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Abstract
This study developed algorithms to decrease the arrhythmia false alarms in 
the ICU by processing multimodal signals of photoplethysmography (PPG), 
arterial blood pressure (ABP), and two ECG signals. The goal was to detect 
the five critical arrhythmias comprising asystole (ASY), extreme bradycardia 
(EBR), extreme tachycardia (ETC), ventricular tachycardia (VTA), and 
ventricular flutter or fibrillation (VFB). The different characteristics of the 
arrhythmias suggested the application of individual signal processing for 
each alarm and the combination of the algorithms to enhance false alarm 
detection. Thus, different features and signal processing techniques were used 
for each arrhythmia type. The ECG signals were first processed to reduce the 
signal interference. Then, a Hilbert-transform based QRS detector algorithm 
was utilized to identify the QRS complexes, which were then processed to 
determine the instantaneous heart rate. The pulsatile signals (PPG and ABP) 
were processed to discover the pulse onset of beats which were then employed 
to measure the heart rate. The signal quality index (SQI) of the signals was 
implemented to verify the integrity of the heart rate information. The overall 
score obtained by our algorithms in the 2015 Computing in Cardiology 
Challenge was a score of 74.03% for retrospective and 69.92% for real-time 
analysis.

Keywords: intensive care unit, photoplethysmography, arterial blood 
pressure, electrocardiogram, asystole, arrhythmia false alarm,  
signal quality index
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1. Introduction

An intensive care unit (ICU) involves a large number of medical devices, background noise 
and alerting signals of the devices with a number of attending medical staff (Donchin and 
Seagull 2002). An ICU aims to monitor the biological signals of patients in critical condi-
tions. The monitoring systems often incorporate alarms to attract staff attention (Donchin and 
Seagull 2002). The alarms from the physiological monitors can be classified into technically 
correct or false groups (Lawless 1994). False alarms are alerting signals of monitoring equip-
ment with no associated clinical cause (Chambrin et al 1999) or relation with life-threatening 
conditions of the patient (Donchin and Seagull 2002). Studies show that over 85% of the ICU 
alarms are false (Lawless 1994, Chambrin 2001, Sendelbach and Funk 2012) and that they 
have a number of negative effects. The extra noise generated by the false alarms negatively 
impacts the patient’s sleep and increases the stressors in ICU which can reduce the recovery 
rate (Novaes et al 1997). The unwanted alarms can also lead to vital monitoring equipment 
being switched off (Lawless 1994). Also, the medical staff lose sensitivity to frequent false 
alarms which in turn increases the likelihood of missing true alarms (Clifford et al 2006). 
Alarm fatigue is a destructive outcome of the large number of false alarms in ICU in which 
the clinical staff ignore the alerting signals or change the settings to a level of deactivation 
which has been identified as a critical health and safety problem (Sendelbach and Funk 2012).

The disruptive consequences of false alarms can be alleviated in two ways. The first solu-
tion is automatic detection of false alarms and the source of the alarm. Secondly, medical staff 
can help solve the issue by persistent observation of the systems and signals and diagnosing 
the false alarms (Imhoff and Kuhls 2006).

In this paper, we developed a signal processing system for automatic detection of the fol-
lowing arrhythmias: ventricular tachycardia (VTA), ventricular fibrillation or flutter (VFB), 
extreme tachycardia (ETC), extreme bradycardia (EBR) and asystole (ASY) by processing 
one or more of the following signals: the photoplethysmography (PPG), the arterial blood 
pressure (ABP), and two electrocardiogram (ECG) signals. To train and test our system, we 
have used the signals of the 2015 Computing in Cardiology Challenge Dataset. The detec-
tions are then used to assess the validity of alarms generated by ICU equipment with goal of 
identifying false alarms. The signal processing algorithms we describe here are the basis of 
our entry in the PhysioNet/Computing in Cardiology Challenge 2015. An early description 
of these algorithms were published in Computing in Cardiology Challenge 2015 (Sadr et al 
2015).

