, we use T-duality to construct a brane at singularity from a given Brane

Box Model. This method allows us to calculate T-dual pairs between NS branes which

wrap a torus in various ways and a singularity of the form C3/Γ, with Γ a discrete

subgroup of SU(3). This is one of the amusing aspects of the present paper in which

four dimensional N = 1 supersymmetric gauge theories are used to calculate non-trivial

dual pairs in Type II superstring theory.

In section 5 we discuss the counting of marginal couplings for the general class of

models introduced in section 2. These parameters receive a geometric interpretation

in the brane box picture as distances between NS fivebranes, and Wilson lines around

compact directions. In the singularity picture they correspond to integrals of the Type

IIB RR and NS two-forms over two-cycles implicit in the singularity. As a check of this

identification, we use the AdS/CFT correspondence, and relate the four-dimensional

N = 1 finite theories to string theory on AdS5 × S5/Γ. The massless scalar fields

propagating in AdS5 which couple to the marginal operators in the boundary are seen
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to arise from stringy twisted sectors of S5/Γ. This identification of the gauge theory

parameters in the brane pictures allow us to make some qualitative statements about

the strong coupling regime of the gauge theories.

In section 6 we discuss models which are not conformal field theories. The different

gauge theories in the Brane Box models are mapped to fractional branes living on

singularities. This leads us to a special class of models constructed from “sewing”

three different N = 2 models into a general N = 1 model. Each N = 2 model has a

Coulomb branch which becomes part of the Higgs branch of the N = 1 model. Using

the N = 2 beta functions, the one loop beta function for the N = 1 model is calculated

and is given an interpretation in the brane picture.

2. The constructions

2.1. Overview of the brane box configurations

The N = 1 models we will be considering are constructed in a brane setup, in the

spirit of [1], which was described in detail in [2]. The description here will be short and

further details are contained in [2].

We are working in Type IIB superstring theory with the following set of branes.

• NS branes along 012345 directions

• NS′ branes along 012367 directions

• D5 branes along 012346 direction.

The D5 branes will be finite in two of the directions, 4 and 6; their low-energy effective

world volume theory is 3+1 dimensional. The presence of all branes breaks super-

symmetry to 1/8 of the original supersymmetry, and thus we are dealing with N = 1

supersymmetry (4 supercharges) in four dimensions. The 4 and 6 directions are circles

with radii R4 and R6 respectively.

A generic configuration consists of a grid of k NS branes and k′ NS′ branes in the

46 plane. This divides the 46 plane into a set of kk′ boxes. In each box, we can place

an arbitrary number of D5 branes. Let ni,j denote the number of D5 branes in the

box i, j, i = 1, . . . , k, j = 1, . . . , k′. In the following, indices will denote variables in

a periodic fashion: an index i is to be understood modulo k and an index j is to be

understood modulo k′. Thus a model’s gauge and matter content is specified by the

numbers k and k′ and the set of numbers {ni,j}.

The gauge group is
∏
i,j SU(ni,j). The matter content of the model consists of

three types of N = 1 chiral representations. They will be denoted as Hi,j, Vi,j and

Di,j, corresponding to the horizontal, vertical and diagonal multiplets which arise in

the brane system (see the details in [2]). Hi,j transforms in the ( , ) of SU(ni,j) ×

SU(ni+1,j), Vi,j transforms in the ( , ) of SU(ni,j) × SU(ni,j+1) and Di,j transforms

4
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(b)

Figure 1: (a) Conventions for denoting the chiral multiplets which are in the fundamen-

tal of the group SU(ni,j) and in the antifundamental of an adjacent group. (b) The two

superpotential couplings at each corner are represented by an oriented triangle of arrows.

in the ( , ) of SU(ni,j)× SU(ni−1,j−1). Figure 1a shows the conventions for denoting

the multiplets.

The superpotential in these models is calculated using the rules described in [2]. It

is given by

W =
∑
i,j

Hi,jVi+1,jDi+1,j+1 −
∑
i,j

Hi,j+1Vi,jDi+1,j+1. (2.1)

The first term corresponds to lower triangles of arrows and the second term corresponds

to upper triangles of arrows in the notation of [2], as shown in figure 1b. Note the relative

minus sign between the two terms.

2.1.1. Models with non-trivial identifications

The brane box models described above are defined on a torus in the 46 direction in

which the NS branes are trivially identified when going around any of the circles. In this

section we will review brane box configurations which have non-trivial identifications

once going around one of the circles of the torus. The simplest example of this type of

models was given in figure 7 of [3].

The construction goes as follows. For any integers k and k′ we can form a k × k′

box model as in the models with trivial identification. Without loss of generality, we

can assume that along one of the directions of the torus the NS branes are identified

trivially. Let us choose it to be the 4 direction. Let p be an integer between 0 and

k. We place a k × k′ box model on top of another such box shifted to the left by p

boxes. This gives NS′ branes which are trivially identified when going around the 4

circle. On the other hand the NS branes are identified non-trivially. These models will

be discussed further in subsection 4.2.

p = 0 corresponds to the models with trivial identification which are discussed in

the previous subsection.
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2.2. Marginal couplings

The gauge couplings of the various gauge groups receive contributions from various

sources. The simplest contribution is expressed in terms of the positions of the NS

branes in the x6 direction and the position of the NS′ branes in the x4 direction. There

are k positions xi6 and k′ positions xj4. Correspondingly, the x6 direction is divided

into k intervals with lengths ai = xi6 − x
i−1
6 , such that

∑
i ai = R6. The x4 direction is

divided into k′ intervals of length bj = xj4 − x
j−1
4 , such that

∑
j bj = R4. The simplest

contribution to the gauge coupling gi,j for the group SU(ni,j) is given by

1

g2
i,j

=
aibj
gsl2s

. (2.2)

The kk′ gauge couplings are not all independent. In equation (2.2) they are given by

k + k′ − 1 parameters corresponding to the positions of the NS and NS′ branes. Two

positions can be set to zero by the choice of origin in the 46 directions, but the area

of the 46 torus gives one more parameter. The couplings do not depend on the ratio

between the two radii of the torus. As we will see later, using the mapping to the

branes on singularities, the field theories often have more than k + k′ − 1 parameters,

indicating that we have not identified all of the contributions to these couplings.

The theta angles of the gauge theories receive various contributions. Let Ai be the

gauge field on the world volume of the ith NS brane and A′j be the gauge field on the

world volume of the jth NS′ brane. Since the dimensions 4 and 6 are compact, there

can be non-zero Wilson lines of Ai along 4, and of A′j along 6. Let Ri,j denote the area

in the 46 direction which is bounded by the pair of NS branes and NS′ branes. The

theta angle for the i, j group depends on the line integral of the different gauge fields

along the boundary of Ri,j . Schematically,

θi,j =
∫
Ri,j

B +
∫
ai

(A′j−1 − A
′
j) +

∫
bj

(Ai − Ai−1). (2.3)

where B is the RR two form of Type IIB superstring theory. The contributions from

the gauge fields are required for the invariance of θi,j under gauge transformations of

B. Were this the entire story we would again have k + k′ − 1 parameters. However,

invariance under gauge transformations of the one-forms require that additional terms

be added to this expression involving axion-like fields living at the intersections of the

NS and NS′ branes.

In general, when quantum effects are taken into account these quatities run accord-

ingly with the renormalization group. However, the brane configurations allow for a

simple construction of N = 1 theories which have some marginal couplings, i.e. a sub-

manifold of renormalization group fixed points in the space of couplings. For example,

the field theory analysis in [3] showed that models which satisfy the “sum of diagonals

rule”

ni,j + ni+1,j+1 = ni+1,j + ni,j+1 , (2.4)
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give rise to non-finite models which have some marginal operators. This condition was

discussed in the context of brane bending in [4]. We will discuss issues related to this

condition in section 6. The simplest models verifying these conditions are those in

which all ni,j are equal. They give rise to exactly finite theories, in which no parameter

is renormalized.

Let us now discuss the number of independent parameters which contribute to the

gauge couplings. We claim that there are actually

k + k′ + r − 2

such couplings, where r is the greatest common divisor of k and k′, r = gcd(k, k′). For

models with non-trivial identifications (of the type described in paragraph 2.1.1) the

number of marginal couplings generalizes to

k + gcd(k, p) + gcd(k, k′ + p)− 2 .

This counting follows from the field theory analysis performed in [3]. From the point

of view of the brane box construction, we will give few arguments which support this

claim. Further evidence will be provided in section 5, using the T duality with the

picture of branes at singularities.

First consider from a field theory point of view the asymmetry in the construction

in terms of branes. There are matter fields which come from horizontal, vertical and

diagonal arrows, however, the parameters which are seen in equation (2.2) correspond

only to horizontal and vertical distances. There are no parameters which correspond

to diagonal fields. To make the discussion more clear, let us center on a k × k′ box

model with trivial identifications, and let us define the following quantities.

hi =
k′∑
j=1

1

g2
i,j

, vj =
k∑
i=1

1

g2
i,j

, dl =
∑

diagonals

1

g2
i,j

. (2.5)

The sum over diagonals means that one starts with some box and then proceeds along

the diagonal arrows until coming back to the first box. There are r different such

diagonals which correspond to r different parameters, dl and each sum contains kk′/r

summands such that each gauge coupling appears exactly once in one of the parameters

dl. We claim that these quantities form a set of independent paramters which give rise

to the various gauge couplings.

The asymmetry becomes more clear when we consider a different brane box con-

struction which gives rise to the same field theory. For a given field theory, as above,

we can always rename what we call the fields H, V and D by any permutation, say

D, V and H . There are actually 6 such choices of renaming the fields. While this is

a formal process from a field theory point of view which does not change the matter

content, it is a crucial difference from the point of view of brane box construction.

In the example of permutation chosen, fields which in the original construction come

7
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1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

2 3 4

6 7 8 5

1

2 3 4

6 7 8 5

1

Figure 2: A permutation on the types of fields. In this particular example the H,V,D

fields are transformed into H,D, V fields, respectively. The 4 × 2 box model with trivial

identifications is mapped to the 4× 2 model with a nontrivial identification with a horizontal

jump by p = 2. The numbers in the boxes indicate labels of the boxes.

from horizontal arrows, come in the permuted construction from diagonal arrows and

viceversa. Vertical fields on the other hand remain vertical.

The example in figure 2 shows how to construct such a brane box permutation. A

systematic way of constructing the permuted box model from the original one is as

follows. We pick a chain of periodic horizontal boxes. We order the boxes in a new

order which is specified by the permutation. From each box of the original horizontal

chain we pick a chain of periodic vertical boxes. We put these boxes in the new direction

specified by the permutation. The permutation on diagonal chain of boxes is already

build into the new setup. The new box model is done.

Let us count parameters in the original model and its corresponding permuted

model. In figure 2a, there are 4 vertical lines and there are 2 horizontal lines. (Here we

mean in a unit box of the torus). In addition there are 2 independent closed chains of

diagonals (given by 4,7,2,5 and 8,3,6,1). The number of diagonals is given for general k

and k′ by r = gcd(k, k′). In the permuted model of figure 2b, there are 2 vertical lines

and 2 horizontal lines. On the other hand, there are 4 diagonal chains. In both cases,

we will count 4 + 2 + 2 − 2 = 6 marginal parameters for the field theory. We see, as

expected from the permutation, that the number of vertical and the number of diagonal

parameters are exchanged, while the number of horizontal lines is not changed.

