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1 Introduction

In the past few years many supersymmetric field theories have been reformulated as world-

volume field theories on branes or on their intersections. One aspect of this reformulation

of a supersymmetric field theory is that its ‘BPS-saturated’ states, some of which cor-

respond to 1/2 supersymmetric classical solutions, acquire a spacetime interpretation as

intersections with other branes. The prototype is an electric charge on a Type II D-brane,

which acquires an interpretation as the endpoint of a ‘fundamental’ Type II string [1].

This has its M-theory analogue in the interpretation of a self-dual string in the M-5-brane

as the boundary of an M-2-brane [2, 3]. Other examples are vortices on M-2-branes or

M-5-branes, which acquire an interpretation as 0-brane or 3-brane intersections with a

second M-2-brane or M-5-brane [4]. In all these cases, the 1/2 supersymmetric solutions

of the worldvolume field theory of a single D-brane or M-brane have now been found

[5, 6, 7, 8].

A remarkable feature of these ‘worldvolume solitons’ is that, while ostensibly just

solutions of some (p+1)-dimensional field theory, they in fact suggest their own 10 or

11 dimensional spacetime interpretation. This arises from the fact that the world-volume

scalars determine the spacetime embedding. In a recent paper it was pointed out that the

spacetime interpretation is already implicit in the central charge structure of the world-

volume supersymmetry algebra [9]. An example is the D=6 (2,0) worldvolume supersym-
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metry algebra of the M-5-brane. Allowing for all possible p-form charges we have [8]

{QI
α, Q

J
β} = ΩIJP[αβ] + Y

[IJ ]
[αβ] + Z

(IJ)
(αβ), (1.1)

where α, β = 1, . . . , 4 is an index of SU∗(4) ∼= Spin(5, 1) and I = 1, . . . , 4 is an index

of Sp(2), with ΩIJ being its invariant antisymmetric tensor. The Y -charge, satisfying

ΩIJY
[IJ ] = 0, is a worldvolume 1-form carried by worldvolume strings and the Z-charge

is a worldvolume self-dual 3-form carried by worldvolume 3-branes. The representations of

the R-symmetry group Sp(2) encode the possible interpretations of the solitons carrying

these charges as intersections of other objects with the M-5-brane [9]. For example, the

string charge, being a 5-vector of Spin(5), can be viewed as a 1-form in the 5-space

transverse to the M-5-brane worldvolume in spacetime. It therefore defines a direction

in this space which may be identified as the direction in which an M-2-brane ‘leaves’ the

M-5-brane, consistent with the interpretation of the worldvolume string as an M-2-brane

boundary. Similarly, the 3-brane charge can be viewed as a transverse 2-form, consistent

with its spacetime interpretation as the intersection with another M-5-brane.

The results we report on here arose from a consideration of the way in which the mag-

nitudes of the p-form charges carried by worldvolume solitons are expressed as integrals

of charge densities constructed from worldvolume fields. As we shall argue, the correct

expressions for the magnitudes of the charges carried by the string and 3-brane in the

M-5-brane are

Y =
∫
dX ∧H Z =

i

2

∫
dU ∧ dŪ , (1.2)

where H = dA is the worldvolume three form field strength and X and U are, respectively,

real and complex worldvolume scalar fields describing fluctuations transverse to the M-5-

brane worldvolume in spacetime. The integrals are over the subspaces of the 5-dimensional

worldspace transverse to the p-brane solitons. Note that Y is not given simply by an

integral of H over a 3-sphere surrounding the string in the M-5-brane, as one might

naively have expected. It also includes a dependence on one scalar field, as required by

its identification with the magnitude of a 1-form in the space transverse to the M-5-brane.1

Similarly, the dependence of the 3-brane charge Z on a complex scalar is required by its

interpretation as a transverse 2-form.

To establish the correctness of the above expressions, and similar expressions for the

magnitudes of charges carried by p-branes in other M-theory and Type II branes, one

could explicitly construct the supersymmetry generators as Noether charges and deter-

mine their algebra directly.2 Here we shall take an alternative path by showing that the

1The string charge Y also appears in [10], but in the context of the linearised five-brane theory in

the light-cone gauge. Note also that the strings considered there are non-self-dual dipole strings with

vanishing Y charge.
2For M-branes, the result of such a calculation is in principle implied by the results of [11, 12].