2. Input data

The input dataset was provided by the PhysioNet/Computing in Cardiology Challenge 2015 
(Clifford et al 2015). The dataset incorporates 1250 arrhythmia alarms which were selected 
randomly from four hospitals in US and Europe. Less than three alarms from the five arrhyth-
mia types were selected from an individual patient and they are often more than five minutes 
apart. The dataset was divided into 750 open-access recordings used as a learning set and 
500 recordings for test set which were hidden. Train and test set were comprised of sig-
nals recorded from different patients. Five hundred and ninety recordings in the training data 
included four signals comprising of two ECG signals and two pulsatile signals (the photople-
thysmogram (PPG) and arterial blood pressure (ABP)). While the first ECG signal was mostly 
lead II and the second ECG signal was mostly lead aVr, there were a number of recordings 
where different leads were recorded. One hundred and sixty recordings in the training data 
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comprised of three of the four signals listed above (i.e. two ECG and one pulsatile or one ECG 
and two pulsatile signals). Each patient had a maximum of two recordings of separate alarms 
in the dataset. The chosen recordings had been annotated by three or more experts and the 
alarm outcome was determined by agreement of at least two-thirds of the experts. Recordings 
that did not have a two-thirds agreement were excluded. Each alarm was annotated as ‘true’, 
‘false’, or ‘impossible to tell’. Each record includes an alarm at the fifth minute from the start 
of the record and the corresponding arrhythmia event happens within ten seconds of the alarm. 
If further arrhythmias occurred before the fifth minute of a record, they were not annotated. 
The repeated alarms and information from alarms prior to the annotated one are not employed 
to reduce the probability of transferring errors from one alarm to the next one. Resampling 
was applied to the four sensor signals at the rate of 250 Hz, 16 bit. Band pass filtering in the 
range of 0.05–40 Hz was implemented with an FIR filter. Also, common notch filters were uti-
lized for noise removal of powerline noise. Pacemaker and other noise artefacts still existed in 
the ECG signals. In some cases, movement artefacts, failure in sensor connection, line flush, 
coagulation and other interferences also influenced the pulsatile signals.

3. Signal analysis

The block diagram of the proposed system for false arrhythmia alarm detection is shown in 
figure 1. A high level description of system is provided here and more detail is given in sec-
tions 3.1–3.3. The top-down order of the signal blocks represents the priority for signal selec-
tion in the analysis process.

VTA detection relied solely on features extracted from the ECG signals which were pro-
cessed without noise removal and using template matching. QRS detection was applied to 
the ECG for identification of QRS complexes. A reference waveform template was generated 
from the first QRS and subsequent QRSs were compared to the reference to determine if they 
were irregular beats. If five or more beats were deemed irregular in the alarm segment then the 
VTA alarm confirmation was set to true, otherwise it was set to false.

The alarm confirmation procedure of asystole and tachycardia were similar. First, signal 
interference was removed from the ECG signals. QRS beats were detected from the clean 
ECG signals and discriminating features were extracted. A segment of the ECG signal con-
taining the alarm was identified and SQI measurements determined. A similar process was 
applied to the ABP and PPG signals resulting in SQI and feature values. Finally, for the alarm 
segment, the features of the ECG signals, the ECG SQI measures, the features and SQI meas-
ures of the available pulsatile signals served as inputs to assess the validity of the tachycardia 

Figure 1. Block diagram of the proposed system for arrhythmia false alarm detection 
in the ICU. Abbreviations: arterial blood pressure (ABP), electrocardiogram (ECG), 
signal quality index (SQI), ventricular flutter or fibrillation (VFB), ventricular 
tachycardia (VTA).
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alarms. Processing for the asystole alarm evaluation was similar except that we did not use the 
SQI measures of the ECG signals.

The process of detecting bradycardia and VFB false alarms were identical. The pulsa-
tile signals were employed to diagnose these two arrhythmias. After distinguishing the onset 
beats of ABP signals, features were measured and the segment of the alarm was identified for 
criteria assessment and SQI evaluation. The available pulsatile signals, ABP and PPG, were 
processed similarly, with the exception of the PPG processing which included a quantile seg-
mentation step prior to onset detection. This was followed by feature extraction and identify-
ing the alarm segment and the features in that segment. Finally, the SQI of the alarm segment 
was measured and the features from available ABP and PPG with their SQI measures were 
used to confirm the bradycardia or VFB alarm status.