In any of the models, the diagonal parameters are not easily visible but the vertical

parameters are visible. A symmetry of the construction from a field theory point of

view, thus implies that indeed we have counted correctly the set of the marginal para-

maters of the model. This counting will be useful for the identification of parameters

in the singularity picture in section 5.

2.3. Overview of the branes at singularity

2.3.1. The spectrum

The dynamics of four dimensional N = 4 gauge theories can be studied by realizing

them in the world-volume of parallel Type IIB D3-branes. Let us state, for concreteness,

8
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that such world-volume spans the coordinates 0123. In this context many properties

of the gauge theory are usefully related to properties of string theory and the brane

dynamics. For instance, the SU(4)R R-symmetry appears as the SU(4) ≈ SO(6)

rotation group on the transversal coordinates 456789. The gauge coupling constant

is given by the string coupling, and Montonen-Olive duality is realized as the ten-

dimensional SL(2, Z) of Type IIB superstring theory.

In [13] this idea was extended by introducing a family of four-dimensional gauge field

theories with reduced supersymmetry, which can be realized in the world-volume theory

of D3 branes sitting at a singular point. This singularities are locally described as C3/Γ.

Here C3 corresponds to the coordinates transverse to the D3 brane, namely 456789,

and Γ is a discrete subgroup of SO(6) ≈ SU(4). Since Γ acts on the R-symmetry of

the theory, the amount of surviving supersymmetry depends on this action. Theories

with N = 2 supersymmetry are obtained when Γ ⊂ SU(2), N = 1 (generically chiral)

gauge theories appear if Γ ⊂ SU(3), and non-supersymmetric theories correspond to Γ

being a generic subgroup of SU(4).

The spectrum of the resulting theory can be analyzed using the techniques developed

in [6]. We review the result for Γ an Abelian subgroup of SU(3), since we will be

interested in this particular family of N = 1 theories.

Let |Γ| denote the order of Γ. A configuration of N D3 branes at the orbifold can

be studied on the covering flat space by considering N groups of |Γ| D3 branes. Γ

acts on the set of N |Γ| Chan-Paton factors as N copies of the regular (|Γ|-dimensional)

representation RΓ, i.e. RC.P. = NRΓ (Other embeddings of the Chan-Paton factors

and their interpretation will be discussed in Section 6). When Γ is Abelian it has |Γ|

unitary irreducible representations RI , all of which are one-dimensional. The regular

representation is reducible and decomposes as RΓ =
⊕

I RI . One must also define how

Γ acts on C3 to form the quotient singularity; this is specified by a (faithful) three-

dimensional representation, which has a decomposition in irreducible representations

as:

3 = RA1 ⊕RA2 ⊕RA3 . (2.6)

In order for 3 to be a representation of SU(3) rather than of U(3) there is a require-

ment on the choice of the representations RAi , whose statement is easier by noticing

the following fact. The set of irreducible representations forms an Abelian group (iso-

morphic to Γ) with respect to the tensor product of representations. We write the

group law as

RI ⊗RJ ≡ RI⊕J . (2.7)

Using this additive notation on the indices of the irreducible representations, the trivial

representation is denoted R0, and R−I denotes the inverse element of RI . The require-

ment on the representation 3 can be stated as RA1 ⊗RA2 ⊗RA3 = R0, or equivalently

as RA3 = R−A1−A2.

9



J
H
E
P
0
5
(
1
9
9
8
)
0
1
3

The construction in [13] results in the following spectrum. The gauge groups1 con-

tains a factor SU(N) per irreducible representation of Γ, so the group is
∏
I SU(N)I =

SU(N)|Γ|. The chiral matter is found by computing the products

3⊗RI = RI⊕A1 ⊕RI⊕A2 ⊕RI−A1−A2 . (2.8)

There are three kinds of chiral multiplets, which are associated to the three complex

planes transverse to the D3 branes. We will denote them by ΦI,I⊕Ai, for i = 1, 2, 3. The

fields ΦI,I⊕A1 transform in the ( , ) of SU(N)I × SU(N)I⊕A1 , ΦI,I⊕A2 transform in

the ( , ) of SU(N)I × SU(N)I⊕A2 , and ΦI,I⊕A3 transforms in the ( , ) of SU(N)I ×

SU(N)I⊕A3 . Notice there are three such fields per irreducible representation of Γ.

Finally, for each I there are two cubic terms in the superpotential, which takes the

form

W =
∑
I

[ΦI,I⊕A1 ΦI⊕A1,I⊕A1⊕A2 ΦI⊕A1⊕A2,I − ΦI,I⊕A2 ΦI⊕A2,I⊕A2⊕A1 ΦI⊕A2⊕A1,I ] . (2.9)

Before going further in the discussion of these models and their relation to the brane

box configurations, it will be useful to discuss a few examples.

2.3.2. Examples

In the following we describe the spectrum for D3 branes on some singularities. Since

the case of N = 2 theories (corresponding to an Ak ALE singularity), has been largely

discussed in the literature [6], we will mention only N = 1 models.

i) C3/Z3

Consider a C3/Z3 singularity, where the generator θ of Z3 acts on C3 as

(z1, z2, z3)→ (e2πi/3z1, e
2πi/3z2, e

2πi/3z3) . (2.10)

This is the only choice of the representation 3 that leaves unbroken N = 1 supersym-

metry (and not N = 2). The group Γ = Z3 has three one-dimensional irreducible

representations RI , I = 0, 1, 2. The representation RI associates to θ the phase e2πiI/3.

Clearly the product law in the set of irreducible representations is RI ⊗ RJ = RI+J ,

i.e. amounts to usual addition (modulo 3) of subindices. We see from (2.10) that the

representation 3 that we have chosen decomposes as R1 ⊕R1 ⊕R1.

Following the rules above, the gauge group is SU(N)0 × SU(N)1 × SU(N)2. The

fields of type ΦI,I+A1 , associated to the first complex plane, transform as a copy of

( 0, 1)+( 1, 2)+( 2, 3). We will denote these fields as Q1
I . The fields ΦI,I+A2, which

we denote by Q2
I , are associated to the second complex plane, and transform as another

copy of the same representation. Finally, the fields ΦI,I+A3 transform again in this

1The U(1) gauge fields (but one) are not expected to appear in the low energy dynamics of the

D-branes. A possibility is that they are broken by a Green-Schwarz mechanism [18], as happens in

certain six dimensional models [6, 19, 20].
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representation. We denote them by Q3
I . So in total the model has nine chiral multiplets

Qa
I transforming in the representation

3 ( 0, 1) + 3 ( 1, 2) + 3 ( 2, 3) . (2.11)

Following the rules above, there is a superpotential which can be rewritten as

W ∼ εIJKQ1
IQ

2
JQ

3
K . (2.12)

This model was studied in [11, 12] before the general formulation of [13] appeared.

ii) C3/(Zk × Zk′)

Let us consider a rather large family of singularities of type C3/(Zk × Zk′), which

will be useful in the following sections. Let θ, ω denote the generators of the Zk, Zk′

subgroups, respectively. The group Γ = Zk × Zk′ has kk′ irreducible representations,

denoted Ra,b (a = 0, . . . , k−1, b = 0, . . . , k′−1). The representation Ra,b associates to

the general element θmωn the phase factor e2πiam
k e2πi bn

k′ . Notice that one uppercase index

in the general formulation represents two lowercase indices in this case, since the group

has two generators. The product of representations is given byRa,b⊗Ra′,b′ = Ra+a′,b+b′ ,

i.e. separate addition in the indices.

Let us choose the action of Γ on C3 such that the generators act as

θ : (z1, z2, z3)→ (e2πi/kz1, z2, e
−2πi/kz3)

ω : (z1, z2, z3)→ (z1, e
2πi/k′z2, e

−2πi/k′z3) . (2.13)

This means that the corresponding representation 3 decomposes as 3 = R1,0 ⊕R0,1 ⊕

R−1,−1.

The gauge group is
∏
a,b SU(N)a,b ≈ SU(N)kk

′
. The chiral multiplets associated to

the first complex plane, ΦI,I+A1, form the representation
⊕
a,b(Na,b, Na+1,b). Similarly,

the fields ΦI,I+A2 are in the representation
⊕
a,b(Na,b, Na,b+1), and the fields ΦI,I+A3

transform as
⊕

a,b(Na,b, Na−1,b−1).

The resulting spectra are rather lengthy to list, but straightforward to obtain. Sim-

ilarly, the superpotential terms follow from equation (2.9).

We postpone the discussion of how the field theory parameters are encoded in the

configuration of branes at singularities until Section 5. In the meantime, in sections ??

and ??, we establish a connection between the brane box models and the branes at

singularities. This relation will allow us to map several parameters, states, and field

theory phenomena from the brane box configurations to the singularity language.

3. From the singularity to the brane box

3.1. The construction

The general pattern of the theories that we have obtained studying D3 branes on

top of C3/Γ singularities, for Abelian Γ, is very reminiscent of the type of theories
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we obtained using the brane box configurations. Our aim in this section is to show

that actually for each such singularity theory one can construct a suitable brane box

configuration leading to the same four-dimensional N = 1 gauge theory. We stress that

the argument is simply based on the matching of the spectra, and does not establish a

physical principle underlying the correspondence. We will come back to this point in

the following section, where we show the relation follows from T duality.

The general strategy to construct such a brane box configuration is to draw one

box for each irreducible representation of Γ, so as to ensure the gauge group is the

same, and adjoin these boxes such that the chiral multiplets H, V, D in the box model

reproduce the fields ΦI,I⊕A1 , ΦI,I⊕A2 and ΦI,I⊕A3. Notice that in the brane box diagram

the relation of neighbourhood of boxes will thus be defined in terms of the product law

of irreducible representations in Γ. The construction of the brane boxes is thus very

similar to that of the quiver diagrams described in [21].

The construction is easily organized as follows: The first step is to draw a row of

boxes corresponding to the irreducible representation R0, RA1 , R2A1 , . . ., R(n1−1)A1 ,

where n1 is the order of RA1 in the set of irreducible representations of Γ. The fact

that Rn1A1 ≡ R0 means that the row is compactified on a circle. Equivalently, one

can think of a one-dimensional infinite periodic array of boxes, of which the finite set

described above is a fundamental region. This construction ensures that the horizontal

fields between the boxes reproduce some of the fields ΦI,I+A1. A picture of this first

step in the construction is shown in figure 3.

6

 4 (n  -1)
 1 1    0 1 1 (n  -1)

 1 1 ...... ...    0   A    A  2A    A

Figure 3: First step in the construction of the brane box model corresponding to a singularity

C3/Γ. The labels on each box denote the irreducible representation of Γ associated to the

gauge factor in that box. The basic period in the infinite array of boxes is bounded by dark

lines.

