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1. Introduction

Configurations of branes have provided a useful tool for analysing non-perturbative

properties of supersymmetric gauge theories in various dimensions. The problem of

constructing general N = 1 chiral gauge theories in four dimensions and of studying

related problems, such as dynamical supersymmetry breaking, is still open.

In the spirit of the construction that was initiated in [1], there are currently three

different ways to construct chiral gauge theories. In [2], chiral symmetry was found

at special points in the brane realization of N = 1 supersymmetric QCD. This led

to a localization of chiral matter in space, which was done in [3], but produced only

non-chiral theories. In this approach, more general constructions lead to chiral theories

[4, 5, 6]. Another construction was made in [7], using the four-dimensional version of

the theory in [1] sitting at an orbifold singularity. In this way, the theory SU(N)k

with gauge factors and chiral matter associated respectively with the nodes and the

links of the extended Dynkin diagram for Ak−1 was realized. The theory is chiral in

the sense that each one of the bi-fundamentals connecting neighbouring factors is a

chiral representation of both the gauge groups under which it is charged. However,

each SU(N) factor contains the same number of fundamental and anti-fundamental

representations. More general theories containing tensor representations for the various
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groups were obtained in [8] by introducing orientifold planes in the picture. The theories

that can be obtained in this way are the N = 1 relatives of the theories classified in [9]

(see also [10, 11, 12] for generalizations).

In this paper we would like to report on a third approach to construct chiral gauge

theories in this spirit. Following an approach used in [13] (see also [14] ) to study

six-dimensional theories, we will consider a T-dual version of these theories, which

allows more flexibility in building models. The construction of particular models with

tensor representations exists in the literature (see, for example, [8, 4, 5, 6]. ), but

since a unified picture in which we can realize a larger class of models is still missing,

we show in this note how to realize a big number of chiral models, leaving for future

work the more detailed analysis of their dynamical properties. We will discuss what

kind of superpotential is naturally present in the brane picture. We will obtain the

matter content and the superpotential of several models, which are supposed to break

supersymmetry.1

The three approaches to the construction of chiral gauge theories are presumably

related by a sequence of T- and S-dualities. Below, we describe a T-duality between

the second and the third. It will be interesting to check the precise relation and to

learn more on these constructions by following the duality transformations.

We will use a mechanism proposed in [7], which is quite general. Start with a

D-brane realization of an N = 2 (minimal) supersymmetric gauge theory in five di-

mensions. We can obtain such a five-dimensional theory in several ways, using, for

example, D4-branes at orbifold singularities [9] in Type IIA, or webs of (p, q) five-

branes in Type IIB [16]. The introduction of NS-branes, which limit the world-volume

of the D-branes in the fifth direction, following the proposal in [1], induces a KK re-

duction to four dimensions, projects out the fields that correspond to motion in the

directions transverse to the NS-brane and generally further breaks N = 2 to N = 1.

For the Type IIA picture (D4-branes at orbifold singularities), the hypermultiplet mat-

ter content of the N = 2 theory usually parametrizes the fluctuations of the D-branes

in four spacetime directions. If the world-volume of the NS-branes is carefully chosen

so as to freeze two of these four directions, the N = 2 hypermultiplet is projected out

to an N = 1 chiral multiplet. We will consider the Type IIB realization in this paper.

There are several papers [8, 4, 5, 6] that deal with the brane construction for chiral

theories. Some of the models in these papers can be connected to our construction by

an explicit T-duality. One of the advantages of the realization presented in this paper

is its simplicity and the possibility of obtaining a very large class of models using a

unified construction. Classical flat directions are easily studied in this approach, as in

[1], and may be helpful in cases where the field theory analysis gets complicated.

1For a recent paper dealing with the issue of supersymmetry breaking in non-chiral models con-

structed with branes, see [15].
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2. Building blocks for chiral theories

A convenient way to realize an N = 1 chiral gauge theory is to start with a five-

dimensional minimally supersymmetric N = 2 theory, constructed with a web of five-

branes in Type IIB [16], and to project down toN = 1 in four dimensions by introducing

two extra five-branes that act as boundaries in the fifth direction.2 The previous

statement is quite unrigorous. If we try to apply the set-up of [1] in five dimensions,

we immediately realize that an NS-brane, having the same number of dimensions as

a D5-brane, cannot behave as a rigid boundary that would absorb the RR charge of

the D5-branes. When a D5 and an NS-brane touch [16], they merge in a (1, 1) brane,

which extends in a direction dictated by supersymmetry. Therefore, the general system

is realized with (p, q) five-branes that intersect in such a way as to preserve charge and

with angles dictated by supersymmetry [16]. We can determine the branes that, in

the spirit of [1], act as boundaries by looking at the behaviour of the system at spatial

infinity. The introduction of two extra five-branes to break supersymmetry down to

N = 1 further complicates the construction. To simplify the description of the model

and the determination of the gauge and matter content, we will work in this section with

zero string coupling, gs = 0 and zero axion χ = 0. This implies that we can consider

the NS-branes as infinitely rigid boundaries, which absorb the charge of the D5-branes

without being bent. The difference in tension of the two types of branes can justify

this assumption. To see this in more detail we consider the asymptotic orientation of a