In the following sections, we first describe the signal processing methods for interference 
removal, heartbeat identification, SQI measurement and feature extraction for the ECG, PPG 
and ABP signals. We then describe our hierarchical processing of the ECG and pulsatile sig-
nals to determine the final alarm status.

3.1. ECG signals

In order to diagnose the high risk arrhythmias, the ECG signals are functional and informative. 
The recordings in the Challenge dataset are comprised of lead II and/or lead aVr and/or other 
leads. The block diagram of the proposed system to detect false arrhythmia alarms in the ICU 
containing the ECG signal processing algorithm is shown in figure 1. The ECG signals are 
mostly corrupted by movement artefact, pacemaker, and fibrillator signals. A first step was to 
detect and remove these artefacts. Filtration, described below, was applied to the raw ECG sig-
nals to remove the unwanted interference. The filtered signals were then processed to find the 
QRS complexes. After calculation of RR-intervals from the QRS detection points and apply-
ing the above signal processing steps, there were still QRS complexes in some recordings that 
were not detected successfully. To attempt to recover these missed signal beats, we detected 
heart beats in the other sensor channels and then used the beat detections across all channels to 
obtain an enhanced recognition. The final step was feature extraction for arrhythmia detection.

3.1.1. Interference removal. The ECG signals of the challenge database were distorted by 
motion artefact, powerline interference, baseline drift, displacement of sensors and instru-
mentation noise produced by pacemakers. Baseline drifts lead to deformation of the ST seg-
ment which plays an important role in arrhythmia detection, results in failure in false alarm 
recognition. Thus, elimination of baseline wander is an essential part of interference removal 
for detecting arrhythmias and false alarms.

Interference removal was performed by applying filters for noise reduction. The ECG sig-
nals of the database were distorted by baseline wander noise which originated from move-
ment, respiration and perspiration affecting the electrode impedance (Tinati and Mozaffary 
2006). Baseline wander noise affects the low frequency component of the ECG signals (Jain 
and Shakya 2014) and can influence the clinical interpretation of ECG signal. In this study, 
baseline wander noise was removed by two median filters (de Chazal et al 2003). The first 
median filter with 200 ms width is applied to remove the QRS complexes and P waves. Then, 
the resulting PQRS-free signal is used to apply the second median filter. The width of the 
second median filter was 600 ms to eliminate T waves. Thus, the output of the second median 
filter did not include the information from the ECG waves and contained only the baseline 
wander. By subtracting the output of the second median filter from the raw input ECG signals, 
the resulting signal contained the P-QRS-T complexes minus baseline wander. This method 
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was applied to both available ECG signals of each recording. The result of implementing this 
algorithm on an ECG signal of the Challenge training set is shown in figure 2, where baseline 
wander noise is easily seen in figure 2(a) of the ECG recording (a64). The resulting signal 
after this interference removal is shown in figure 2(b) which reveals that interferences includ-
ing the baseline wander were appropriately eliminated. Subsequent to interference removal 
and denoising the ECG signals, QRS detection was applied to the signals. Reliable identifica-
tion of QRS complexes is difficult due to the changing nature of their morphology and the 
influence of unwanted interference on the ECG signal (Thakor et al 1984). By removing the 
unwanted interference from the ECG signals, we can improve the likelihood of successful 
arrhythmia detection. The other important factor is the changing morphology of the QRS 
complexes which were taken into account in the utilized QRS detection algorithm explained 
in the following section.

3.1.2. RR interval and signal segment selection. The first step toward feature extraction for 
arrhythmia recognition by ECG signal is QRS detection. There are various QRS detection 
algorithms but selecting a reliable method is highly significant for false arrhythmia alarm 
recognition. In this work, the QRS complexes were identified by a Hilbert transform based 

Figure 2. Sample result of applying interference removal to ECG signal (a64) and 
noise removal. (a) Raw ECG lead II with Asystole as a false alarm. (b) The result of 
applying interference removal on the input ECG. Stars are the R peaks detected by 
Hilbert QRS algorithm.

Figure 3. Result of the application of Hilbert QRS detector on ECG II signal after 
interference removal.