Next, from each of the boxes RnA1 in the row, we start a vertical column of boxes,

which we label RnA1 , RnA1⊕A2, . . ., RnA1⊕(n2−1)A2 , where n2 is the order of RA2 in the

set of irreducible representations. Again, since Rn2A2 ≡ R0, there is an identification

of the horizontal sides of the resulting rectangle, which makes the configuration to be

compactified on a two-torus. Alternatively, one can extend the construction to the full

plane, and think of it as the universal cover of the torus. This construction ensures

that the new horizontal arrows reproduce the fields of type ΦI,I⊕A1, and the vertical

arrows the multiplets of type ΦI,I⊕A2. Quite remarkably, the fields of type ΦI,I+A3 are

automatically reproduced by the diagonal arrows, and the superpotential interactions

(2.9) are reproduced by the triangle rule (2.1). In figure 4 we show a typical region in
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1 21  2 1  2

1  2

1

 21

 1  2

1  2

1     2

6

 4
2

iA    (j+1)A

iA     j A 

iA    (j-1)A (i+1)A     (j-1)A

(i+1)A     j A

(i+1)A     (j+1)A 

 (i-1)A     (j-1)A 

 (i-1)A     j A  

 (i-1)A     (j+1)A 

Figure 4: A typical region in a brane box model constructed from a singularity. The arrows

denote the chiral multiplets ΦI,I⊕A1, ΦI,I⊕A2, and ΦI,I−A1−A2, for I = iA1 ⊕ jA2, which

appear as the horizontal, vertical and diagonal fields.

a general brane box thus constructed. As can be read in the picture, when one moves

horizontally to the right, the label in the boxes shifts by A1; when one moves vertically

upwards, the label changes by A2; finally, a diagonal movement from upper-right to

lower-left shifts the label by −A1 − A2.

An important question is whether all irreducible representations of Γ indeed appear

in this rectangle. That this is so follows from the fact that the representation 3 was

chosen to be faithful. This means that all irreducible representations of Γ are generated

by RA1 , RA2 . As an example of a non-faithful representation, consider the case where

Γ = Z8 and the representation 3 decomposes as R2 ⊕R2 ⊕R4. It is easy to construct

the brane configuration and to discover that it actually describes the case with Γ = Z4

and the representation 3 decomposes as R1 ⊕R1 ⊕R2.

Another related point is whether all the n1n2 boxes are actually different. In general,

this is not so, and each box will be repeated q = n1n2/|Γ| times. Since this n1×n2 box

region is the smallest rectangle with trivial identifications of sides, and the true unit

cell (where each box appears once and only once) is smaller, it will have non-trivial

identification of sides. The true unit cell can be obtained as a n1 × |Γ|/n1 cell in the

rectangle. The relation between the n1× n2 rectangle and the unit cell is illustrated in

figure 5. It is clear that the identification of vertical sides of the unit cell will be trivial.

However, the identifications of horizontal sides is accompanied by a shift. If the box

marked with a ‘x’ in the picture is labeled R0, the box marked with a ‘*’ is labeled

R(|Γ|/n1)A2
, which is equal to RpA1 for some integer p. The identification of horizontal

sides is shifted by p boxes to the left.

As an illustrative case consider the orbifold C3/Z3, discussed as example i) in sec-

tion 2.2, where we had 3 = R1⊕R1⊕R1. Since the order of R1 in the set of irreducible

representations is 3, we have n1 = 3 and also n2 = 3. The procedure we have described

yields a 3× 3 rectangle with trivial identifications, which is depicted in figure 6. Each

box is repeated 3 times (q = 3), so the true unit cell is smaller, and has non-trivial

13
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0.9

2

1

1

*

n

n

x

Γ

p

n

Figure 5: The relation between the n1×n2 box rectangle and the true unit cell in a general

brane box configuration.

.9

 
 

 

 

 

 4

6

 0  1

 2 1

 2

 0

 2  0  1

Figure 6: The brane box corresponding to a C3/Z3 singularity. It is a 3× 1 box model with

trivial identifications of vertical sides, and identification of horizontal sides up to a shift of

one box.

identifications. The unit cell can be taken to be the 3× 1 cell highlighted in the figure.

The vertical sides are identified in the trivial way, but the horizontal identification is

accompanied by a shift of one box (p = 1). This brane configuration was introduced

in [3], where it was already observed that its spectrum matched that of D3 branes at

a Z3 singularity.

An important point is that the consistency of both constructions is only possible

for Abelian discrete groups Γ. This is suggested from a number of perspectives. For

example, if one wishes to construct finite theories from D3-branes sitting at singular-
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ities, one should choose the Chan-Paton embedding as N copies of RΓ. The gauge

group for a general Γ is
∏
I SU(NnI), where nI is the dimension of the I th irreducible

representation. In the construction of finite theories using brane box configurations

[3], the gauge group is SU(N)M , where M is the number of boxes. Thus the brane

box configurations reproduce some of the finite models that can be constructed from

singularities, namely those where Γ is Abelian and all the irreducible representations

are one-dimensional, nI = 1, ∀I.

Also, when Γ is Abelian the tensor product of representations is commutative, so

RI⊕A1⊕A2 ≡ RI⊕A2⊕A1 . This is a necessary requirement in our construction of the

brane boxes, since it ensures that, starting from the box labeled by RI and moving

one box to the right and then one box upwards one reaches the same box than moving

first upwards and then to the right, an unavoidable geometrical fact in the brane box

construction.

This restriction on the type of singularity is hardly a surprise. Several works in

geometric engineering (see e.g. [22]) have shown that the geometric approach to the

realization of gauge theories is more general than the constructions using brane configu-

rations. However we would like to stress that in many instances the brane configurations

provide a simpler realization of the gauge theories. In our particular case, we are to

see that configurations which are not finite are easily constructed and analyzed in the

brane configuration language, by simply putting a different number of D5 branes in

each box. Reproducing these theories using branes at singularities requires the use of

fractional branes, objects which are forced to lie at the singular point. Since basically

everything is happening at the singular point, the construction is much less intuitive.

Somehow, the brane picture ‘opens up’ all the phenomena happening at the singularity

and displays them in different boxes.

As a final comment, let us mention that there is an arbitrary choice in the procedure

above, namely the different ways to assign the three kinds of fields H, V, D to the three

kinds of fields ΦI,I+Ai i = 1, 2, 3. There are six such inequivalent choices. The brane

box configurations one obtains are related in such a way that, e.g. the fields that arise

from horizontal arrows in one come from diagonal arrows in the other. This is clearly

the transformation of brane box models we introduced in section 2. The meaning of

this transformation will become clear after the T-duality relation between branes boxes

and branes at singularities is established in the next section.

3.2. Examples

To illustrate the ideas we have introduced, we present a few examples of the construction

above.

i) Consider a singularity C3/Zk, with the generator θ of Zk acting on C3 as

θ : (z1, z2, z3)→ (e2πi/kz1, e
2πi p

k z2, e
2πi

(−p−1)
k z3) , (3.1)
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k-p

k+p-1

k-1

k-p-1k-2p

k-p

k-1

k-p-1

 k-2p-1k-p+1

  p-1

k-1

k-p-1

pp+1

 k-p

0

 p

1

 0

6

 4
0

Figure 7: The brane box configuration obtained form the C3/Zk singularity described in

the text. It corresponds to a k× 1 box model with trivial identifications of vertical sides and

identifications of the horizontal sides up to a shift of p boxes to the left.

with p an integer in the range 0 ≤ p ≤ k − 1. The representation 3 we have chosen

decomposes as R1⊕Rp⊕R−p−1. It is easy to check that the above procedure yields the

brane box diagram shown in figure 7. Starting from any box, a horizontal movement

to the right shifts the label by 1, so that the horizontal arrows give rise to the fields

ΦI,I+1. A vertical movement upwards shifts the label by p, so that vertical arrows

correspond to ΦI,I+p. And a diagonal movement downwards and to the left shifts the

label by −p− 1, so that diagonal fields correspond to ΦI,I−p−1.

The order of RA1 is k. For p 6= 0 the order of RA2 is k/`, where ` is the greatest

common divisor of k and p, ` = gcd(k, p). Our procedure above yields a rectangle

of k × k/` boxes with trivial identifications. Each box is repeated k/` times, so the

unit cell is smaller and has non-trivial identification of sides. In figure 7 we show a

choice of unit cell, which has trivial identifications of vertical sides and the horizontal

identification up to a shift of p boxes to the left. For k = 3, p = 1, we recover the Z3

example previously studied.

ii) As a last example consider the singularities of type C3/(Zk × Zk′), with the ac-

tion on C3 defined as in (2.13): 3 = R1,0
⊕
R0,1

⊕
R−1,−1. It is easy to realize that the

spectra of the gauge theories on D3 branes on these singularities can be obtained by D5

branes on a grid of k × k′ boxes, with trivial identifications of sides. One such grid is

shown in figure 8, where each box is labeled by its associated irreducible representation.

Horizontal movements to the right change the label by multiplication by R1,0, vertical

movements upwards correspond to multiplication by R0,1, and diagonal movements to

multiplication by R−1,−1. Since the order n1 of R1,0 in the set of irreducible represen-

tations is k, and the order n2 or R0,1 is k′ in this case the n1 × n2 rectangle coincides

with the unit cell.
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.95

k’-0, 1 1,k’-1 1,k-   k’- 1

k-1,1

k-1,00,0 1,0

0,1 1,1

Figure 8: The unit cell of a k × k′ box model with trivial identifications, as obtained from

a C3/(Zk × Zk′) singularity. The cell extends in plane 4-6.

4. T-duality: from the brane box to the singularity

4.1. Some simple examples

In this section we will explain the reason underlying the precise matching found above

between the spectra of brane box configurations and D3 branes on singularities. Specif-

ically, we argue that the relation is a T-duality between both kinds of constructions.

We will show how, starting from a brane box configuration and T-dualizing along 4 and

6, the geometry around the D3 branes in the dual is locally C3/Γ, with Γ an abelian

subgroup of SU(3). We also provide an explicit construction of the Γ corresponding to

a given brane box configuration.

The D5 branes will not play any relevant role in the T-duality relation between

the NS and NS’ branes and the singularity. For simplicity it is convenient to consider

the case in which the number of D5 branes in each box is the same. More general

configurations will be analyzed in Section 6

The T-duality transformation is quite analogous to that relating a set of k parallel

NS branes and an Ak−1 ALE space, so it is convenient to briefly review some of its

features. Consider a Type IIB configuration of k parallel NS branes extending along

012345, and let x4, x6 be compact coordinates. If N D5 branes are located along 012346

(wrapping the two-torus in 46) the configuration provides a realization of the SU(N)k

N = 2 elliptic models [23] on the D brane worldvolume. The T-duality considerations

in this case have already been explored in [7].