(p, q) five-brane, which is restricted by the condition of supersymmetry. Suppose that

the D5-brane is stretched along a direction x and the NS-brane is stretched along a

direction y. The D5-brane is point-like in y and the NS-brane in x. All other directions

are shared by the two branes. Then, a (p, q) five-brane preserves the same amount of

supersymmetry, provided it is stretched as a line in the (x, y) plane with a slope given

by [18]:

∆x : ∆y = p+ qτ, (2.1)

where τ = i
gs

+ χ
2π
. In a background in which the Type IIB axion and the string

coupling are zero, any (p, q) five-brane with q 6= 0 will be parallel to the y direction,

whereas any (p, 0) five-brane will be parallel to the x direction. This gives a support

for the assumption that the NS-branes can be considered rigid and do not bend when

D5-branes end on them. This assumption simplifies greatly the discussion about the

classical field theory with its matter content and classical interactions. At a later stage

we would like to take the string coupling to be non-zero and then deduce information on

the quantum dynamical properties of the gauge theory studied. But, even within this

classical approximation, we will be able to make some statements on the IR properties

of the gauge theories we constructed.

In conclusion, in this section we consider the naive T-dual of the model in [1] in

the presence of two extra NS-branes (which we will call NS′). The ingredients are: D5-

2Such configurations were first considered in [17].
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Figure 1: Brane realization of SU(n) gauge theory with nl chiral multiplets in the funda-

mental representation and nr chiral multiplets in the anti-fundamental representation. The

horizontal lines represent NS′ branes and the vertical lines represent NS-branes. between

them there are n D5-branes bounded by the box. There are also semi-infinite D5-branes to

the left and to the right.

branes with world-volume (012346), NS-branes with world-volume (012345), NS′ branes

with world-volume (012367), and D7-branes and O7 orientifold planes with world-

volume (01234789). The two types of NS-branes bound the D5-branes in both directions

4 and 6, and the KK reduction in these two directions gives a four-dimensional theory.

The D5 world-volume in 46 appears, in the approximation we are considering, as a

rectangle bounded by the NS-branes. In addition to the above branes, we may introduce

other branes or singularities, which will not break the supersymmetry further. These

are ALE space along (4567), D7′ with world-volume (01235689) and D5′ with world-

volume (012357) [17]. We will not make much use of these additional branes in this

paper.

The presence of these branes breaks space-time Lorentz symmetry from SO(1, 9)

to SO(1, 3) × SO(2). The first group is identified with the Lorentz symmetry of the

four-dimensional theory studied, while the SO(2) symmetry acts on the 89 directions

and is identified with the U(1)R symmetry of the N = 1 supersymmetric system.

The basic building block is obtained in the following way. Start, as in fig. 1, with

a theory with 8 supercharges obtained by stretching n D5-branes along the direction

x6 between two NS-branes and putting also nl semi-infinite D5-branes on the left and

nr on the right. This is the five-dimensional minimally supersymmetric theory of an

SU(n) gauge group with nl + nr hypermultiplets. Introduce further two NS′-branes,

which bound the D5-branes at a finite distance in x4. The hypermultiplets parametrize

fluctuations of the D5-branes in 6789, but the presence of the NS′ freezes the possible

motions in 67. The N = 2 hypermultiplets are projected down to N = 1 chiral

multiplets, with different chirality depending on their position to the left or to the right.
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The field content is therefore SU(n) with nl fundamentals and nr antifundamentals.

Anomaly cancellation requires that nl = nr = nf . It would be interesting to see how

this arises from RR charge conservation.

The parameters of the theory are given by the positions of the two types of NS-

branes. There are 4 NS-branes with 4 transverse positions to each, which gives 16

possible parameters. Six parameters can be set to zero by tuning the origin in directions

456789. We are left with 10 parameters. There are 4 distances in the 4567 directions

and there are 3 positions in the 89 directions. The gauge coupling is given by the area

of the rectangle in the 46 directions:

1

g2
=

∆x4∆x6

gsl2s
. (2.2)

The other parameters do not have a clear interpretation. The distances in the 5

and 7 directions look like FI terms for the U(1) gauge groups. Since it is frozen from

a four-dimensional point of view, they may be promoted to moduli of the field theory.

The same comment applies for the other positions in the directions 89. An analysis of

specific cases makes their interpretation clearer, mostly as dynamical moduli.

The theta angle is related to the Type IIB axion. The D5-brane has a term in the

effective action, which looks like

χ

2π
F ∧ F ∧ F. (2.3)

Integrating over the rectangle in the 46 directions, the four-dimensional theta angle

is given by
θ

2π
=

χ

2π

∫
46
F. (2.4)

Let us study some classical flat directions. Let us denote the fundamental fields

by Qi and the antifundamental fields by Q̃j . We can reconnect a left semi-infinite D5-

brane to a finite D5-brane and to a right semi-infinite D5-brane. They form an infinite

D5-brane in the 6 direction. The D5-brane is now free to move between the two NS′

branes in the 7 direction. What remains are n−1 finite branes with nf−1 semi-infinite

branes to the left and to the right. The gauge group is broken to SU(n−1) with nf −1

flavours. Such a motion corresponds to a non-zero expectation value for a meson field,

say Q̃1Q1. One can generalize this to r such branes. The gauge group is broken to

SU(n−r) with nf−r flavours. The positions of the branes parametrize the eigenvalues

of the mesonic matrix M j
i = Q̃jQi. For this case, r of them are non-zero. For nf ≥ n,

there is also a baryonic branch. This corresponds to reconnecting at one side, say the

right, n of the semi-infinite D5-branes. The nf − n remaining semi-infinite branes can

now move, together with the right NS-brane, along the 7 direction. The distance in the

7 direction corresponds to the expectation value of the baryons. This case serves as an

example to the comment made in the last paragraph on distances between NS-branes.