N Sadr et alPhysiol. Meas. 37 (2016) 1340
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algorithm (Benitez et al 2001). The result of applying Hilbert QRS detector on an ECG signal 
of the Challenge training set which contains missing values is shown in figure 3. The Hilbert 
QRS detector employed in this study (Shouldice et al 2004, Redmond and Heneghan 2006) 
was tested on various ECG signals and leads. It was reported to reliably detect QRS com-
plexes of all common leads with a satisfactory noise tolerance (Shouldice et al 2004). The 
algorithm used in this paper was previously tested on the MIT-BIH Arrhythmia database and 
obtained 98.4% positive predictive accuracy and sensitivity of 98.5% (Hickey et al 2004).

Finally, the QRS detections were used for feature extraction. The RR-intervals were deter-
mined by calculating the time difference between two adjacent QRS detections. Then, the 
information closer to the alarm is utilized for false alarm identification. Thus, the segment 
comprising the alarm is selected for arrhythmia recognition. In this study, the alarm segment 
begins 16 s prior to the alarm and is ended by the alarm which occurs at the fifth minute of 
the signal.

3.1.3. ECG SQI. Visual observation of QRS detection points and corresponding RR intervals 
revealed that some of the heart beats were missed or falsely detected. Missing value intervals 
and noisy alarm segments can produce issues in signal processing and suspect QRS detection 
points. Also, ECG artefact was reported as a reason for false arrhythmia alarms (Aboukhalil 
et al 2008). Therefore, before further processing, the quality of the ECG signal was assessed.

In order to assess the quality of the ECG signal, signal quality index (SQI) was exploited to 
determine if it possessed reliable information for false alarm detection. The signal evaluation 
index has been widely studied (Silva et al 2011, Clifford and Moody 2012).

In this paper, four tests were applied to determine the ECG SQI. If the alarm segment 
satisfied the tests, it was allowed to proceed for further processing. The first test determined 
if the segment was empty. No heart beat in the segment indicated a failure of the heart beat 
identification algorithms and was indicative of the presence of significant signal interference. 
In the second test, the number of the detected QRS detection complexes or the available 
beats of each ECG signal was measured in the segment. This test allowed recognition of the 
signals with a high proportion of missing heart beats and the inspection of the proportion of 
motion artefact, failure in sensor attachment and other noises in the segment. The minimum 
number of beats was set to ten beats. If an ECG signal segment contained less than this mini-
mum, it was not considered further in arrhythmia detection. The third test was the maximum 
RR-interval or minimum heart rate. This test examines the physiological reliability of the 
heart rate and indicates the noisy alarm segments and missed QRS complexes. The maximum 
measure of the third test was set to six seconds. If all RR-interval in a segment were less than 
six seconds, the test was passed. The fourth ECG SQI test was the standard deviation of the 
ECG in the segment containing the alarm. This test helps identify the segments with a high 
percentage of noise and artefact. The optimum standard deviation was adopted as 0.05 over 
the whole segment. These tests address most of the observed corruptions on the ECG signals 
comprising the level of noise and the percentage of missed or spurious QRS detections in the 
segment. The output of the ECG SQI algorithm determines whether the ECG signal is satis-
factory for next processing.

It should also be noted that not all steps of the ECG SQI were evaluated for all of the 
arrhythmia detections. Studies identified that SQI evaluation diminished the accuracy of 
arrhythmia diagnosis due to their noisy manifestation (Behar et al 2013). Since the behaviour 
of some of the arrhythmias such as VTA is homogenous to noise structure, ECG SQI reduced 
the performance and was removed from the false alarm detection of those arrhythmias. Further 
details will be described in section 3.3.

N Sadr et alPhysiol. Meas. 37 (2016) 1340
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3.2. Pulsatile signals

It is reported that implementation of pulsatile signals which contain cardiac cycles improves 
the diagnosis of false arrhythmia alarms when combined with cardiac cycle information from 
ECG signals (Aboukhalil et al 2008). In the PhysioNet/CinC Challenge 2015 dataset, one or 
both arterial blood pressure (ABP) and photoplethysmogram (PPG) signals were available and 
we utilized them to reduce the false alarm rate. The signal processing algorithms of the sample 
submission provided by the PhysioNet/CinC Challenge 2015 were utilized for determining 
the beat onset points from the pulsatile signals and arrhythmia identification in this study. We 
provide a short description of these algorithms in the next sections.