Performing a T-duality along 4,6, the D5 branes are mapped to D3 branes along

0123, sitting at a point in the T-dual coordinates, which we denote by 4′, 6′. The

duality along 4 is longitudinal to the k NS branes, and does not change them, while the

duality along 6 transforms them into k Kaluza-Klein (KK) monopoles. Thus, the space
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parametrized by 6′789 in the T-dual is a k-centered multi-Taub-NUT space, described

by the metric

ds2 =
V

4
d~r 2 +

V −1

4
(dx6′ + ~ω · d~r)2,

with V = 1 +
k∑
i=1

1

|~r − ~xi|
(4.1)

and ~∇ × ω = ~∇V . This is a fibration of an S1 (parametrized by x6′) over R3

(parametrized by ~r = (x7, x8, x9)), the fibers of which shrink to zero radius at the

k centers ~xi. The parameters in the original theory can be traced to the final con-

figuration. For example, the position of the k NS branes on 789 are mapped to the

positions of the k centers ~xi. An interesting remark in this respect is that, when all

such positions coincide in the brane box configuration, all the centers in the Taub-NUT

space coalesce at a point. For ~r very close to this point, the constant term in V in

equation (4.1) can be neglected, and the geometry is that of an ALE singularity. If in

the initial picture the D5 branes also sit at x7 = x8 = x9 = 0, the D3 branes will be lo-

cated at the singular point, and the physics of the gauge theory on their worldvolume is

controlled by the structure of the Ak−1 singularity. This provides the connection with

the description in [6, 13]. When the positions of the centers differ from each other,

the singularity is resolved and the number of factors in the gauge theory is reduced,

by Higgs breaking to diagonal subgroups.2 This is the same breaking that occurs in

the initial brane box configuration when the positions of the NS branes are slightly

changed.

It may seem that the positions of the NS branes on x6 have been lost in the T-

duality. However, as shown for instance in [24], they are actually encoded in the

singularity picture as integrals of the NS-NS two-form BNS over the non-trivial 2-cycles

of the Taub-NUT (or ALE) space. Such two-spheres, which we will denote by Σij are

obtained as the fibration of the S1 parametrized by x6′ over the segments joining the

centers ~xi and ~xj . A basis of k− 1 two-cycles is provided by Σi,i+1, for i = 1, . . . , k− 1.

So, the k − 1 independent quantities

ai =
∫

Σi,i+1

BNS . (4.2)

provide the k−1 independent distances between NS branes (more precisely, they provide

the ratios of such distances to the total length R6 of the x6 direction). There is also a

set of analogous parameters corresponding to

vi =
∫

Σi,i+1

BRR , (4.3)

where one is integrating the Ramond-Ramond two-form field over the basic two-cycles.

As discussed in [3], these correspond to the differences of Wilson lines along x4 of the

2Notice that here we are considering blow-ups of small size as compared with the Taub-NUT radius,

so that the approximation of the metric as an ALE space remains valid.
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world-volume U(1) gauge fields of the original k NS branes (more precisely, the ratios of

such differences to dual radius 1/R4). The parameters ai, vi define the gauge couplings

of the N = 2 gauge theory [13, 3], as also follows by particularizing equations (2.2),

(2.3) to this N = 2 case.

The Coulomb branch of the gauge theory in the singularity language is parametrized

by movements of the D3 branes in 4′5 keeping the coordinates in 6′789 fixed at the

singularity. As we have mentioned, there are Higgs branches which correspond to

resolving partially the singularity (these map to the removal of the corresponding NS

brane in the brane box picture). Finally, there is also a Higgs branch corresponding to

moving the D3 branes away from the singularity (this branch maps to recombining the

D5 branes and moving them away from the grid of NS and NS’ branes).

Thus we see how all the information of the brane box configuration is encoded in

the singularity, and viceversa. Since there are aspects of the gauge theory which are

easier to analyze in either of both pictures, we hope the dictionary we intend to develop

in the present work will also be useful in the understanding of general chiral N = 1

gauge theories.

The next example we would like to consider is a k × k′ box model, with trivial

identifications of the sides of the unit cell, as that shown in figure 8. Thus we start

with k NS branes along 012345 and k′ NS′ branes along 012367. We will consider

the case of having an equal number N of D5 branes with world-volume filling 012346.

After a T-duality along 4 and 6, the k NS branes are transformed into k KK monopoles,

realized as a non-trivial geometry in the coordinates 6′789. On the other hand the k′

NS′ branes become KK′ monopoles, corresponding to a nontrivial geometry in 4′589.

The resulting space in 4′,5,6′,7,8,9 is a non-compact Calabi-Yau threefold for which we

do not have an explicit metric. However, since it arises by the ‘superposition’ of multi-

Taub-NUT metrics, it is easy to uncover the relevant features which control the gauge

theory on the D3 brane probes. If we consider the regime where the positions on 789

of the NS branes are close to the origin in the initial configuration, it is clear that the

centers of the KK monopoles will lie close to the origin. The space contains a curve of

Ak−1 ALE singularities parametrized by 4′5 and roughly defined by x7 = x8 = x9 = 0.

Similarly, when the positions of the NS′ branes on 589 are close to the origin, the space

will contain a curve of Ak′−1 ALE singularities defined by x5 = x8 = x9 = 0, and

parametrized by 6′7. Both curves intersect at a point, where the singularity is worse

and has the local structure of C3/(Zk ×Zk′), with the generators θ, ω of Zk, Zk′ acting

on (z1, z2, z3) ∈ C3 as

θ : (z1, z2, z3) → (e2πi/kz1, z2, e
−2πi/kz3)

ω : (z1, z2, z3) → (z1, e
2πi/k′z2, e

−2πi/k′z3) . (4.4)

Here the complex coordinate z1 corresponds to x7, x6′ , the coordinate z2 refers to x5, x4′ ,

and z3 to x8, x9.
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The D3 branes will sit precisely at the singular point, so the structure of the sin-

gularity controls the properties of the N = 1 four-dimensional gauge theory. This

T-duality argument explains the result we obtained in Section ?? where we observed

that the theory on D3 branes on top of such singularity was the same as that obtained

in a k × k′ box model.

Finally, and for future convenience, let us notice that through this T-duality map,

the box located in the position (i, j) in the k×k′ box grid corresponds to the irreducible

representation Ri,j of Zk × Zk′. This is manifest from our example ii) of section ??,

and will be a useful way of labeling boxes in some arguments.

4.2. Models with non-trivial identifications

The only difficulty in extending the above arguments to a T-duality prescription for

a general brane box configuration is the possibility of identifications up to a shift. In

the following we show how to handle these cases. Consider a general brane box model,

which without loss of generality, we can take to be a k × k′ box model with trivial

identification of the vertical sides, and identification of horizontal sides with a shift of

p boxes to the left. Our aim is to use T-duality to relate this configuration to some

geometry (which admits a local description as C3/Γ) such that the gauge theory on D3

brane probes reproduces the initial one.

.9

k

k’

k k’

p

Figure 9: By adjoining several unit cells, we can define a larger rectangle whose sides have

trivial identifications.

In order to avoid the complications coming from the shifted identification, we can

adjoin several unit cells until we fill a rectangle for which the identifications of sides are
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trivial.3 Figure 9 shows a way of doing this. If we denote by ` the greatest common

divisor of k and p, ` = gcd(k, p), such a rectangle has k × kk′/` boxes. On it, the true

unit cell is repeated k/` times. However, it will be useful to consider a ‘parent’ model

where all the k × kk′/` boxes are considered independent. Our original model will be

obtained from this one after a Zk/` identification, given by a translation in the torus

by p boxes to the left and k′ boxes upwards.

The strategy we are to follow is first to T-dualize along 46, and then to impose

this identification in the resulting T-dual picture. The T-duality of the parent model

presents no difficulty since the sides of the rectangle have trivial identifications. The

T-dual theory is that of D3 branes sitting at a singularity locally of the form C3/(Zk×

Zkk′/`), with the generators θ, ω of Zk, Zkk′/` acting as

(z1, z2, z3) → (e2πi/kz1, z2, e
−2πi/kz3)

(z1, z2, z3) → (z1, e
2πi `

kk′ z2, e
−2πi `

kk′ z3) , (4.5)

with z1, z2, z3 defined as in the preceding subsection.

Since our original model had fewer different boxes than the parent model, the final

theory should correspond to D3 branes sitting at a less singular point. In order to

understand how this can be done, it is illuminating to momentarily consider a similar

problem in a N = 2 theory. Consider such theory realized as a k × 1 box model

with trivial identifications of sides, and perform a T-duality along 46. This yields,

as we know, D3 branes at a C2/Zk singularity with generator θ acting as (z1, z3) →

(e2πi/kz1, e
−2πi/kz3) (forgetting about x4, x5 which does not enter the argument in this

simpler case). But let us suppose we make a ‘mistake’ in the choice of the unit cell and

consider it to be a nk × 1 box rectangle, without noticing that each box is repeated n

times. So, if the nk boxes are considered different, we end up with a T-dual geometry

C2/Znk, with generator θ′ acting as (z1, z3) → (e2πi 1
nk z1, e

−2πi 1
nk z3). The question is

how we can correct our ‘mistake’, the Zn identification we had missed, once in the dual

picture. This is done by noticing that the true T-dual should correspond to C2/Γ with

3This process is the inverse of that in section 3, where starting from a rectangle with trivial

identifications we made a choice for the unit cell inside it.
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Γ a subgroup of Znk. In this case we have Γ = Znk/Zn≈ Zk with generator θ = θ′n.

This Zn action can be viewed as an order n automorphism on the extended Dynkin

diagram of Ank−1, a counter-clockwise rotation by n nodes. This action is actually

geometrically realized on the two-cycles that resolve the singularity.

A similar discussion applies to our N = 1 case. We had obtained a C3/(Zk ×

Zkk′/`) singularity, but the parent model contained an order k/` identification of boxes,

which we had not taken into account. The true singularity then must correspond to

Γ =(Zk×Zkk′/`)/Zk/`. The Zk/` is generated by θ−pωk
′

(as can be seen by noticing the

action relating two identified boxes in the original picture). The representation 3 that

defines the action of Γ on C3 is induced from the action of the parent singularity, in

the following way. One defines a surjective homomorphism from the set of irreducible

representations of the parent singularity to the set of irreducible representations RI of

Γ, such that R−p,k′ is mapped to the unity R0. Then Γ acts on C3 as dictated by the

image of 3 through this homomorphism. The resulting singularity is independent of

the particular homomorphism chosen, as long as it fulfills the mentioned condition.

The meaning of the above procedure is most clear when we recall from previous

sections that each box in the brane box configuration corresponds to one irreducible

representation of Γ. The fact that some boxes in the k × kk′/` rectangle are identical

means that some representations in Zk × Zkk′/` are to be considered identical. This is

accomplished by the homomorphism above, which essentially states that a movement

of p boxes to the left and k′ upwards takes one box to another copy of the same box.

4.3. Examples

To make the construction somewhat clearer, let us work out a few examples.

i) Let us start considering the 3× 1 box model with trivial vertical identifications,

and horizontal identifications up to a shift of one box to the left, as shown in figure 6.