One may question that the matter localized at the intersection of two D5-brane along

the NS-branes bounded by NS′-branes is indeed chiral and not hyper. The agreement

5
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Figure 2: Brane realization of product of SU gauge groups. The horizontal lines represent

NS′ branes and the vertical lines represent NS-branes. There are nl (nr) semi-infinite D5-

branes to the left (right). Finite D5-branes are bounded by the NS-branes and the NS′-

branes. The number of D5-branes is denoted in each box. The different shaded regions are

to emphasize that the number of D5-branes can be different.

of the classical moduli space with the field theory in question serves as a support for

this identification.

It is easy to generalize the theory to a product of SU gauge factors. Consider, as

in fig. 2, P NS-branes displaced along the direction x6, with ni D5-branes in between

the i-th and (i + 1)-th NS-brane and nl semi-infinite D5-branes on the left and nr on

the right. The N = 1 gauge theory is

P−1∏
i=1

SU(ni) , (2.5)

with chiral bifundamentals charged under each neighbouring factor, and extra nl fun-

damentals for SU(n1) and nr antifundamentals for SU(nP−1).

For general values of ni the theory is obviously anomalous. Charge conservation for

the RR spacetime fields should be correspondingly violated. Since we have discarded the

bending of the five-branes and the issue of the charge conservation at the intersection of

various branes, we cannot see this spacetime phenomenon explicitly. For the moment,

we use the field theory input. There are two series of anomaly-free models. The first

one has nl = ni = nr = n,
P−1∏
i=1

SU(n) , (2.6)

with chiral bifundamentals, n fundamentals for the first factor and n antifundamentals

for the last. This is the T-dual of the model in [7], which can be exactly reproduced if

we take a compact x6 direction. The second anomaly-free model has the following field
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content:

SU(n)× SU(m)× SU(n)× SU(m)× ... , (2.7)

with chiral bifundamentals and m fundamentals for the first factor. The last factor can

be SU(n) with m antifundamentals or SU(m) with n antifundamentals.

We can introduce extra matter using D7-branes. Each of them produces a hypermul-

tiplet in the N = 2 theory coming from the open strings between D5- and D7-branes.

Since the intersection between D5- and D7-branes is, in general, localized far from the

D5 boundaries, the full multiplet, which decomposes in two chiral multiplets of the

N = 1 theory, survives the projection imposed by the NS-branes. We will give further

consistency checks on this identification in the next section by using brane motion and

creation. The D7-brane gives rise to two scalars, positions in the 56 directions. The

position in the 5th direction gives rise to a mass for the quark multiplet. Together

with the Wilson line along the direction 4 of the D7-brane, they combine into a chiral

multiplet, which gives rise to the mass of the quark fields.

The superpotential of the model is derived from the local N = 2 supersymmetry. It

gives a Yukawa coupling with an adjoint field and two quark fields. However, the adjoint

scalar involved is frozen by the bounding by NS-branes. This leads to a configuration

with no superpotential. A mass term for the quarks still exists. The superpotential can

be modified by introducing a rotation of the D7-branes in the directions 47-56. This

changes the coefficient of the Yukawa coupling as in cases discussed in [16].

We can construct higher-order representations by introducing an orientifold plane

parallel to the D7 in the picture. There are two possible choices of sign for the charge

of such an orientifold plane: in the case of a negative sign, which arises in the standard

Type I′ string theory, we call the orientifold O7, while in the case of a positive sign, we

call it O7+. Every D- or NS-brane now must have an image under the Z2 symmetry

x5,6 → −x5,6 or be stuck at the orientifold point. We will take the two NS′ stuck at

x5 = 0 and the NS-branes disposed in x6 in such a way as to preserve the Z2 symmetry.

There are essentially two basic configurations [19, 13, 14],

1) Consider, as in fig. 3, an NS-brane at x0
6 and stretch 2n D5-branes between it

and its image at −x0
6. Put also nf semi-infinite D5-branes on the right of the

NS-brane. The two NS′-branes project down the theory to USp(2n) (for O7) or

SO(2n) (for O7+) with nf fundamentals. In the O7+ case, there is the option

to have an odd number of D5-branes, one of them being stuck, giving the group

SO(2n+ 1).

2) Consider an NS-brane stuck at x6 = 0 and stretch n D5-branes in between it

and a second NS-brane at x0
6. Put also nf semi-infinite D5-branes on the right of

the second NS-brane. Since the D5-branes are identified with their images (D5-

branes stretched between the stuck NS-brane and the image of the second NS at

−x0
6), no projection on the Chan-Paton factors is needed and the gauge group is

SU(n). The open strings connecting the D5-branes with their images give rise to

7
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Figure 3: Sp(n)(SO(2n)) gauge group with nf flavours. The dashed line represents an O7

(O7+) plane. nf semi-infinite D5-branes give rise to nf chiral multiplets.

a multiplet in the antisymmetric representation of the gauge group (for O7) or

in the symmetric one (for O7+)[19]. In conclusion, the theory is SU(n) with an

antisymmetric (symmetric) and nf antifundamentals.