One should consider a combination of p-form charges associated to a 1
4 supersymmetric configuration of

intersecting M-branes and then project onto the subspace spanned by the supercharges linearly realized

on one brane.
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p-volume tensions of worldvolume p-brane solitons are bounded from below by expres-

sions that are precisely of the form (1.2). The method is similar to that employed in

[13] but differs in essential respects owing to the fact that brane actions are generally

non-quadratic in derivatives. However, the configurations saturating the bound are pre-

cisely those satisfying first-order BPS-type equations, the solutions of which are (in this

context) the worldvolume solitons found in [5, 6, 7, 8] which are known to preserve 1/2

of the supersymmetry.3

In the case of a single D-brane the worldvolume hamiltonian involves the Born-Infeld

(BI) U(1) 2-form field strength F . The particles on the D-brane that carry the electric

U(1) charges were called ‘BIons’ in [7], and we shall adopt this terminology here for

the supersymmetric solutions. BIons satisfy a BPS-type equation involving F , which

we shall call the ‘abelian BIon’ equation, but there is a natural non-abelian extension as

appropriate to multiple coincident D-branes. There is also a natural non-abelian extension

of the D-brane hamiltonian, natural in the sense that the energy bound of the abelian case

continues to hold but is saturated by solutions of the non-abelian BIon equations. One

can simply take this as the definition of the non-abelian BI theory in each case of interest.

One then finds, for example, that the monopole and dyon solutions of (3+1)-dimensional

supersymmetric non-abelian gauge theories are also solutions of the non-abelian D-3-

brane worldvolume equations. This approach is physically compelling and is simpler

than previous investigations of the effects of BI ‘corrections’ on BPS monopoles [15], but

it remains to be seen whether our definition of the non-abelian BI theory accords with

other definitions e.g. [16].

The worldvolume field equations of M-theory or Type II branes depend on the M-

theory or Type II background. The worldvolume solitons found in [5, 6, 7, 8] are 1/2

supersymmetric solutions of the worldvolume field equations in an M-theory or Type II

spacetime vacuum, by which we mean D=11 or D=10 Minkowski space with all other

space-time fields vanishing. Since an M-theory or Type II brane preserves half the su-

persymmetry of the spacetime vacuum, its worldvolume supersymmetry algebra has 16

supercharges.4 Each 1/2 supersymmetric worldvolume soliton must therefore correspond

to some p-form charge in one of the supersymmetry algebras with 16 supersymmetries

considered in [9]. The converse is not true, however, since some charges correspond

to brane boundaries, which are normally determined by imposing boundary conditions

rather than by solving field equations. An interesting exception to this is provided by

the endpoints of multiple coincident D-strings on D-3-branes, which are determined by a

solution of Nahm’s equations [17].

Each BPS-type equation can occur as the condition for the saturation of a bound on

the tension of more than one worldvolume brane, since many of the latter are related by

duality. We shall therefore order the presentation of our results in terms of the type of

BPS equation, choosing the simplest case to derive the bound that its solutions saturate.

3The solution in [5, 7] of relevance here was shown to be supersymmetric in [6, 14].
4The 16 non-linearly realised supersymmetries will not play a direct role in this paper.

3



J
H
E
P
0
1
(
1
9
9
8
)
0
0
3

We shall also consider them roughly in order of increasing complexity. We conclude with

a brief discussion of some unresolved puzzles.

2 Abelian vortices

We shall consider first a 0-brane soliton in the M-2-brane, arising from intersections with

other M-2-branes. This is associated with a scalar central charge Z in the M-2-brane’s

worldvolume supersymmetry algebra. It should be possible to express Z as an integral

over the 2-dimensional ‘worldspace’ of a two-form constructed from the two worldvolume

scalars defining the 2-plane of the second M-2-brane. Let U be a complex coordinate for

this 2-plane. The (real) charge Z must then take the form

Z =
i

2

∫
M2

dU ∧ dŪ . (2.1)

We shall now confirm the relevance of this charge by deriving a bound on the energy of

0-branes within the M-2-brane.