Thus k = 3, k′ = 1, p = 1 and l = 1. The model can be understood as coming from

a parent 3 × 3 box model. The T-duality along 46 of such model is very simple, and

produces a set of D3 branes on top of a C3/(Z3 × Z3) singularity, with the generators

acting as in (4.5). In order to take into account the Z3 identifications of boxes to

transform the parent model into the true one, we must quotient Z3 × Z3 by the Z3

generated by θ−1ω. The three equivalence classes in the quotient are {1, θ2ω, θω2},

{θ, ω, θ2ω2}, and {θ2, θω, ω2}, and so the quotient group is Z3.

In order to find its action on C3 we have to relate the irreducible representations of

Z3 × Z3 with those of Z3. A homomorphism sending R2,1 to R0 is

{R0,0,R2,1,R1,2} → R0

{R1,0,R0,1,R2,2} → R1

{R2,0,R1,1,R0,2} → R2 (4.6)

(the only other choice, with R1 and R2 exchanged, leads to identical results). The

image of 3 =R1,0⊕R0,1⊕R−1,−1 under this map is 3 =R1⊕R1⊕R1, which defines the
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action of the final Z3 on C3. This completes the construction, showing that the initial

brane box model is T-dual to D3 branes at a C3/Z3 singularity.

ii) Let us consider a more general case as final example. Consider the brane box

model shown in figure 7, which consists of a k×1 box model with trivial identification of

vertical sides, and identifications of horizontal sides accompanied by a shift of p boxes

to the left. The parent model is given by a k × k/` box model (where ` is the greatest

common divisor of k and p, ` = gcd(k, p)), whose T-dual is a Zk×Zk/` singularity with

generators acting as in (4.5) (in this case k′ = 1). The order k/` identification is taken

into account by computing the quotient by the subgroup generated by θ−pω. There are

k equivalence classes, the ith of which has the elements θi(θ−pω)n for n = 0, . . . , k/l−1.

The final group is Γ = Zk.

Let us find the action on C3. A natural homomorphism (fulfilling the conditions

mentioned above) between the sets of irreducible representations is given by Ri−np,n →

Ri for n = 0, . . . , k/` − 1, and 0 = 1, . . . , k − 1. Under this map the representation

3 =R1,0⊕R0,1⊕R−1,−1 becomes R1⊕Rp⊕R−p−1. This defines the action of Zk on

C3. Notice that the T-duality argument provides in a constructive way the type of

singularity that we saw in section 3 reproduces the starting model.

It is time to revisit an open issue we had in our study of realization of field theories

using brane box configurations, in section 2. Namely, the fact that different brane

configuration can lead to the same field theory, the only difference being that e.g. the

horizontal fields in one appear as vertical or diagonal fields in the other. As we men-

tioned in section 3 all these brane configurations are reproduced by the same singularity

simply by changing the correspondence between complex planes in the singularity and

horizontal, vertical and diagonal fields in the brane box model. The T duality argu-

ment above improves our understanding of the situation. If we start with a singularity

C3/Γ, and wish to relate it to a brane box configuration, we have to perform T duality

along the U(1) orbits in two complex planes, say z1, z2. More precisely, by this we

mean first substituting the singularity by a manifold with the same local behaviour but

different asymptotics, so that the mentioned orbits have finite radius at infinity, and

the T dual configuration makes sense.4 The brane configuration that arises will be such

that the diagonal fields reproduce the fields ΦI,I⊕A3 (associated to the third complex

plane z3, i.e. precisely the non T-dualized one). The fields ΦI,I⊕A1, ΦI,I⊕A2 will map

to horizontal and vertical fields. These two latter possibilities are obviously related by

the exchange of the roles of NS and NS′ branes.

It is then clear that any of the three kinds of fields ΦI,I⊕Ai, i = 1, 2, 3, can be

taken to reproduce the diagonal fields in a T-dual brane box configuration, by merely

T-dualizing along the two other directions. This means that T dualities of the same

singularity along different directions reproduce the different brane boxes yielding the

same four-dimensional field theory. This is a nice result, since it points towards some

unifying description of all the brane box models yielding the same field theory.

4The situation is analogous to the relation of ALE and Taub-NUT metrics.
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4.4. T-duality of wrapped NS fivebranes

In our previous arguments showing the T-duality relation between the brane box con-

figurations and the D3 branes at singularities, the role played by the D branes is quite

trivial. We can consider removing them from the picture, and look at the result we have

obtained as a T-duality between certain grids of intersecting NS fivebranes wrapping

cycles in a torus, and certain non-compact Calabi-Yau threefold geometries. The latter

can be roughly described as singularities of the type C3/Γ with modified asymptotics

that make two of the coordinates (x4 and x6) compact at infinity.

Such grids have been described as infinite grids on the plane modded out by certain

translations, giving rise to identifications of the sides of some unit cell. When the

identifications are trivial, the NS fivebranes in the grid wrap cycles of type (1, 0) and

(0, 1) in the torus. When the identifications are non-trivial, the NS fivebranes wrap

more complicated cycles in the torus. It is interesting to translate the specific infinite

grids we have been studying to the cycles the fivebranes wrap when one effectively

restricts to the quotient torus.

One can always define the cycle wrapped by a particular kind of brane, say the NS′,

to be of type (1, 0). This amounts, in the language of infinite grids, to saying that one

can always choose a unit cell with trivial identifications of, say, vertical sides. So let us

consider the most general such configuration, by now familiar, consisting on a k × k′

box model with trivial identifications of vertical sides and identification of horizontal

sides accompanied by a shift of p boxes to the left. The picture corresponding to the

following explanations is depicted in figure 10 for a particular example.

The NS′ branes wrap a (1, 0) cycle which we denote by a. The dual cycle, of

type (0, 1) is denoted b, and is represented by a slanted line, closed due to the shifted

identification. The NS brane wraps a cycle c, represented as a set of vertical lines which

k

p

a
k’

c a c a c  a bc c

Figure 10: The unit cell in a model with k = 5`, p = 2`. The cycle of the torus wrapped

by the NS′ branes is the horizontal line labeled ‘a’. The cycle ‘c’ corresponding to the NS

branes wraps the vertical direction several times due to the shifted identifications (suggested

by the dotted lines). The cycle ‘b’, corresponding to the slanted line, is the dual to ‘a’.
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form a closed loop due to the shifted identifications (suggested by dotted lines). This

cycle can be expressed in terms of the basic homology cycles, c = na + mb. We can

determine the type (n,m) of the cycle c that the NS branes are wrapping by simply

looking at its intersection number with the basic cycles a and b, c · a = −m, c · b = n.

Recall that the intersection number of two cycles, c1 · c2, counts the number of their

intersection points, with ‘plus’ signs when the orientation defined by c1, c2 (in this

order) is positive, and ‘minus’ signs otherwise. Notice that a · b = 1. Due to the shifted

identification, a single NS brane corresponds to k/` vertical lines in the unit cell, where

` = gcd(k, p). Thus we have c · a = −k/`. Noticing that the vertical lines in the unit

cell have an equal spacing of ` boxes, we also have c · b = p/`. Thus, the NS branes

wrap cycles of type (p/`, k/`).

Other choices of the unit cell, for example one with trivial identification of vertical

sides, yield other labelings of the same cycles, but they are simply related by a SL(2, Z)

transformation on the complex structure of the torus.

As a simple example, we can consider the 3 × 1 box model depicted in figure 6.

The NS′ brane wraps a (1, 0) cycle, and the NS brane wraps a (1, 3) cycle. A pictorial

version of this model is shown in figure 11.

So our considerations in the preceding sections show how to perform T-duality in

the following type of configuration: two sets of fivebranes, one spanning 01235 and an

arbitrary cycle in a two-torus, another spanning 01237 and another arbitrary cycle in

the torus. After T-duality in the two directions of the torus, one obtains a certain

manifold which for many purposes can be approximated by a C3/Γ singularity. The

orbifold group Γ is determined from the grid of fivebranes by the recipe presented in

subsections 4.1, 4.2, i.e. from considerations concerning the four-dimensional theory on

D-brane probes of the configuration. This is an amusing aspect of the present study. By

looking at two different configurations which lead to four dimensional supersymmetric

gauge theories, one is led to these T-dual pairs. The methods presented here actually

demonstrate how, starting with one configuration, we can use four dimensional gauge

theories to calculate the T-dual partner.

Figure 11: A pictorial representation of a cycle of type (1, 3), which is wrapped by the NS

branes in the 3× 1 box model of figure 6.
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5. Gauge couplings and AdS/CFT correspondence

5.1. The marginal couplings

We have already mentioned in section 2 that the four-dimensional N = 1 gauge theories

we are considering have a certain number of marginal couplings; there is a manifold of

renormalization group fixed points in the space of couplings. In [3] it was shown that

one such marginal parameter existed for each independent horizontal row of boxes in

the brane box configuration, another for each independent vertical column of boxes,

and another for each independent line of boxes running diagonally from upper right to

lower left. Recall that the ‘vertical’ parameters were interpreted in the brane box model

as the independent distances between NS branes. Similarly, the ‘horizontal’ couplings

corresponded to the independent distances between NS′ branes. The interpretation of

the ‘diagonal’ parameters is less clear, even though they seem to be related to fields

living at the intersection of NS and NS′ branes. The overall coupling is determined by

the area of the torus parametrized by 4,6.

We would like to achieve some understanding of these field theory parameters in

the construction via branes at singularities. A quite general family of models where

we can study this issue is the field theories obtained as k × k′ box models with trivial

identifications of sides. These theories have one overall coupling, k−1 ‘vertical’ marginal

couplings, k′ − 1 ‘horizontal’ couplings, and r− 1 ‘diagonal’ ones, where r = gcd(k, k′)

as usual.

The singularity that reproduces this field theory in the world-volume of D3 brane

probes is C3/Zk × Zk′, with the generators θ, ω acting on C3 as in (2.13).

We would like to identify how these parameters are encoded in the singularity.

The overall coupling is given by the string coupling in the usual way. In order to

understand the remaining paremeters, it is useful at this point to recall the case of

the N = 2 SU(N)k theories. These models have k marginal couplings, interpreted as

one overall and k − 1 ‘vertical’ couplings in the brane box construction. These same

parameters are interpreted in the T-dual picture of D3 branes at an Ak−1 singularity

as the string coupling, and the k − 1 integrals ai, vi of the NS-NS and RR two-forms

over the two-cycles of the resolved ALE space, equations (4.2), (4.3). Since our N = 1

gauge theories have flat directions connecting them to N = 2 theories (by removing

either kind of NS fivebranes in the brane box picture), the parameters are expected

to be also encoded as integrals of two-forms over two-cycles implicit in the singularity.

So we should understand some basic features about the resolution of C3/(Zk × Zk′)

singularities.

Singular points in the quotient appear from points in C3 which are left invariant

under some element of the discrete group. We can distinguish several types of them.

First, there is the (complex) curve defined by z1 = z3 = 0, and parametrized by z2,

which is invariant under the Zk subgroup generated by θ. In the quotient it becomes

a curve of Ak−1 ALE singularities. This set of singularities is precisely the only one
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remaining when in the T-dual brane box model the NS′ branes are removed, and one

has Higgssed the theory to an N = 2 SU(N)k model. So, it is natural to associate

the k − 1 distances between NS branes (the only parameters that remain in this Higgs

branch) to the integrals of the two-form fields over the k−1 independent two-cycles that

resolve the singularity. Analogously, there is another curve defined by z2 = z3 = 0,

which is left fixed by the Zk′ subgroup generated by ω, and which becomes a curve

of Ak′−1 singularities in the quotient. The integrals of the two-form fields over the

corresponding two-cycles encode the distances between the NS′ branes, since these are

the only parameters remaining on the Higgs branch associated to the removal of the

NS branes in the brane box picture, which yields a SU(N)k
′
N = 2 field theory.