The theory in 1) is well defined for all values of n. Global anomalies of Sp gauge

theories give rise to a constraint on nf . In the case of O7, nf must be even. For the

case of O7+, the gauge group is SO and there is no restriction on nf . For the theory

2), anomaly cancellation requires n = nf + 4 (for O7) and n = nf − 4 (for O7+).

We can now summarize two rules for D5-branes stretched between a pair of NS-

branes and a pair of NS′-branes. The rules are derived from the field theory requirement

that the anomalies will be cancelled. It would be nice to get this rule from an inde-

pendent argument, which does not rely on the field theory analysis. Nevertheless, we

shall state the rules and study the consequences of these two rules below. We hope to

return to an independent derivation of these rules in the future. The rules are:

a) Given, as in fig. 1, n D5-branes between two NS-branes and two NS′-branes

with nl(nr) D5-branes to the left (right), the consistency condition requires that

nl = nr.

b) Given, as in fig. 3, n D5-branes between NS-brane and its image under an O7

(O7+) and between two NS′-branes with nf D5-branes connecting along the NS-

branes, the consistency condition requires that nf = n − 4(n + 4). We will use

these rules below.

Generalizations can be obtained by adding other NS-branes (and their images under

Z2). If n D5-branes are stretched between two NS-branes that are not stuck at the

8
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orientifold, the Z2 projection identifies them with their images living on the other side

of the orientifold, without further projecting the Chan-Paton factors. Therefore they

give rise to SU(n) gauge groups. The generalization of the theories in 1) and 2) (for

O7) reads, respectively,

USp(V0)× SU(V1)× SU(V2)× ... ,

SU(V0)× SU(V1)× ... , (2.8)

with chiral bifundamentals for each neighbouring gauge group, an antisymmetric for

the factor SU(V0) and nf antifundamentals for the last factor if we put nf semi-infinite

D5-branes. In all the above cases, the groups USp become SO if we use O7+.

We conclude this section by discussing the relation of the Type IIB construction

with the one considered in [7, 8] using branes at orbifold singularities. We will see

that an explicit T duality maps the models in [7, 8] in a subset of the theories we have

considered in this section.

The theory in [7] is obtained by starting with N D4-branes at a Zk orbifold singu-

larity. We take the world-volume of the D4-branes to extend in the directions (01234)

and the orbifold projection to act on (6789). The world-volume theory was determined

in [9] and is associated with the extended Dynkin diagram for Ak−1: each of the nodes

provides an SU(N) gauge factor and each of the links a hypermultiplet in the bifunda-

mental of the two gauge groups corresponding to the nodes connected by the particular

link. The hypermultiplets parametrize the fluctuations of the D4-brane positions in

(6789). The introduction of two NS-branes with world-volume (012367) and different

x4 positions induces a KK reduction along the direction 4, breaks the supersymmetry

down to N = 1 and freezes the 89 scalars in the hypermultiplets. Notice that the NS-

branes must be stuck at x8 = x9 = 0 to respect the Zk projection without introducing

images and extra states in the theory. The surviving matter is composed by chiral

multiplets parametrizing the motion in 67. For each SU(N) factor there are two such

chiral multiplets corresponding to the two links that connect the given node to the two

adjacent ones. They are fields in the fundamental representation of the gauge group,

but with opposite chirality. The theory is anomaly-free since each gauge factor has the

same number of fundamentals and antifundamentals.

Extra matter can be introduced using D8-branes with world-volume (012346789),

which do not break any further supersymmetry. Each of them provides a pair of

chiral multiplets in the fundamental and antifundamental representation. If we further

introduce an O8 orientifold plane parallel to the D8-branes, the gauge and matter

content is projected out according to the rules in [9]. The resulting theories have the

form:

USp(V0)× SU(V1)× SU(V2)× · · ·SU(VP−1)× USp(VP ), k = 2P,

USp(V0)× SU(V1)× SU(V2)× · · ·SU(VP−1)× SU(VP ), k = 2P + 1,

SU(V0)× SU(V1)× · · ·SU(VP−2)× SU(VP−1), k = 2P. (2.9)

9
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The two cases for k even correspond to different kinds of projections. The matter

consists of chiral bifundamentals charged under each neighbouring gauge factor and of

chiral anti-symmetric for the first and last SU factors.3 It is convenient to perform a T-

duality and transform the system to a brane configuration in Type IIB. This approach

was already used in [13] and [14] to study six-dimensional theories.

If we perform a T-duality in x6, the Zk orbifold singularity is converted into a set of

k NS-branes with world-volume (012345) positioned along x6. The D4-branes becomes

D5-branes that can break between the new NS-branes. The two old NS-branes with

world-volume (012367) remain unchanged. These are exactly the models we discussed

before. It is easy to check that the gauge and matter content remains the same. The

theories in 2.9 can be obtained by using a compact x6 direction. The three different

theories in 2.9 correspond to one odd case and two possible ways to put 2P NS-branes

on a circle in a Z2 invariant way [13, 14].