The phase space Lagrangian density for the M-2-brane, in the M-theory vacuum and

omitting fermions, is [18]

L = P · Ẋ − saP · ∂aX −
1

2
v(P 2 + det g) , (2.2)

where all fields depend on the worldvolume coordinates (t, σa) (a = 1, 2). The Lagrange

multiplier fields sa and v impose the ‘worldspace’ diffeomorphism and hamiltonian con-

straints, respectively. In the ‘physical’ or ‘static’ gauge (X0 = t, Xa = σa) the diffeomor-

phism constraint reduces to

Pa = P · ∂aX , (2.3)

where X are the eight worldvolume scalars describing transverse fluctuations and P are

their conjugate momenta. In this gauge the induced worldspace metric is

gab = δab + ∂aX · ∂bX . (2.4)

If we now restrict ourselves to static configurations, for which P = 0, then Pa = 0 too

and so all components of the 11-momentum density P vanish except P 0 = E , the energy

density. The hamiltonian constraint now reduces to

E2 = det g

= 1 + |∂1X|
2 + |∂2X|

2 + |∂1X|
2|∂2X|

2 − (∂1X · ∂2X)2 . (2.5)

Since we expect only two scalar fields to be of relevance we shall simplify our task by

setting to zero all but two of the eight scalars X, in which case5

E2 = 1 + |~∇X|2 + |~∇Y |2 + (~∇X × ~∇Y )2

= (1± ~∇X × ~∇Y )2 + |~∇X ∓ ?~∇Y |2 , (2.6)

5Retention of the others six scalars leads to additional positive semidefinite terms which vanish when

the six scalars are constants.
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where X and Y are the two scalars, and we use standard vector calculus for E2, with

~∇ = (∂1, ∂2) ? ~∇ = (∂2,−∂1) . (2.7)

We deduce that

E − 1 ≥ |~∇X × ~∇Y | , (2.8)

with equality when
~∇X = ± ? ~∇Y . (2.9)

We may define the total energy relative to the worldvolume vacuum as

E =
∫
M2

(E − 1) . (2.10)

The bound on E implies the bound6

E ≥ |Z| (2.11)

where Z is the topological charge

Z =
∫
M2

dX ∧ dY . (2.12)

This bound will be saturated by solutions of (2.9) if, for these solutions, the charge

density is (positive or negative) semi-definite. This condition is satisfied because for

solutions of (2.9) the charge density equals ±|~∇X|2. Thus, the total energy is bounded

by the magnitude of the charge Z and is equal to |Z| for solutions of (2.9).

The equations (2.9) are equivalent to the Cauchy-Riemann equations for the complex

function U = X+iY of the complex variable σ1+iσ2. In other words, the energy bound is

saturated by holomorphic functions U , and the energy is then the magnitude of a charge

of the form (2.1), as claimed. Singularities of the holomorphic function U represent

‘vortices’ on the M-2-brane. These have been discussed in detail in in [5, 7]; we shall call

them ‘abelian vortices’ for reasons that will become apparent later. Essentially the same

solution was used in [8] as the M-5-brane worldvolume field configuration representing a

3-brane, which therefore accounts for the form of the 3-brane charge given in (1.2). The

fact that the same solution serves in both contexts is to be expected from the equivalence

under spacetime duality of the intersecting brane configurations associated with the M-

2-brane vortex and the M-5-brane 3-brane. There is, however, an additional feature of

the energy bound in the M-5-brane context. One must introduce constant worldvolume

vector fields associated with the 3-brane worldvolume directions; one then finds that the

saturation of the bound requires the vanishing of the derivatives of all worldvolume fields

in these 3-brane directions. This point will be illustrated later with the M-5-brane string

soliton so we pass over the details here.

6A related bound was discussed in [7].
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3 D-brane solitons

The phase-space form of the DBI worldvolume Lagrangian density, in the D=10 spacetime

vacuum and omitting fermions, is [19]

L = P · Ẋ + EaV̇a + Vt∂aE
a − sa(P · ∂aX + EbFab)

−
1

2
v[P 2 + EaEbgab + det(g + F )] , (3.1)

where Ea is the worldspace electric field and Fab the worldspace magnetic 2-form for

the BI gauge potential V = dtVt + dσaVa. The component Vt imposes the Gauss law

constraint on the electric field. The Lagrange multipliers sa and v impose the worldspace

diffeomorphism and hamiltonian constraints, respectively.

In static gauge the s-constraint becomes

Pa = −P · ∂aX−E
bFab , (3.2)

where X are the worldvolume scalars transverse to the D-brane and P their conjugate

momenta. In addition, the worldspace metric gab again reduces to the form given in (2.4).