3.2.1. ABP signal. Arterial blood pressure (ABP) was another signal used to verify the false 
arrhythmia alarms. As it is recorded separately to the ECG leads, it rarely contains identical 
interference to the ECG signal (Aboukhalil et al 2008). Also, ABP is regarded as the pressure 
signal with the least noise and artefact (Clifford et al 2006).

There were three PhysioNet open-source algorithms employed to process the ABP. In 
order to find the onset of the ABP pulses, the ‘wabp’ algorithm was executed on ABP signal 
(Goldberger et al 2000). The Length transform is exploited in this technique (Zong et al 2003) 
and noise removal and feature enhancement was applied through the algorithm. Following 
this, ABP features were calculated with the ‘abpfeature’ algorithm. The features include 
systolic pressure, diastolic pressure, systolic area, and mean pressure on the onset beats of 
the ABP pulses. Next, ABP quality index (SQI) was estimated by the ‘jSQI’ algorithm at 
each ABP detected beats (Sun et al 2004). The ABP SQI algorithm explores if the features 
are physiologically plausible. The features that were not clinically reliable were eliminated. 
Lastly, the time between the pulse onsets in the ABP signal was measured to generate pulse 
intervals of ABP signal to be used for further signal processing.

3.2.2. PPG signal. The other pulsatile signal used for false alarm detection was the pho-
toplethysmogram (PPG) which was available in many of the recordings in the learning set of 
PhysioNet/CinC Challenge 2015. The open-source PhysioNet algorithms were employed to 
process the PPG signal. Firstly, the signal was divided into three partitions by the open-source 
‘quantile’ algorithm. The three quantiles used were 5%, 50% and 95%. Next, the subtraction 
of third quantile and first quantile was measured and employed to detect pulse onsets. The 
onset beats of the PPG waveform was verified with ‘wabp’ algorithm (Goldberger et al 2000). 
Then, the pulse intervals were measured by the difference of the adjacent onset beats and used 
to calculate the heart rate. Finally, the PPG signal quality was evaluated with ‘ppgSQI’ algo-
rithm through a beat template correlation technique.

3.3. Alarm detection

The segment containing the alarm from the available signals of each recording was selected 
from the 16 s prior to the alarm ending. The heart rates and intervals corresponding to the 
alarm segment were used for further signal processing. This study aimed to recognize the false 
arrhythmia alarms in real-time and avoid using the data following the alarm occurrence. Our 
proposed algorithm can also be implemented in a retrospective manner which uses the infor-
mation after the alarm. In the PhysioNet/CinC Challenge 2015 dataset, the alarms were set to 
appear at five minutes after the beginning of the signal. To guarantee alarm inclusion in the 
segment, the segment started 16 s before the alarm time. Next, the beats in the alarm segment 
were identified for the available signals of each recording and the corresponding RR-intervals, 

N Sadr et alPhysiol. Meas. 37 (2016) 1340



1347

pulse intervals and heart beats were chosen. Finally, the features were calculated from the 
heart rates, RR-intervals or pulse intervals of the pulsatile waveforms. It should be noted that 
signal processing for each arrhythmia alarm condition were separately executed with different 
models and features (Behar et al 2013).

3.3.1. Multimodal signal. Interference in the ECG signal could be a source of the false 
arrhythmia alarms. Using other leads of the ECG signal simultaneously with other signals to 
combine the information could improve the diagnosis (Aboukhalil et al 2008). Thus, exploit-
ing information from multimodal signals enhances the arrhythmia detection. It was reported 
that false arrhythmia alarms were better recognized by multimodal signal fusion which was 
widely discussed in the PhysioNet/Computing in Cardiology Challenge 2014 (Moody et al 
2014). Various algorithms studied robust detection of the heart beats for multimodal record-
ings and signal fusion purposes (Silva et al 2015).

The highest score of the challenge was achieved by a SQI based method (Johnson et al 
2015). They noted that the onset of the ABP pulses appear with a delay after the heart pumps 
blood out of left ventricle. The delay between detected onset beats of the blood pressure wave-
form and R peaks of the ECG signals were collected and the R peaks were matched according 
to the delay (Silva et al 2015). Then, the SQI measures of the signals were used to identify the 
high quality signal (ECG or ABP) which was then used for heart beat detection (Johnson et al 
2015). A major focus was on employing different peak detectors for blood pressure and ECG 
signal to compare and evaluate their detection outcome.