The Type IIB description is more general. Not all the realizations of models have

known T duals in a description with branes at orbifold singularities. Nevertheless, the

Type IIA picture is a complementary description and may be sometimes useful. In

particular, the matter content and the superpotential of the Type IIA models can be

explicitly computed using the orbifold projection. This provides non-trivial consistency

checks about the Type IIB description. In the cases in which the theories have a known

T dual we can check the correctness of the proposed matter content and superpotential

by an explicit computation in the T-dual picture.

3. Arrays of D5 boxes

Another generalization is to consider a grid of SU theories as in fig. 4. We take P

NS-branes and R NS′-branes. Let the matrix N = {nij}, i = 0, . . . , P , j = 0, . . . , R,

denote the number of D5-branes in each box. Then, the gauge group is

P−1∏
i=1

R−1∏
j=1

SU(nij). (3.1)

We expect chiral bifundamental matter at the intersection of any two boxes and

chiral multiplets at the boundaries. Boxes can intersect along a line (for example, n11

and n12) or at a point (for example, n12 and n21). In both cases, we can expect chiral

bifundamentals. The projection imposed by the NS-branes gives the following matter

content for the model: there are, in horizontal, chiral bi-fundamentals (ni,j , n̄i,j+1), in

vertical (ni,j, n̄i+1,j) and along the diagonal (n̄ij, ni+1,j+1).

Let us consider the three-box model of fig. 5. This model will serve as the basic

building block for the models we will consider below. We can picture, as in fig. 5, the

chiral bifundamentals that connect neighbouring boxes with arrows. Their direction

3The theories in [8] are obtained using an O4 plane instead of an O8 plane. The matter content of

these theories is again classified in [9].
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Figure 4: More general construction of a product of SU gauge groups.

specifies the chirality of the bifundamental. The rule is that the arrows can only be

drawn in the direction East, North and South-West. The gauge group is SU(k) ×

SU(n)× SU(m). The boxes may have finite or infinite area, which will correspond to

a gauge symmetry or a global symmetry, respectively. This property, however, does

not enter into the present discussion. As the arrows indicate, there are three chiral

multiplets Q1, Q2, Q3, transforming in (k, n̄, 1), (1, n, m̄), (k̄, 1, m), respectively. These

fields allow for a superpotential of the form

W = Q1Q2Q3. (3.2)

Why is this the matter content? Previous experience with simple models such as

those in fig. 2 teaches us about the horizontal bi-fundamentals and, using the symmetry

of the construction, about the vertical ones. The presence of diagonal fields is more

subtle. There are several arguments for their existence and to explain why only the

fields associated with one of the two diagonals survive. First, recall that the chiral

multiplets are given by strings that are stretched between the two D5-branes. In the

absence of NS-branes (here, we shortly refer to either an NS or an NS′-brane), two

possible orientations are allowed for the strings, which correspond to two opposite

chiral fields. The presence of NS-branes induces a particular orientation for the strings.

This gives rise to a single chiral field, with a given chirality. A string can be only parallel

to the NS-brane and not antiparallel. This is why only an orientation, say going east

11
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Figure 5: A three-box model with three groups, three chiral multiplets and a cubic super-

potential. The number of D5-branes in each box is denoted by an integer. Empty boxes have

no bound D5-branes.

(the choice of orientation is a matter of convention, and is specified by choosing the

orientation on the NS-branes), is allowed and not, say, going west. Such strings are

parallel to the NS-branes (and not to the NS′-branes). Similarly, only an arrow going,

say, north and not going south can produce a multiplet. The string is then parallel to

the NS′-branes. The diagonal intersection is restricted by the orientation of both the

NS- and NS′-brane and goes only south-west. In addition, since the three arrows form

a closed circle, they give rise a superpotential, eq. 3.2.

A second argument goes as follows. Consider, as in fig. 6, the simple case in which

we have a column of boxes, for example, nij = δjPn for some P with the addition of a

D7-brane. The D7-brane provides vector-like matter for all the gauge groups. We can

move the D7 to the left. When the D7 crosses the leftmost NS-branes, other D5-branes

are created between it and the NS-brane [1]. Next move the D7 to infinity. The matter

in the fundamental is now provided by semi-infinite D5-branes nj−1,P = 1. We shall

assume, as in previous cases following [1], that the matter content does not change in

this transition. There are chiral fundamentals provided by the semi-infinite D5-branes.

To have a vector-like matter as before the phase transition, we need antifundamentals

coming from one and only one diagonal. The discussion on D7-branes is expanded in

the next subsection.

As a third check, we notice that, by performing a T-duality, some of the models can

be identified with the ones discussed in [7], where the matter content can be explicitly

derived by an orientifold computation. The two results agree.

But perhaps the best motivation for the above matter content is the fact that the

flat directions expected in field theory are exactly matched by the allowed motion of

the branes. We will see several examples below. We must postpone the discussion until

we specify the superpotential for all these theories.
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Figure 6: A creation of various boxes of D5-branes when a D7 and an NS-brane cross. The

D7-brane is represented by a vertical dotted line.

3.1. Matter and Interactions from D7-branes

In this subsection we study in detail the introduction of D7-brane to the system. We

find that there are, in addition to the expected results, new interactions that appear.

For this reason, we devote this subsection to this effect.