We shall now restrict to static configurations for which Ẋ = 0 and P = 0. In this case

the 10-vector P is

P = (E ,−EbFab, 0) , (3.3)

where E is the energy density, and the hamiltonian constraint yields

E2 = EcEdFacFbdδ
ab + EaEbgab + det(g + F ) . (3.4)

We now consider how this formula may be rewritten as a sum of squares, in various special

cases.

3.1 BIons

For purely electric configurations on the D-brane worldvolume we set Fab = 0 to get

E2 = EaEbgab + det g . (3.5)

We expect purely electric solutions to arise as endpoints of strings, the string specifying

a direction in the transverse space with coordinates X. We therefore set all but one of

these transverse fluctuations to zero, in which case

gab = δab + ∂aX∂bX , (3.6)

where X is the one non-zero scalar. Then det g = 1 + (∂X)2 and we can rewrite (3.5) as

E2 = (1± Ea∂aX)2 + (E ∓ ∂X)2 . (3.7)

We deduce that

E − 1 ≥ |Ea∂aX| , (3.8)

6
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with equality when

Ea = ±∂aX . (3.9)

The total energy E relative to the worldvolume vacuum is therefore subject to the

bound

E ≥ |Zel| (3.10)

where Zel is the charge

Zel =
∫
W
Ea∂aX , (3.11)

where W is the D-brane worldspace. The form of this charge is expected from the fact

that electric scalar charges in the worldvolume supersymmetry algebra are transverse 1-

forms (arising from the reduction of the 10-momentum of the N=1 D=10 supersymmetry

algebra). The bound (3.10) on the energy is saturated by solutions of (3.9) since the

charge density is clearly semi-definite for such solutions.

Because of the Gauss law constraint on electric field, solutions of (3.9) correspond to

solutions of ∇2X = 0, i.e. to harmonic functions on worldspace. Isolated singularities

of X are the charged particle solutions found in [5, 7]. For D-P-branes with P ≥ 3 the

simplest solution is

X =
q

ΩP−1rP−2
, (3.12)

corresponding to a charge q at the origin, where ΩP is the volume of the unit P -sphere.

Gauss’s law allows us to write the energy as an integral over a (hyper)sphere of radius ε

surrounding the charge. Since X = X(ε) is then constant over the integration region we

have

E = lim
ε→0
|X(ε)

∫
r=ε

~dS · ~E|

= q lim
ε→0

X(ε) . (3.13)

As pointed out in [5, 7], the energy is infinite since X →∞ as ε→ 0, but the infinity has

a physical explanation as the energy of an infinite string of finite, and constant, tension

q.

The D-string is a special case of particular interest. In this case7

Z =
∫
D1
EX ′ (3.14)

Gauss’s law implies that the electic field E is locally constant but it must have a disconti-

nuity at the endpoint of the F-string (F for ‘Fundamental’) because this endpoint carries

electric charge. We may suppose that this charge is at the origin σ = 0 on the D-string

and that E = 0 when σ < 0. If we further suppose that X(0) = 0 then

Z = E lim
L→∞

X(L) , (3.15)

7To avoid possible confusion with the total energy, we remark that the letter E is reserved exclusively

for the electric field in the passage to follow.
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where E is the constant value of the electric field for σ > 0. This is formally infinite

because X(L) grows linearly with L, but the infinity again has a physical interpretation

as the energy in an infinite string of tension E. Since E = dX we see that the D-string

configuration with energy |Z| is

X(σ) =
{

0 σ < 0

Eσ σ > 0
, (3.16)

so that a IIB F-string ending on a D-string produces, literally, a kink in the latter. This

point (in the context of the leading terms in the expansion of the BI action) has recently

been made independently in an interesting paper [20] which we became aware of while

writing up this article.

3.2 BI Instanton

Let us consider the case of the D-4-brane. The worldvolume superalgebra allows scalar

central charges in the 1⊕ 5 representations of the Spin(5) R-symmetry group, which we

interpret as the transverse rotation group. The scalars in the 5 representation can be

interpreted as the endpoints of fundamental strings on the D-4-brane, which is the D-4-

brane subcase of the purely electric case considered above. The Spin(5) singlet scalar

is a magnetic charge, so we set the electric field to zero. The magnetic charge on the

D-4-brane corresponds to a spacetime configuration in which a D-0-brane ‘intersects’ a

D-4-brane. Because it is a singlet its charge cannot depend on any of the transverse

scalars X. We therefore set these to zero. We then have

E2 = det(δab + Fab)