In our study, the Hilbert QRS detector identified the QRS complexes with a decent acc-
uracy (Hickey et al 2004, Shouldice et al 2004). So the QRS detections of the ECG signals 
were reliable measures with which to proceed the signal processing and advance to the pulse 
onsets of pulsatile signals provided by ‘wabp’ algorithm. Also the accuracy of the Hilbert 
QRS detector implied that application and comparison of other peak detectors for ECG sig-
nals is not essential.

Considering the available signals in the majority of the training set, the signals were pri-
oritized from ECG signals to the pulsatile signals for feature extraction. However, unwanted 
interferences can corrupt the signal properties which are significant measures for arrhythmia 
detection. As previously mentioned, the noisy signals are known as a major source of false 
arrhythmia alarms (Aboukhalil et al 2008). Thus, the SQI of the signals were evaluated to 
identify noisy signals. If the signal passed the SQI tests, then features of the signal were 
extracted. The signal SQI measures were processed in the following order of first available 
ECG, second ECG, ABP and PPG. The SQI of the ECG signals was evaluated as explained 
in section 3.1.3. For all alarms with the exception of bradycardia and VFB, the result was 
decided based on the highest priority signal with the best quality of those considered and the 
alarm suppression or trigger was determined by that signal. For bradycardia and VFB, all con-
sidered signals satisfying the quality criteria were used in the decision-making process. The 
algorithm has been shown in the block diagram of the system in figure 1.

Combining the features and information of multimodal signals and evaluating the signal 
quality addressed the intervals with missing values or noises such as failure in sensor attach-
ment and motion artefact as an observed issue in the challenge training set. This approach 
with multimodal signals benefits false arrhythmia alarm assessment in dealing with signals 
recorded in a real environment. This paper analyzed each arrhythmia through a different 
approach which will be explained in the following section. The contribution of each signal of 
training data in arrhythmia alarm detection is shown in table 1. It was identified after imple-
menting and running the algorithm with the training set. It could be seen that multimodal 
signals benefit the arrhythmia recognition differently with various usage distributions. For 
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instance, the table demonstrates that 75.4% of the asystole alarms were detected by the first 
ECG signals and 13.9% of the asystole alarms were detected by PPG signals. Only 5.7% of 
the asystole alarms could not be suppressed using any of the four input signals.

3.3.2. Asystole detection. Asystole (ASY) was defined as an absence of a heart beat for at least 
four seconds (Clifford et al 2015). Thus, the minimum threshold for asystole detection was set 
to four seconds with a tolerance of 0.5 s. The priorities of signals used for asystole detection 
were defined as the first ECG, followed by the second ECG followed by the available pulsatile 
signals. The criteria for using the ECG signals encompassed successful beat detection, a maxi-
mum RR-interval of less than the defined threshold for signal quality and a standard deviation 
(SD) within the defined threshold. This was less restrictive for use of the lower priority pulsatile 
signals where an availability of detected beats was sufficient. As is shown in the block diagram 
of the system in figure 1, the ECG SQI measures were not employed in asystole detection. This 
algorithm design decision was made as we found that implementing SQI measures tended to 
knock out heart beats, which increased the likelihood of false asystole alarm detections. The 
first signal to satisfy the aforementioned selection criteria was then used to determine the alarm 
result. The feature used for asystole was the maximum RR-interval of the segment which, if 
above the specified threshold and tolerance, triggered an alarm and otherwise, suppressed it. An 
alarm on the selected sensor resulted in the final decision being set to true alarm.

3.3.3. Extreme bradycardia detection. Extreme bradycardia (EBR) was defined as five con-
tinuous beat intervals greater than 1.5 s (Clifford et al 2015). We detected extreme bradycardia 
by processing the estimated minimum heart beats and identifying five or more consecutive 
beats with intervals exceeding 1.5 s. The pulsatile signals were exploited for EBR alarm rec-
ognition and the minimum heart rate of the available ABP and PPG signals were measured. 
Five or more consecutive beats with intervals exceeding 1.5 s were identified. The average 
heart rate of the beats were calculated and the minimum of these average heart rates in the 
alarm segment was recognized as the features called ‘Low HR’. Firstly, the SQI of the pulsa-
tile signal was assessed. The SQI threshold for pulsatile signals set to 0.9. If the SQI of the sig-
nal satisfied the threshold, then the alarm segment was checked if it contained beats meeting 
the above criteria. If the feature was over the threshold with the tolerance for either pulsatile 
signals of ABP or PPG, the alarm was set to true. Otherwise, the alarm was assigned to false.