Consider, as in fig. 7, a single box with n D5-branes and a D7-brane. As in the

usual case, the D7-brane gives rise to two chiral multiplets Q, Q̃, with opposite chirality

and a superpotential given by

mQ̃Q, (3.3)

where m is given by the distance of the D5- from the D7-brane in the 5 direction

(together with a complex partner). As mentioned above, we also assume that when a

D7-brane crosses an NS-brane, the matter and interactions are not changed. Let us

indeed move the D7-brane to the left. A D5-brane is stretched between the D7 and left

NS-brane. The 5 position of the D7-brane can be tuned to touch the D5-branes. Then

there are three boxes of D5-branes, as in fig. 7 B.

We would like to look for fields and interactions as in eq. 3.3. Using the rules of

fig. 5 and eq. 3.2, we find that in addition to the quark fields, Q, Q̃, denoted by the

diagonal and horizontal arrows in fig. 7 B, respectively, there is another field m that

transforms in the bifundamental of the global symmetry, denoted by the vertical arrow

in fig. 7 B. The superpotential is related to the upper closed triangle of arrows and

13



J
H
E
P
0
5
(
1
9
9
8
)
0
0
1

Nf

Nf

Nf Nf

Nf

A B

Figure 7: The creation of various boxes of D5-branes when a D7-brane and an NS-brane

cross. The case with a single finite box. The arrows indicate all possible chiral fields relevant

to the interaction between the D7-brane and the D5-branes.

leads to eq. 3.3. We find agreement with the expectations. Let us next move the D7

to the right. By symmetry, we should find the same matter and superpotential. One

difference is that the interaction now comes from a lower closed triangle. We learn that

any closed triangle of arrows should contribute to the superpotential. In conclusion,

by looking at the one-box case, we find agreement with the usual interaction familiar

from theories with 8 supercharges.

Let us look at the two-box case. We read off the matter content from fig. 6, which

consists of the expected quark fields Q, Q̃ and Q′, Q̃′ and the mass terms m and m′.

However, in addition to these fields there is a new field F that transforms in the

bifundamental of the two gauge groups. The interaction can be read off from the

arrows in the figure. We first note that there are two upper triangles and one lower

triangle. The two upper triangles give rise to the usual interactions that are present in

the one-box case. The lower one gives a new term for a configuration of D7 with more

than one box. To summarize, there are three terms in the superpotential

mQ̃Q+m′Q̃′Q′ + FQ′Q̃. (3.4)

If we repeat the analysis for a motion of the D7-brane to the right, we get a similar

term, the contribution comes from two lower triangles and one upper triangle. As a
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nice check of eq. 3.3 and 3.4, we can remove the middle NS′-brane away in the 45

directions. This gives a mass to the fields Q′ and Q̃ in eq. 3.4, which upon integration

leads to eq. 3.3. The case with more than two boxes is generalized in an obvious way

and does not give new effects.

By assuming that the D7-brane motion in the x6 direction is an irrelevant parameter

to the field theory, we conclude that the presence of a D7-brane in addition to some

boxes of D5-branes gives rise to matter fields as in the previous paragraph and a

superpotential given by eq. 3.4.

4. Interesting models and their properties

The theories we just constructed have several non-trivial IR properties, the most in-

teresting one being probably the fact that they can exhibit supersymmetry breaking.

We hope that the techniques we just described can be useful to better understand the

non-trivial dynamics of these theories. An immediate question is Seiberg’s duality for

these models. With the explicit realization of chiral theories using D- and NS-branes,

the technique in [1, 20] can be immediately applied to the models. Even more interest-

ing would be to demonstrate that some of these models indeed break supersymmetry.

We leave the real hard questions for future work, hoping that our technique will prove

useful to get a better understanding of the IR properties of chiral theories, and, for the

moment, we limit ourselves to some simple considerations and consistency checks.

We also want to note that up to now we assumed that all the U(1) factors are frozen.

Since they are generally anomalous, this must be so. However, as already noticed in [7],

it may happen that, in order to get agreement between the field theory flat directions

and the allowed brane motions, we have to impose their D-term equations. Analysis of

specific cases may help in understanding the role of the U(1) factors. However, since

we expect that quantum corrections to the brane configuration have a lot to say about

the fate of these U(1) factors, we cannot make a general statement about them at this

level. In the examples presented below, they do not seem to play any role (see however

the remark at the end of section 4.2) .

4.1. Superpotential

None of the previous models is completely defined until we say if there is a superpoten-

tial and what form this has. We will give a general rule for reading the superpotential

out of the brane construction. With such a superpotential the flat directions derived

from field theory are exactly matched by the allowed motions of the branes. In the

cases in which the model has a known T-dual description and becomes one of those in

[7], the proposal agrees with the explicit computation.

There is a simple guideline in searching for the superpotential. We do not expect any

superpotential in the theories in fig. 2. The open strings giving chiral bifundamentals

are localized near the intersection of the boxes. Being localized at different points, we
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do not expect any interaction between different bifundamentals. On the other hand,

in the theories of figs. 4 and 5, the open strings giving rise to the bifundamentals

(nij , n̄i,j+1) (Q1), (ni,j+1, n̄i+1,j+1) (Q2) and (ni+1,j+1, n̄ij) (Q3) can touch at the corner

of three boxes, and we can expect a superpotential. The general rule is that, every

time the open strings can interact, there is indeed a superpotential. The basic building

block is depicted in fig. 5 and gives rise to the superpotential

W = Q1Q2Q3. (4.1)

We have a superpotential for each closed cycle made up by arrows, as in fig. 5.