= (1∓
1

4
trFF̃ )2 −

1

4
tr(F ∓ F̃ )2 , (3.17)

where F̃ is the worldspace Hodge dual of F . The trace is over the ‘worldspace’ indices,

i.e. trF 2 = FabF
ba, but we can suppose it to include a trace over u(n) indices in the case

of n coincident D-4-branes. In either case we deduce that

E ≥ 1∓
1

4
trFF̃ , (3.18)

with equality when F = ±F̃ . The total energy E , relative to the worldvolume vacuum is

therefore subject to the bound

E ≥ |Z| (3.19)

where Z is the topological charge

Z =
1

4

∫
D4

trFF̃ , (3.20)

with equality when F satisfies

F = ±F̃ . (3.21)

In the non-abelian case this is solved by (multi) instanton configurations. In the abelian

case, any solution must involve a singular BI gauge potential, but the energy will remain

finite as long as the charge is finite.
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3.3 BI dyons

Consider now the D-3-brane. In this case, the endpoint of a (p,q) string will appear in

the worldvolume as a dyon. We should therefore allow for both magnetic and electric

fields, and one non-zero scalar. Thus, we have

E2 = EaEb(δab + ∂aX∂bX) + det(δab + ∂aX∂bX + Fab) + EaEbFacFbd δ
cd . (3.22)

Defining

Ba =
1

2
εabcFbc (3.23)

and expanding the 3 × 3 determinant, we can rewrite this in standard vector calculus

notation as

E2 = 1 + |~∇X|2 + | ~E|2 + | ~B|2 + ( ~E · ~∇X)2 + ( ~B · ~∇X)2 + | ~E × ~B|2

= (1 + sin ϑ ~E · ~∇X + cosϑ ~B · ~∇X)2 + | ~E − sin ϑ ~∇X|2 + | ~B − cos ϑ ~∇X|2

+ | cosϑ ~E · ~∇X − sin ϑ ~B · ~∇X|2 + | ~E × ~B|2 , (3.24)

where the second equality is valid for arbitrary angle ϑ. We therefore deduce that

E2 ≥ (1 + sinϑ ~E · ~∇X + cosϑ ~B · ~∇X)2 (3.25)

for arbitrary ϑ. Taking the square root and then integrating over the worldvolume of the

D-3-brane we deduce that the total energy, relative to the D-3-brane vacuum, satisfies

the bound

E ≥
√
Z2
el + Z2

mag , (3.26)

where

Zel =
∫
D3

~E · ~∇X Zmag =
∫
D3

~B · ~∇X . (3.27)

The bound is saturated when

~E = sin ϑ ~∇X , ~B = cos ϑ~∇X , (3.28)

with

tanϑ = Zel/Zmag . (3.29)

Since both ~E and ~B are divergence free (the latter as a consequence of the Bianchi

identity), X must be harmonic, i.e.

∇2X = 0 . (3.30)

Given a harmonic function X, the electric and magnetic fields are then determined by

(3.28). A BI dyon is then an isolated singularity of X. Again, all these formula have a

natural non-abelian extension, but we shall continue to assume a U(1) group for ease of

presentation.
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For simplicity, let us choose the solution for which

cosϑX =
g

4πr
, (3.31)

where r is the radial coordinate for E3. Then the fact that ~E and ~B are divergence free

allows us to rewrite each charge as the ε→ 0 limit of an integral over a sphere of radius

ε centred on the origin. Since X is constant over this sphere we have

Zel = e lim
ε→0

X(ε) Zmag = g lim
ε→0

X(ε) , (3.32)

where we have set e = g tanϑ. Thus

E =
√
e2 + g2 lim

ε→0
X(ε) . (3.33)

This is infinite since X increases without bound as ε→∞, but the infinity has a physical

interpretation as the total energy of an infinite string of finite tension

T =
√
e2 + g2 , (3.34)

as one expects for a (p, q) string emanating from the D-3-brane.