But there is more to the story. There is yet another curve of singularities. It

corresponds to z1 = z2 = 0, which is left invariant by a Zr subgroup (with r = gcd(k, k′),

as before), generated by θk/rω−k
′/r, whose action on C3 is

(z1, z2, z3)→ (e2πi/rz1, e
−2πi/rz2, z3) . (5.1)

This becomes a curve of Ar−1 singularities in the quotient. It is easy to see that the

field theory has a flat direction connecting it to a SU(N)r N = 2 gauge theory. This

breaking, however, is not manifest in the brane box construction5 and that is the main

reason the corresponding r − 1 parameters were not fully understood in the brane

box configuration. In the singularity language, however, the integral of the two-forms

over the two-cycles resolving the Ar−1 singularity are the natural candidates for the

remaining r−1 parameters. The symmetry between the three kinds of breaking toN =

2 in the field theory is manifest in the singularity picture as the symmetry between the

three complex planes in C3. This very nice result provides a geometrical understanding

of all the parameters in the gauge theory, and may help in their interpretation in the

brane box language.

We should be aware that the resolution of the singularity has not been completed

yet. The origin in C3 is left invariant by all the elements in Γ, and the corresponding

singularity in the quotient requires further blow-ups. Consequently, the integrals of

p-form fields over the resulting cycles seem to increase the number of parameters in the

model. However, there is no contradiction with the above statement that the model

contains k+k′+r−2 independent couplings. The complete space of couplings is certainly

larger, but in order to have a conformal theory, so that microscopic couplings exist, the

couplings must lie in a (k+k′+r−2)-dimensional manifold. It is quite a remarkable fact

that these independent parameters are precisely the integrals ai, vi of the two-forms

over the non-compact divisors (those resolving the curves of singularities, rather than

the singularity at the origin). The integrals over the remaining cycles are (possibly

complicated) functions of these, and do not provide new independent couplings.

5However, as in section 2, one can consider another brane box configuration yielding the same field

theory, and in which this Higgs branch is manifest.
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In the following section we use an argument based on the recent conjecture relat-

ing large N gauge theories to string theory on Anti de Sitter spaces to support our

identification of the marginal parameters.

Finally, we would like to stress that even though the agreement in the counting

of marginal couplings has been shown only for a certain class of models, namely when

Γ = Zk×Zk′, the argument also works for other Abelian quotient singularities. Actually,

there is a direct relation between closed lines of boxes in the brane box diagram, and

subgroups of Γ which leave invariant a complex curve in C3. It would also be nice to

extend these results to more general subgroups of SU(3).

5.2. The AdS/CFT correspondence

In this subsection we connect the discussion of the previous one with the recent conjec-

ture relating the large N limit of gauge theory to string theory on a certain background

[25, 26, 27, 28, 29]. The aim of the argument is to find out the number of marginal

operators of the four-dimensional N = 1 gauge theory. The theories on the world-

volume of D3 branes located at orbifold singularities C3/Γ were proposed in [12, 13]

(see also [14, 15, 17, 16]) as simple models to study gauge theories with reduced or with

no supersymmetry which were conformal, at least in the large N limit, by using the

connection with supergravity/string theory on the space AdS5 × S5/Γ. The basic re-

quirement for such Γ is that it should act only on S5, so that the nice property that the

group of isometries of the AdS space becomes the conformal symmetry on the bound-

ary (where, roughly, the gauge theory lives) is preserved. Within this class of theories,

the detailed correspondence between fields propagating on the AdS5 and operators on

the boundary, analyzed in [26, 29], carries over and can be applied directly. As in the

maximally supersymmetric case, the relation between the mass m of p-form field in

AdS5 and the conformal dimension ∆ of the operator it couples to in the boundary is

(∆ + p)(∆ + p− 4) = m2 . (5.2)

One can then hope to be able to compute the conformal dimensions of primary chiral

operators in the conformal theory by computing the Kaluza-Klein reduction of ten-

dimensional Type IIB supergravity on S5/Γ to find the masses of fields propagating

on AdS5, in parallel with the comparison made in [26] for the N = 4 case. In [30]

this computation was partially performed by taking the KK excitations on S5 and

performing a projection onto Γ-invariant states.

However we must stress that this procedure may not give the complete answer, since

it only takes into account the untwisted modes in the quotient. Any possible twisted

mode is completely missed by the supergravity approximation, and will be manifest

only when the full string theory on the orbifold is considered. This is a very interesting

issue, since it will provide indications of how the stringy modes enter the conjectures

relating gauge theory and string theory.

28



J
H
E
P
0
5
(
1
9
9
8
)
0
1
3

Twisted modes appear when S5/Γ contains singularities, the structure of which is

found by looking for fixed points of the action of Γ on S5. To this end it will be useful

to realize the S5 as the unit five-sphere in an auxiliary C3 parametrized by (z1, z2, z3)

|z1|
2 + |z2|

2 + |z3|
2 = 1 . (5.3)

The main observation, already made in [12], is that the elements of Γ whose only

fixed point is the origin of this C3, act freely on the S5, and do not induce singularities

in the quotient. The elements in Γ that leave fixed a complex curve in C3, however,

will induce singularities on the quotient S5/Γ. In our Γ = Zk ×Zk′ example the action

of Γ on this C3 is as in (2.13). The curve z1 = z3 = 0 of fixed points in C3 intersects

the unit five-sphere along the S1 given by |z2|2 = 1. This induces a real curve of Ak−1

singularities in the quotient S5/Γ. Analogously, there is another S1, given by |z1|2 = 1,

of Ak′−1 singularities, and another S1, |z3|2 = 1, of Ar−1 singularities. These real curves

are disjoint on the S5, so there are no further singularities.

Even though the supergravity description is not valid, these singularities are harm-

less in the full string theory, and there are some states appearing as twisted sectors. The

massless twisted fields at each of these Zn orbifold singularities will be those appearing

in Type IIB compactification on An−1 ALE spaces. Namely, there will be (n− 1) sets

of fields, each containing a two-form and five scalars. The self-dual two-forms appear

from the integral of the Type IIB four-form over each of the n − 1 two-cycles in the

resolution of the singularity, two of the scalars from the integrals of the RR and NS-NS

two-forms over the two-cycles, and the remaining three scalars from the positions of

the corresponding centers in the ALE metric. From the three kinds of singularities, we

get (k−1)+(k′−1)+(r−1) sets of such fields. These fields are massless and propagate

in AdS5 × S1, where S1 is the corresponding circle of singularities. So one obtains a

tower of states propagating on AdS5, associated to the Kaluza-Klein reduction of these

six-dimensional fields on the S1. It would be interesting to match the masses of these

modes with the conformal dimensions of certain operators on the boundary theory. We

will do so for the massless scalar modes in AdS5 operators, leaving the general question

for future research.

Let us first discuss the complex scalars coming from the integrals of the B-fields over

the collapsed two-cycles. These are massless scalar fields, so from (5.2) we see they must

couple to marginal operators in the conformal field theory. We had already counted and

identified them. They are given by
∑
i trF

2
i , where the sum runs over the group factors

associated to boxes forming independent horizontal, vertical and diagonal lines in the

corresponding brane box diagram. Their number is thus (k − 1) + (k′ − 1) + (r − 1),

precisely the number of massless scalars of the type mentioned. From our analysis

of branes at singularities in the previous section, we also infer that the appropriate

couplings between the bulk fields and the boundary operators exist, i.e. the fields play

the role of coupling constants for the gauge theory.

It is thus a fortunate circumstance that there are no further singularities on S5/Γ.

Otherwise the integrals of p-forms over the new cycles would have provided further
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massless scalar fields propagating on AdS5. This would require the theory to have

more marginal couplings, a fact which is not found in the field theory analysis. The

argument above thus provides supporting evidence for our counting and identification

of the independent parameters in the gauge theory. Even though the AdS argument is

only valid for large N , our identification of the parameters with the integrals of B-fields

in section ?? was mainly based on field theory properties valid for all N (namely, Higgs

branches breaking to N = 2).

As for the three remaining scalar modes, we see that in the N = 2 case they

transform as a triplet of SU(2)R. So they couple to the D-terms of the gauge theory.

For the N = 1 theories, these modes couple to whatever operators become the D-terms

after the appropriate breaking to N = 2.

We finish this section with some side comments our study of orbifold theories sug-

gests.

The analysis of marginal couplings in N = 2 theories is simple, and can be extended

to non-abelian discrete groups Γ as well. In all the quotients S5/Γ, with Γ and ADE

subgroup of SU(2), there will be singularities and twisted sectors. The number of

two-cycles in the resolution of the singularity is given by the number of nodes in the

corresponding Dynkin diagram. This is also the number of factors in the gauge group,

and thus also the number of marginal coupling of the theory (not counting the overall

coupling). So again the twisted sector modes are the appropriate fields in AdS to

account for certain operators in the gauge theory.

Once these techniques have shown the geometrical features in the AdS picture

that underlie the existence of marginal couplings in the gauge theory, we can use such

knowledge and apply it even to non-supersymmetric models in the large N limit. It is

known [12, 13] that non-supersymmetric theories obtained from D3 branes on top of

a R6/Γ singularity (with Γ a generic subgroup of SU(4)) have at least one marginal

coupling, which corresponds to the massless dilaton in the AdS. Now we see that if Γ

has (real) curves of fixed points on the S5, yielding ALE singularities in the quotient,

the non-supersymmetric theories will have new marginal operators in the large N limit.

As an example consider a Z10 singularity, with generator θ acting on the R-symmetry

quantum numbers of the fermions (in the 4 of SU(4)R) through the representation

4 = R1 ⊕R1 ⊕R2 ⊕R−4. (5.4)

The action on the R-symmetry representation 6 of the bosons is

6 = R2 ⊕R−2 ⊕R3 ⊕R−3 ⊕R3 ⊕R−3 . (5.5)

The only singularity in S5/Γ comes from the fixed points of θ5, and that it is of A1

type. Thus we expect this non-supersymmetric theory to have two marginal couplings.

It should not be difficult to construct further examples along this line.
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5.3. Strong coupling limits in the gauge theory

One of the interesting points about the identification of parameters we have carried

out is that it allows for the comparison of some dynamical field theory phenomena in

the brane box and the singularity pictures. As an example, we briefly comment on

the limit in which some of the independent parameters in the theory go to zero.6 It is

important to note that the following discussion is valid only to finite gauge theories.

For such models, the branes are not bent and the position of the NS branes are good

parameters.

Limits with vanishing parameters are obtained in the brane box picture by letting

several, say n, NS branes coalesce. This corresponds to setting to zero n of the ‘vertical’

parameters, and is associated to a strong coupling limit for some of the gauge factors.