The main reason for the existence of this superpotential is the fact that the flat

directions predicted by the field theory analysis coincide with the allowed motion of

the branes. We see many examples that demonstrate the exact matching between flat

directions and motion of branes in the next sections, when we will construct interesting

models.

As a consistency check, we can consider models for which the T-dual description

in Type IIA as branes at orbifold singularities is known and the superpotential can be

explicitly computed. In particular, the models in [7] can be realized and the results of

the two methods compared. One finds complete agreement.

4.2. The (3,2) model

In this and the following sections, we construct several models that are supposed to

break supersymmetry [21] (see [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] for examples

and discussions in the recent literature). Almost all the classical cases can be realized

with the technique presented in the previous sections. One important point is that

models with a particular matter content can be realized in several ways using the rules

that we gave in section 3 and 4. However, different dispositions of boxes can give the

same matter content but, generally, different superpotentials. Since we want models

that break supersymmetry, we are interested in theories without flat directions. In the

brane picture, this condition translates to the statement that no brane can move away

from the system without spoiling the equilibrium or violating some charge conservation.

We also restrict our discussion to a classical analysis of the models. The study of

full quantum corrections requires taking non-zero string coupling. We hope to return

to this point in the future.

Consider the configuration in fig. 8. The gauge group is SU(3)×SU(2). The chiral

fields are Ri, i = 1, 2, transforming in (3̄, 1), L transforms in (1,2) and Q in (3,2). The

model is anomaly-free. Using the three-box model in fig. 5, there is a superpotential

W = R1QL. (4.2)

The model is supposed to break supersymmetry, which will be seen by taking non-

zero string coupling gs. The model has no flat directions. It is immediate to see that

indeed there is no allowed motion for the branes in fig. 8.
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Figure 8: The (3,2) model SU(3)× SU(2) with chiral fields and a superpotential.

3 2 12

Figure 9: The (3,2) model SU(3)× SU(2) without superpotential.

The particular disposition of boxes in fig. 8 is crucial. A theory with the same matter

content, but without superpotential, can be realized as in fig. 9. The various fields

are localized at different points and do not interact. There is no superpotential and

therefore we have flat directions parametrized by the three gauge-invariant operators,

R1R2Q
2, R1QL and R2QL. They are reproduced by the possible brane motions: D4-

branes can reconnect to an infinite one, which can move in 67 or the last two NS-branes

can move with the right number of attached D4.

The model can be immediately generalized to SU(N)×SU(2) with a similar matter

content (substitute 3 with N in fig. 8), which is also supposed to break supersymmetry

[31].

There is a second natural generalization of this model. Consider general inte-

ger numbers in the four boxes in fig. 8. The gauge group is SU(n1) × SU(n2),
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with a global symmetry SU(m1) × SU(m2). The matter content transforms in the

SU(n1) SU(n2) SU(m1) SU(m2)

R 1 1

Q 1 1

L 1 1

R′ 1 1

Anomaly cancellation requires m1 + m2 = n2 and n1 = m2. The superpotential is

given by

W = RQL. (4.3)

There is a range of values for n1 and n2 for which the brane construction lifts all

the flat directions. From the field theory point of view, baryonic flat directions may

survive the introduction of the superpotential 4.3 (see [28, 29]). Here the U(1) factors

that we assumed to be frozen may play a role. It would be interesting to understand

this point better and to study if these theories break supersymmetry as the (3,2) model

does.

In general, it is quite easy to construct brane configurations in which there is no

allowed motion for the branes and, therefore, there are no expected flat directions. All

these theories are, in principle, good candidates for models that break supersymmetry.

4.3. Three-box models

Just to provide more examples, we can classify all the models that can be obtained by

arranging configurations of three boxes. Figure 10 presents all possible cases. Cases

b, d, f are excluded, as they are anomalous. Cases a, c, e have a gauge group SU(n)

with nf flavours. Case c has no superpotential. Cases c and e have a superpotential

that gives mass to the quark fields.

To this classification, we can add an orientifold plane O7 or O7′ and produce more

models. The orientifold planes can be put either on top of an NS-brane or not. This

procedure can be repeated for a configuration of four boxes and so on. We expect that

a large class of models can be analysed systematically, using this classification in terms

of branes.

4.4. SU(N) with antisymmetric

We are interested in an SU(N) gauge theory with an antisymmetric tensor represen-

tation A, F fundamentals and N + F − 4 antifundamentals. There are several ways

for realizing this theory, according to whether or not we want a superpotential. The

crucial ingredient is an NS-brane stuck at an orientifold plane, according to the rules

in section 2.
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Figure 10: Various cases of three-box models.

F
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N+F-4

NN+F-4

F

b)a)

Figure 11: Different realizations for SU(N) with an antisymmetric, F fundamentals and

N + F − 4 antifundamentals.

Consider two possible realizations. The case a) in fig. 11 has no superpotential,

while the case in figure b) has a superpotential of the form

W = AQ̄Q̄. (4.4)

This is because the antisymmetric tensor arises from open strings localized at the

orientifold plane and they can interact with the antifundamental representations only
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in case b) of fig. 11.