3.4 Non-abelian vortex

The BPS equations for the BI magnetic monopole in the D-3-brane are just the dimen-

sional reduction of the self-duality equations for the BI instanton in the D-4-brane. This

follows from the fact that a D-0-brane in a D-4-brane is T-dual to a D-string ending

on a D-3-brane. If the starting point is a single D-4-brane, with U(1) gauge potential,

then a further dimensional reduction yields the abelian vortex equations discussed pre-

viously, corresponding to the fact that the D-string ending on a D-3-brane is T-dual to

two D-2-branes intersecting at a point. This configuration is the obvious reduction of

the similar one involving two M-2-branes. However, we could also start from a multi

D-4-brane worldvolume with non-abelian gauge potential. In this case T-duality takes

the non-abelian instanton into a non-abelian monopole. Further T-duality leads to what

we may call a non-abelian vortex. We may obtain the expression for the energy density

by dimensional reduction of (3.17). To this end, we define

V3 = X V4 = Y (3.35)

both in the adjoint representation of some non-abelian Lie algebra. Then

E2 =
[
1± tr( ? F [X, Y ]−DX ×DY )

]2

+ tr|DX ± ?DY |2 + tr(?F ∓ [X, Y ])2 , (3.36)

so that we deduce the bound

E − 1 ≥ ±( ? F [X, Y ]−DX ×DY ) , (3.37)
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which is saturated when

DX = ∓ ? DY ? F = ±[X, Y ] , (3.38)

which are the equations studied by Hitchin [21]. The total energy is therefore subject to

the bound

E ≥ |Z| , (3.39)

where Z is the topological charge

Z =
∫
D2

tr(
1

2
DX2 +

1

2
DY 2 + [X, Y ]2) . (3.40)

3.5 Nahm’s equations

A further T-duality of the two intersecting D-2-branes leads us back to a D-string ending

on a D-3-brane, but we now find BPS-type equations for the string’s worldvolume field.

These are just the dimensionally reduced version of Hitchin equations (3.38). Equivalently,

they are the self-duality equations for non-abelian F on the D-4-brane, dimensionally

reduced in three orthogonal directions. Let Xi = Vi, i = 1, 2, 3 (the components of

the Lie-algebra valued gauge potential in the three directions) and define D to be the

covariant derivative in the 4-direction. Then we arrive at

DXi = ±
1

2
εijk[Xj, Xk], (3.41)

which are Nahm’s equations. Solutions of these equations are associated with an energy

given by

E =
1

2
|
∫
D1
εijktr(DXi[Xj , Xk])| . (3.42)

and represent the intersection of multiple D-strings with D-3-branes. Since the D-strings

end on the D-3-branes we must impose suitable boundary conditions on the worldline

fields. In [22] it was argued in the context of the leading order terms in the BI action that

the appropriate supersymmetric boundary conditions are precisely those that lead to the

Nahm description of the moduli spaces of SU(k) monopoles, where k is the number of

D-3-branes. That the arguments in [22] are valid for the full BI gauge theory is supported

by our results.

A further dimensional reduction leads to BI quantum mechanics for U(n) matrices

describing the dynamics of n D-0-branes. The energy bound becomes

E ≥
1

2
|εijkltr(XiXjXkXl)| , (3.43)

where here Xi = Vi, i = 1, . . . , 4, and the bound is saturated for matrices satisfying

[Xi, Xj] =
1

2
εijkl[Xk, Xl] . (3.44)

Using the cyclic property of the trace we see that the right hand side of (3.43) vanishes

for finite dimensional matrices. Note that for infinite dimensional matrices such charges

correspond to longitudinal fivebranes in the matrix theory approach to M-theory [23, 24].
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4 String-in-fivebrane

The phase space Lagrangian density for the M-5-brane, in the M-theory vacuum and

omitting fermions, is [25]

L = P · Ẋ + ΠabȦab + λa∂bΠ
ab − sa(P · ∂aX − Va)

+ σab(Π
ab +

1

4
H̃ab)−

1

2
v[(P − gabVa∂bX)2 + det(g + H̃)] , (4.1)

where

H̃ab =
1

6
εabcdeHcde

H̃ab =
1

√
det g

gacgbdH̃
cd

Vf =
1

24
εabcdeHabcHdef , (4.2)

with ε the invariant worldspace tensor density (such that ε12345 = 1). Note that λa
imposes the Gauss law constraint on the electric 2-form Π. This becomes equivalent to

the Bianchi identity dH = 0 upon using the constraint imposed by the Lagrange multiplier

σab.