The most relevant feature of this limit is the appearance of a six-dimensional U(n) gauge

symmetry in the world-volume of the NS branes.7 This is interpreted as an enhanced

global symmetry from the point of view of the four-dimensional gauge theory.

One can recover this behaviour in the singularity picture by explicit mapping (via

T-duality) of the parameters involved. We have mentioned that the distance between

NS branes (and the corresponding Wilson line degrees of freedom) are mapped to the

integrals of the Type IIB two-forms over two-cycles implicit in the Ak−1 singularity.

The strong coupling limit we have discussed corresponds to setting these B-fields to

zero. In this regime, D3 branes wrapping the two-cycles give rise to tensionless strings.

Notice that one of the six dimensions in which this theory lives, x6 is compact, and

T-dualizing along it we recover the picture of gauge symmetry enhancement we had in

the brane box construction.

The picture of the strong coupling limit in the singularity language can be trans-

lated to the AdS picture without much change, using the information we obtained in

section ??. In such a strong coupling limit, tensionless strings appear propagating on

AdS5 × S1. The modes propagating on AdS5 are obtained by mode expansion on the

‘internal’ S1. The massless modes in AdS5 are a multiplet of U(n) gauge bosons, which

arise from the tensionless string wrapping the S1. The gauge symmetry in the bulk

is interpreted as a global symmetry on the boundary field theory; the massless fields

couple to the corresponding conserved currents on the boundary.

This example illustrates how the T-duality we have established may help in under-

standing other constructions. Without the intuition provided by the brane box con-

figurations, the enhanced global symmetry observed from the AdS5 argument would

have been harder to interpret. On the other hand, the singularity picture may help in

6We are thankful to M. J. Strassler for discussions on the following arguments.
7To be precise, in order to get this enhanced symmetry one should also tune the Wilson lines of

the world-volume gauge fields along x4. Thus the enhanced symmetry locus is reached upon tuning n

complex parameters. There are additional parameters corresponding to 89 positions of the NS branes

but they are set to zero in a typical construction.
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understanding some interesting regimes not so intuitive in the brane box picture. For

example, those related to setting to zero some diagonal parameters.

6. Non-conformal theories

In this section we explore the singularity picture corresponding to brane box models

with different number of D5 branes in each box. The basic ingredients – fractional

branes – that enter the definition of the corresponding configurations of branes at

singularities have appeared mainly in the context of D0 branes and M(atrix) theory

[31, 32, 33], without any reference to configurations of intersecting branes. We will

argue these type of objects provide the T-dual of the brane box configurations with

non-constant number of D5 branes. Such relation was explored in [7] for the case of

N = 2 theories. Other related issues in models with N = 1 supersymmetry were

discussed in [34].

6.1. Fractional branes

The first relevant observation is that the T duality relation between the grid of five-

branes and the singularity does not depend on the distribution of D branes, so the recipe

of sections 3 and 4, that relates a given grid to a given singularity (and viceversa), re-

mains valid. Thus, starting with a given brane box configuration we can determine the

orbifold group Γ of the singularity picture. We also know how to associate each box

with an irreducible representation of Γ. In the following it will be convenient to label

the boxes by their corresponding irreducible representation.

The information about the number nI of D5 branes in the box labeled RI is encoded

in the singularity picture in how the orbifold group acts on the Chan-Paton indices of

the T-dual D3 branes. If ntot denotes the total number of D5 branes in the brane box

configuration, ntot =
∑
I nI , the T-dual configuration can be described as an orbifold

of C3 with ntot D3 branes in the covering space. Here the counting includes all the

copies under the orbifold action, if present. The action of Γ on the Chan-Paton factors

is defined by a ntot-dimensional representation. The adequate choice to reproduce the

spectrum in the brane box configuration is

RC.P. =
⊕
I

nIRI , (6.1)

as we will show below. Observe that when the number of D5 branes on each box is

the same, say N , this representation consists of N copies of the regular representation

RΓ ≡
⊕

I RI , as should be the case.

The spectrum is determined following the rules in [13]. It is easy to see that it

reproduces the spectrum of the field theory obtained in the brane box picture. The

gauge group is
∏
I SU(nI). There are three kinds of chiral multiplets for each I, whose

gauge quantum numbers are determined by computing the tensor products 3 ⊗ RI .
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There are fields, which we denote by ΦI,I⊕A1, transforming in the ( , ) of SU(nI) ×

SU(nI⊕A1). Similarly, the fields ΦI,I⊕A2 transform in the ( , ) of SU(nI)×SU(nI⊕A2),

and ΦI,I⊕A3 transform in the ( , ) of SU(nI)×SU(nI⊕A3). Here it is understood that

if some nI vanishes the corresponding group, and the chiral multiplets charged under

it, are not present.

The basic building block of these configurations are, in the brane box picture, models

with one D5 branes in one box (say, labeled RI) and zero in the rest.8 Correspondingly,

there are some basic configurations in the singularity picture, which correspond to a

choice of Chan-Paton factors in the representation RC.P. = RI (notice that ntot = 1

in these configurations). The D-brane described by these Chan-Paton factors is called

a ‘fractional brane’. There are different kinds of these objects, each one being charac-

terized by the representation RI of its Chan-Paton factors. Their name is due to the

observation that a combination of such branes, one for each irreducible representation

of Γ, has Chan-Paton factors RC.P. =
⊕

I RI ≡ RΓ and has the interpretation of a

(whole) D3-brane in the quotient.

From the rules above, one can determine the world-volume field theory of such

configuration.9 It has no flat directions, and so the branes are stuck at the singular

point. This can also be understood by noticing that in the flat cover C3 of the orbifold

we have only one D3 brane, and the only Γ-invariant configurations corresponds to

placing it at the origin. This last argument makes it clear that models with several

fractional branes may allow for Γ-invariant configurations with branes away from the

origin. In the quotient, the corresponding brane will be able to move away from the

singularity. The clearest example is having one fractional brane of each kind, RC.P. =⊕
I RI ≡ RΓ, which defines a brane that can move freely in the quotient space C3/Γ.

The world-volume field theory contains the appropriate Higgs branches. Actually, these

are clearly visible in the brane box construction. The configuration has one D5 brane

in each box, so that they can recombine and leave the grid of NS and NS’ along x5,

x7, x8, x9 (additional moduli are provided by the Wilson lines around 4 and 6 of the

worldvolume gauge fields). These are the types of objects we have been considering in

previous subsections.

In some cases, which will be our main interest in forthcoming considerations, there

may be certain combinations of the basic fractional branes which are allowed to move

away on a submanifold of C3/Γ. This type of motion will occur when, in the brane box

configurations, we have the same number of D5 branes in each box belonging to e.g. a

given horizontal row. In such case, the D5 branes in the row can recombine and move

away along x7, stretched between NS’ branes. To make the discussion of the singularity

8These configurations violate the restrictions on the numbers of D5 branes derived in [4]. Since

for the moment we are treating these configurations merely as building blocks, we will ignore this

difficulty.
9For simplicity we will discuss in the classical limit, where even a single such brane is dynamical, its

world-volume U(1) gauge group not being frozen. The discussion extends straightforwardly to other

configurations.
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picture clearer, we can consider a k × k′ box model with trivial identifications, even

though the conclusions hold in other cases as well. The configuration with one D5 brane

in the boxes belonging to the jth row is mapped to a set of fractional branes defined

by RC.P. =
⊕
iRi,j . The flat direction in the worldvolume field theory implies that this

set of fractional branes is allowed to move along the curve of Ak′−1 singularities in the

quotient, but not away from it.

There exists an analogous set of fractional branes defined by RC.P. =
⊕
jRi,j, which

is T-dual to a configuration with one D5 brane in the boxes belonging to the ith column,

and zero in the others. There is a flat direction in the field theory which allows the

D5 branes in the box model to recombine and move away along x5. This is mapped to

moving the set of fractional D3 branes along the curve of Ak−1 singularities.

Finally, there is a set of fractional branes given by RC.P. =
⊕
l=1Ri+l,j+l, which is

T-dual to a brane box configuration with one D5 brane in all boxes on the diagonal

of the box (i, j). Even though it is not obvious in the brane box construction, the

field theory contains a flat direction, which corresponds to moving the set of D3 branes

along the Ar−1 curve.

A geometric interpretation of the fractional branes has been proposed in [35, 31, 10],

as higher dimensional branes (or bound states thereof) which are wrapping the cycles

which are implicit in the singularity of the orbifold. For example, in the case of An−1

ALE singularities, the (n − 1) basic kinds of fractional branes (labeled by Ri, for

i = 1, . . . , n − 1)) can be understood as some sort of D5 branes wrapping the (n −

1) independent two-cycles Σi,i+1 which resolve the singularity. The fractional brane

corresponding to R0 is associated to the cycle represented by the affine node in the

extended Dynkin diagram (this cycle is, homologically, minus the sum of all the rest).

The homology relation between the n cycles explains the fact that a set of n fractional

branes represents a whole D3 brane in the quotient, which wraps no cycle.

The main reason for this interpretation is the fact that a fractional brane couples to

the closed string modulus which controls the blow-up parameters of the corresponding

two-cycle. This analysis has been partially extended to the case of C3/Γ singularities

[10], where the fractional branes are understood as D5 and D7 branes wrapping the

two- and four-cycles implicit in the singularity. However, as far as we know there is no

systematic way of associating a given irreducible representation with a given cycle. It

would be interesting to develop such geometrical interpretation, but we will not pursue

this issue in the present work. Rather, in the following subsection we will center on a

(quite large) family of models for which such geometric interpretation is simple.

6.2. ‘Sewing’ N = 2 models

The construction of the models we are to consider is as follows. We start with any

desired grid of NS and NS’ branes, with equal number N of D5 branes. For concreteness

we will speak in terms of a k × k′ box model with trivial identifications, but the

construction is possible in the general case. In the singularity picture, we have Γ =
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Figure 12: ‘Sewing’ N = 2 models: A large family of theories can be obtained by adding

together models formed by whole rows, columns and diagonal lines of boxes. Here the numbers

denote the number of D5 branes in the box.

Zk × Zk′, and RC.P. = N
⊕
i,jRi,j The construction proceeds in three steps, which are

depicted in figure 12 for a 3× 3 case (with trivial identifications).

The first step is to add Ni branes to each of the boxes belonging to the ith column

in the grid (i = 1, . . . , k − 1).10 Ni is kept constant within a column, but varies from

one column to another. In the singularity picture, we have added some fractional D3

branes, which are described by RC.P. =
⊕
i,j NiRi,j . The worldvolume field theory has

flat directions which, in the brane box picture, correspond to moving whole columns

of D5 branes along x5, or in the singularity picture, to moving sets of fractional branes

along the curve of Ak−1 singularities. The configuration of D branes in the singularity

is geometrically interpreted as having Ni D5 branes wrapping the ith two-cycle in the

resolution of the Ak−1 singularity, and N D3 branes free to move in the bulk.

The second step is adding Mj D5 branes to the boxes belonging to the jth row.