Let us analyse the interesting case F = 0. In case a), we have flat directions, which

correspond to reconnecting D5-branes into infinite ones and moving them in 67. Due

to the presence of the orientifold plane, we can only move away an even number of D5-

branes. The theory can be higgsed to USp(4) for N even and SU(5) for N odd. This

agrees with the field theory expectations [21]. For N odd, the model, when equipped

with the superpotential 4.4, is supposed to break supersymmetry. We can check that in

case b) of fig. 11 (for F = 0) there is only one allowed motion of branes: we can move

away the NS-brane stuck at the orientifold plane. However, the resulting configuration

(see fig. 3) requires an even number of D5-branes to live at the orientifold. This means

that there exist flat directions only when N is even. This is in agreement with the

complete lifting of the flat directions in field theory and the conjectured susy breaking

when N is odd.

4.5. Chiral non-chiral theories

In this section we show that, even in our classical approximation with zero string

coupling, we can say something about the non-trivial IR properties of some models.

It is known [33] that, in order to study the IR properties of a model, a chiral theory

can be expanded into a non-chiral theory with more gauge factors but, sometimes,

with simpler properties. For example, SU(n) with an antisymmetric and nf = n − 4

antifundamentals can be equivalently described using the non-chiral theory USp(n −

4) × SU(n)4 with a chiral bifundamental and n − 4 antifundamentals for SU(n). At

strong coupling the USp group confines, and the mesons of the theory, which completely

saturate the anomaly, reproduce the antisymmetric for SU(n). The non-chiral model

can be easily realized in terms of branes. It indeed belongs to the infinite series of

models in 2.8.

Consider in fact, as in fig. 12, the case with two NS-branes not at the orientifold

point. Stretch n− 4 D5-branes between the first NS and its image. Using rule (b), we

need n D5-branes between the first and the second NS. Using rule (a), we need to put

also n − 4 semi-infinite D5-branes. The equivalence between the chiral and the non-

chiral model can be easily shown by moving the first NS-brane toward the orientifold.

When the NS-brane together with its image touch the orientifold, the USp coupling

constant flows to infinite value. One of the two NS-branes at the orientifold is now free

to move in the 789 directions. We move it to large 789 positions. The resulting theory

is therefore SU(n) with an antisymmetric and nf = n− 4 antifundamentals.

A similar mechanism was discussed in [13] in the context of (0, 1) six-dimensional

theories to explain the small instanton transition in which a tensor multiplet is traded

with 29 hypermultiplets. This phenomenon was first discovered in the case of the small

E8×E8 instanton, which has an interpretation as a M-theory five-brane which has left

4This theory can be considered chiral in the sense that the bifundamental and the n−4 fundamentals

are chiral, but the number of fundamentals and antifundamentals for SU(n) is the same.
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Figure 12: Brane realization of USp(n− 4)×SU(n) gauge group with a bifundamental and

a superpotential W = 0.

the boundary, when the E8 ×E8 heterotic string is interpreted as M-theory on S1/Z2.

Also the theory of SO(32) small instantons at spacetime singularities sometimes has

a Coulomb branch parametrized by tensor multiplets [11]. If we discard the two NS′-

branes in the models considered before and perform T-duality in two directions we

exactly recover the theory of SO(32) small instantons at spacetime singularities as

described in [13]. As shown there, even in this case, the small instanton transition

can be interpreted as a five-brane that has left the boundary (in this case an O8

orientifold plane). The mechanism is essentially the same as the one described above

to demonstrate the equivalence between chiral and non-chiral models.5

It was shown in [34] that the small instanton transition, when the theory is further

compactified to a four-dimensional N = 1 model, can give rise to a transition in which

the net number of generations changes. We have explicitly seen that a non-chiral model

can be connected to a chiral one with a mechanism related by T-duality to the six-

dimensional small instanton transition. The results in [34] and those described above

seem to suggest that the relation between the small instanton transition and the physics

of chirality-changing transition in four dimensions is quite general and follows from the

same universal effect. It would be interesting to check the relation between the two

approaches and to learn more about such transitions.

Other IR results, which we expect to be able to obtain within the classical approxi-

mation, concern Seiberg’s duality. We expect that the techniques in [20] can be applied

to our brane construction.

5Notice that the argument does not use in any way the existence of the NS′-branes.
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5. Conclusions

In this paper we have presented a general setup for constructing four-dimensional gauge

theories, which are generically chiral. From the examples that we presented in the

previous sections, the rules for constructing models should now be clear. Using these

rules, we can construct quite a lot of the models present in the literature. Many of them

are supposed to break supersymmetry. Other models, not treated in the literature,

can be studied systematically. It is also easy to construct general models without

flat directions, which may break supersymmetry. Moreover, the brane construction

arranges the various models into families that can be treated in a unified way. Different

dispositions of boxes gives rise to different superpotentials. In this paper we only

discussed the superpotential, which is naturally present in the brane configuration.

However, more general interactions can be obtained by introducing more ingredients

in the picture, for example rotations for some branes.

We hope that the flexibility of this construction can be useful for constructing

and studying models when the field theory analysis gets complicated. In this paper

we limited ourselves to a classical analysis, but, even at the classical level, the brane

construction can give a help in finding the moduli space of flat directions. The issue of

supersymmetry breaking can be addressed only when we turn on the coupling constant,

which introduces crucial differences and bending in the branes configuration. New tools

are needed to study the quantum theory. We hope to return to this subject, clearly

the most interesting one, in the future.
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