In static gauge, and restricting to static configurations, the s-equation implies Pa = Va,

so the hamiltonian constraint becomes

E2 = VaVbm
ab + det(gab + H̃ab) , (4.3)

where

mab = gaa
′
gbb
′
[∂a′X · ∂b′X + (∂a′X · ∂cX)δcd(∂b′X · ∂dX)] . (4.4)

The expansion of the determinant leads to terms quartic in H̃ , but the identity

det(H̃) ≡ VaVbg
ab (4.5)

allows these terms to be combined with the other terms quadratic in V , leading to the

result:

E2 = det g +
1

2
H̃acH̃bdgabgcd + VaVbδ

ab . (4.6)

We shall now set all but one of the transverse scalars to zero, in which case

E2 = 1 + (∂X)2 +
1

2
|H̃|2 + |H̃ · ∂X|2 + |V |2 . (4.7)

where X is the one non-zero scalar field and

|H̃|2 = HabHcdδacδbd

|H̃ · ∂X|2 = H̃abH̃cd∂bX∂dXδac

|V |2 = VaVbδ
ab . (4.8)
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We can rewrite this as

E2 = |ζa ± H̃ab∂bX|
2 + 2

∣∣∣∣∂[aXζb] ±
1

2
δacδbdH̃

cd

∣∣∣∣2
+ (ζa∂aX)2 + |V |2 , (4.9)

where ζ is a unit length worldspace 5-vector, i.e.

ζaζbδab = 1 . (4.10)

We may choose ζ5 = 1 and ζ â = 0, (â = 1, 2, 3, 4), in which case we deduce the inequality

E − 1 ≥ ±
1

6
εâb̂ĉd̂Hâb̂ĉ∂d̂X , (4.11)

with equality when

∂5X = 0 H5âb̂ = 0 (4.12)

and

H = ± ? dX , (4.13)

where, in the last equation, H is restricted to the 4-dimensional subspace of worldspace

orthogonal to ζ , which we shall call w4, and ? is the Hodge dual of w4.

Imposing periodic boundary conditions in the 5-direction so that the vector field ζ

has orbits of length L, we see that the total energy satisfies the bound

E ≥ L× |Z| , (4.14)

where Z is the topological charge

Z =
∫
w4

H ∧ dX . (4.15)

The tension T = E/L is therefore bounded by Z, as claimed in the introduction, with

equality for configurations satisfying (4.13). Because H is closed, this equation implies

that X is harmonic. Singularities of X are the strings found in [6]. The simplest solution

is obtained by choosing a single isolated point singularity at the origin. In this case the

energy integral can be rewritten as the small radius limit of a surface integral over a

3-sphere surrounding the origin. Since X is constant on this surface we deduce that the

string tension is given by

T = µ lim
ε→0

X(ε) , (4.16)

where

µ =
∫
S3
H (4.17)

is the ‘naive’ string charge defined by the 3-form flux through a 3-sphere surronding the

string in the 5-brane. The tension of this string is formally infinite since X(ε) increases

without bound as ε→ 0, but this is precisely what is expected if the string is the boundary

of a semi-infinite membrane.
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5 Discussion

There is a class of brane intersections for which no worldvolume soliton is known. This

class includes the case of two M-5-branes intersecting on a string, two D-4-branes inter-

secting on a point, and a D-0-brane in a D-8-brane. In the latter case, the 0-brane charge

is expected to be

Z =
∫
D8
F ∧ F ∧ F ∧ F . (5.1)

The charge in the two M5-brane case should be similar, and the other cases, which are

related by duality, are presumably obtained by dimensional reduction. By analogy with

the instanton case, we would expect a purely magnetic solution with all scalars constant.

For such configurations the energy density is given by E2 = det(δ + F ) which can be

rewritten as

E2 = (1± ?F 4)2 +
1

2
(F ∓ ?F 3)2 +

1

2.4!
(F 2 ± ?F 2)2 , (5.2)

where

?F 4 =
1

244!
εijklmnpqFijFklFmnFpq

(?F 3)ij =
1

233!
εijklmnpqFklFmnFpq

(?F 2)ijkl =
1

8
εijklmnpqFmnFpq

(F 2)ijkl = 3F[ijFkl] . (5.3)

We conclude that

E ≥ |Z| , (5.4)

but the bound cannot be saturated because the equations

F = ± ? F 3 F 2 = ∓ ? F 2 (5.5)

have no simultaneous solutions.8 We suspect that a resolution of this problem will involve

the V F 4 Chern-Simons term for the BI field that is required in a massive IIA background

[27], but we leave this to future investigations.

We should not conclude without a comment on the remarkable fact that the BPS-type

equations for ( supersymmetric) worldvolume solitons are linear, despite the non-linearity

of the action. The seems to be a special feature of M-brane and D-brane worldvolume

actions.
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