In the singularity picture, the new fractional branes we have added have Chan-Paton

factors RC.P. =
⊕
i,jMjRi,j . The geometric interpretation of this set in the singularity

picture is having Mj D5 branes wrapping the jth two-cycle in the resolution of the

Ak−1 singularity. These add to the brane we had before. There are two kinds of flat

directions, moving either whole rows along x7, or whole columns along x5. They are

mapped to the independent motions of each kind of fractional brane along the curves

of Ak′−1 and Ak−1 singularities.

An interesting feature of the models we have obtained after these two steps is that

they provide the most general solution to the constraints derived in [4]. These were

obtained by considerations on the bending of the NS fivebranes in the brane box model.

They state that the numbers ni,j of D5 branes at the box in the position i, j have to

fulfill the “sum of diagonals rule”, equation (2.4),

ni,j + ni+1,j+i = ni,j+1 + ni+1,j , (6.2)

for all i, j. The most general solution to these conditions can be written as

ni,j = ni,0 + n0,j − n0,0 . (6.3)

10Notice that it is redundant to allow for N0 D5 branes along the 0th column, since one could

reabsorb this in a redefinition of N and the Ni’s. A similar comment applies in the following steps of

the construction.
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Equation (6.2) is a simple difference equation and the solution (6.3) is obtained by a

double summation over the indices i and j. Defining Ni = ni,0− n0,0, Mj = n0,j − n0,0,

and N = n0,0, we can recast (6.3) as

ni,j = N +Ni +Mj . (6.4)

This is precisely the structure of our models, where the number of D5 branes in a box

is controlled by the row and column it belongs to.

The claim in [4] is that these are the most general gauge theories that can be realized

in the brane box setup. However, notice that in the singularity picture there is a further

curve of singularities, around whose two-cycles we can wrap some fractional branes.

This is a possibility suggested by the symmetry of the three curves of singularities, and

the corresponding models are constructed by the following third step.

The third step is to add La D5 branes to each box belonging to a certain diagonal

line of boxes, a = 1, . . . , r. In the singularity picture this corresponds to adding D

branes with Chan-Paton factors given by RC.P. =
⊕
i,j La(i,j)Ri,j, where a(i, j) denotes

the label of the diagonal passing through the box in the position (i, j). The geometrical

picture is to add La D5 branes wrapping the ath two-cycle in the Ar−1 singularity. The

field theory contains some new flat directions, which are mapped to the motion of these

fractional branes along the curve of Ar−1 singularities.

The theories thus constructed satisfy automatically the condition of anomaly can-

cellation. This can be checked by noticing that at each step in the construction we add

vector-like flavours to the gauge factors. However, we would like to point out that the

family of models we have just constructed is not the most general one consistent with

anomaly cancellation. Consider for example a 3 × 3 box model with n D5 branes in

one box and zero in the others. This anomaly-free configuration does not belong to the

class described above.

Nevertheless, we think the family we have constructed is a fairly large class of

models, that it includes the most general solution to the constraints in [4], and also

that some nice features of the field theories, to be mentioned in what follows, may allow

for a study beyond the classical (zero string coupling) approximation.

6.3. The one-loop beta function

One of the simple features of this family of theories is the expression for the one-loop

β function of the gauge factors. Let us compute it first from the field theory point of

view. Recall the one-loop β function for a N = 1 SU(Nc) theory with Nf (vector-like)

flavours is proportional to b0 = 3Nc −Nf .

In the initial configuration, all gauge groups have three flavours, and the one-loop

β function vanishes. After the first step, the group in the box (i, j) has increased its

rank in Ni units, and its number of flavours increases by Ni−1 + Ni + Ni+1, so the b0

coefficient changes by

∆1b0 = 2Ni −Ni−1 −Ni+1 . (6.5)
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Observe this is the β function of a N = 2 SU(Ni) theory with Ni−1 +Ni+1 fundamental

hypermultiplets. This theory is actually realized along a flat direction of the N = 1

theory.

Similarly, after the second step, the group in the box at position (i, j) has increased

its number of colours in Mj units, and its number of flavours by Mj + Mj−1 + Mj+1.

The corresponding change in the one-loop β function is

∆2b0 = 2Mj −Mj−1 −Mj+1 . (6.6)

Similarly, after the third step, the β function of the group changes by an amount

∆3b0 = 2La − La−1 − La+1 , (6.7)

where a labels the diagonal line passing through the box (i, j).

The complete beta function is proportional to the sum of the three contributions

(6.5), (6.6), (6.7). The “sewing” of the three N = 2 theories is quite manifest in the

structure of the beta function, and suggests it could also be understood in the brane

pictures.

Let us start the discussion in the brane box configurations. After the first step in

the construction, the contribution ∆1 to the one-loop β function can be understood by

studying the bending of the NS branes, since the NS′ branes do not bend. As in [23]

the dependence of the distance between NS branes with some energy scale (in our case,

the vev parametrizing the Higgs branch (which is the Coulomb branch in the N = 2

theory)) is proportional to ∆1. We stress that it is actually naive to assume that the

dependence of the gauge coupling with the scale is linear, as the fact that there is

only one direction in the NS transverse to the D5 branes seems to suggest. The Higgs

branch is parametrized by the coordinate x5, and also by the Wilson lines of the D5

brane world-volume U(1)’s along x4. Thus, the gauge coupling depends on these two

coordinates, and actually obeys a two-dimensional Laplace equation, with logarithmic

solutions. This, of course, is more intuitive in a T-dual picture where the coordinate

corresponding to the Wilson lines is a distance. This is achieved by T dualizing along

x4, and recovering the type IIA configurations of [23].

It is now clear that the bending of the NS′ branes takes into account, in a similar

way, the contribution ∆2 to the one-loop β function. The complete answer, as computed

from field theory, is given by adding these contributions. For the moment we lack a

complete understanding of how this is accomplished in the brane picture, in particular

because the two N = 2 sub-theories have logarithmic dependence on different Higgs

branches. We will assume this to be true, on the basis of simplicity, and symmetry

between NS and NS′ branes.

Following these lines, it is clear that the third contribution, ∆3, should be repro-

duced by some dynamics controlling the diagonal parameters. As we have mentioned,

the nature of these is not clear in the brane box picture. Also, the adequate vevs which

parametrize the relevant Higgs branch are not manifest. Thus, any improvement on
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the understanding of the models after step 3 requires some further knowledge about

these important issues.

Let us reproduce these results in the singularity picture. After the second step in the

construction, we have a set of fractional branes which can move along the curve of Ak−1

singularities. The coordinates in this curve parametrize the Higgs branch of the N = 1

theory, or the Coulomb branch in the corresponding N = 2 theory, and provide the

appropriate energy scale on which the gauge couplings depend. As we have explained,

the gauge coupling for the group arising from the ith column of boxes is encoded in

the integral of the Type IIB two-forms over the ith two-cycles implicit in the Ak−1

singularity. This field varies over the two real dimensional Coulomb branch, and has

sources corresponding to the fractional branes wrapped around the cycles intersecting

the ith two-cycle. These sources are then the Ni−1 fractional branes wrapping the

(i− 1)th two-cycle, the Ni+1 wrapping the (i + 1)th, and also the Ni wrapping the ith.

They are sources of charge 1, 1 and −2, respectively, as corresponds to the intersection

numbers of the cycles. The gauge coupling thus has a logarithmic dependence with the

parameter in the two dimensional flat direction, proportional to 2Ni −Ni−1 −Ni+1.

We can argue in a similar way that after the second step in the construction, the

contribution ∆2 to the one-loop β function is explained by the evolution of the gauge

coupling along the Higgs branch parametrized by the positions of the fractional branes

on the curve of Ak′−1 singularities. Finally, since in the singularity picture the diagonal

parameters are manifest, one can also understand the contribution ∆3 that appears

in the final theories, after step 3. It appears as the dependence of the gauge coupling

with the moduli parametrizing the curve of Ar−1 singularities. The symmetry among

the three types of contributions is once again manifest in the singularity picture, and

suggest the complete contribution should be the sum of all three, as found in the field

theory computation.

Thus we see that this class of models allows for a nice understanding of the one-

loop β function in terms of several ingredients entering the realization using brane

box constructions or branes at singularities. One very interesting direction of future

research would be to exploit their N = 2 structure to extract exact results. It would

also be desirable to understand the one-loop β function in other anomaly-free models

not belonging to this class.

7. Final comments

In this paper we have studied the T-duality relation between two brane realizations of

four dimensional N = 1 chiral gauge theories. In the absence of D branes, the map

is to be understood as T-duality between certain grids of intersecting NS fivebranes

and certain Calabi-Yau threefold geometries, related to C3/Γ singularities. The D-

branes can be interpreted as probes of these configurations. We have shown that the
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simplest way to argue for this T-duality map is the study and comparison of the four-

dimensional N = 1 gauge theories that appear in the world-volume of these probes.

Using these theories as guideline we have provided systematic recipes to compute the

T-dual picture of a given one.

A satisfying result is that the T-duality relates the two known constructions of

N = 1 finite theories, namely the brane box models and the D3 branes at singularities.

These theories have a number of marginal couplings. We have centered our interest in

giving them a geometrical interpretation. The T-duality map has proved useful in the

understanding the complete set of parameters. ‘Diagonal’ parameters are not obviously

realized in the brane box setup, but appear manifestly in the T-dual singularity picture.

Hopefully, this line of thought can lead to their appropriate interpretation in the brane

box picture. Another issue where the T-duality has shown its usefulness is in relating

the different brane box configurations that give rise to the same field theory.

An interesting point in our research has been the AdS realization of the large N

limit of these N = 1 theories. We have argued that the marginal operators in the

field theory are correctly reproduced by stringy twisted sectors of the S5/Γ orbifold.

An interesting feature of these fields is that they propagate on a six dimensional space

AdS5 × S1, instead of having a ten-dimensional origin. It is an open question how to

treat the Kaluza-Klein tower of states. A possibility is studying Type IIB supergravity

on smooth ALE spaces (times a circle) in presence of the RR four-form background. A

more practical point of view, along the lines of [36], would be to use the appropriate

N = 4, 2 five-dimensional gauged supergravity.

Finally, we have shown how the T-duality extends to theories which are not con-

formal. These theories are easily realized in the brane box picture, placing different

numbers of D5 branes on each box. We have argued that these configurations map

to fractional branes generically stuck at the singularity. We have also shown how to

determine the Chan-Paton matrices for these D3 brane, for a given a brane box config-

uration. An interesting point is that anomaly cancellation in the field theory imposes

some restrictions on the possible Chan-Paton matrices. Presumably, the anomaly can-

cellation follows from some consistency condition on the construction of the orbifold.

We have also presented a quite large family of anomaly-free models, obtained by

“sewing” together several N = 2 models. A subset of this theories provides the most

general solution to the “sum of diagonals” rule, but the complete family is more general,

violating that condition in many cases. However the construction in the singularity

picture is very symmetric and suggests the consistency of these configurations even at

the quantum level.

Even though these theories are N = 1 supersymmetric, there are Higgs branches

along which N = 2 is restored. The theories have a very simple one-loop β function,

which we have (partially) explained in terms of the brane pictures.
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