3.3.4. Extreme tachycardia detection. Extreme tachycardia (ETC) was defined as a heart rate 
elevation of more than 140 beats per minute for 17 consecutive beats (Clifford et al 2015). The 
algorithm begins with processing the first ECG signal, followed by the second ECG and the 
pulsatile signals, in the same order as that for asystole detection. The last feature of the ECG 
SQI which was the standard deviation of the segment was omitted in the SQI evaluation for 
tachycardia alarm detection. Instead, a minimum number of beats defined for tachycardia served 

Table 1. The use of each signal in the decision criteria for each arrhythmia in the 
training set.

Signals Asystole (%) Bradycardia Tachycardia VFB VTA

First ECG 75.4 Not used 100% Not used 88.6%
Second ECG 1.6 Not used Not used Not used 3.2%
ABP 3.4 10.1% Not used 22.4% Not used
PPG 13.9 13.5% Not used 8.6% Not used
Not suppresseda 5.7 76.4% 0% 69.0% 8.2%

a Algorithm was not able to suppress the alarm using any of the four input signals.
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as an additional criterion for signal selection. This threshold was set to 11, which was chosen 
based on an iterative process, varying the threshold and adjusting according to the tachycardia 
detection performance on the training set. If ECG SQI reported a high quality signal and there 
was a sufficient number of beats detected in the segment, the signal was utilized for the next 
phase of tachycardia detection. Tachycardia minimum threshold was set to 110 bpm with a 
tolerance of 10 bpm. For the ABP signal, the SQI was compared to the threshold of 0.9 and the 
number of identified beats in the alarm segment was compared to the minimum acceptable beats 
for tachycardia detection. The heart rates from the selected signal were then able to trigger an 
alarm in two ways; the first was if the number of beats exceeded 30 for the acquired segment 
or secondly, if the number of beats above the tachycardia threshold and tolerance exceeded the 
minimum acceptable beats. If neither of these criteria were fulfilled, the alarm was suppressed.

3.3.5. Ventricular tachycardia detection. Ventricular tachycardia (VTA) was defined as five 
or more ventricular beats with heart rate higher than 100 beats per minute (Clifford et  al 
2015). Diagnosis of VTA was obtained by a template subtraction process using the raw ECG 
signals only. We did not use the pulsatile signals for VTA. Also, by removing the ECG SQI 
measures used in the other alarms from the process, the performance of false alarm detection 
was enhanced as VTA signals generally had poor SQI.

The first QRS complex in the series was taken as the reference template against which 
the subsequent waveforms were compared. A beat-to-beat sliding window was applied to the 
alarm segment to detect each QRS complex. The standard deviation (SD) and mean value of 
each QRS waveform were subsequently calculated and compared with the peak of the wave-
form. The complexes with peaks that did not lie within 1 SD of the mean were chosen for eval-
uation. Then, the mean value of each complex as well as the mean of the template waveform 
was removed. The waveforms with a SD that did not lie within 0.6 of the overall SD of the 
segment were labeled as ‘irregular’ waveforms. This feature was called ‘filter vector’. If there 
were four or more irregular waveforms in the alarm segment, that is, the minimum threshold 
of 5 beats for VTA with a tolerance of 1 beat, the VTA alarm was set to true. Otherwise, it was 
labeled as a false alarm.

3.3.6. Ventricular flutter or fibrillation detection. Ventricular flutter or fibrillation (VFB) was 
assumed to be fibrillatory, flutter, or oscillatory waveform for at least 4 s (Clifford et al 2015). It is 
recognized as a difficult condition to detect using ECG signal (Clayton et al 1993, Jekova 2000). 
Different methods were applied in the studies such as threshold crossing intervals (TCIs) (Thakor 
et al 1990), autocorrelation function (ACF) (Chen et al 1987), and complexity measure (Zhang 
et al 1999) which the results were compared in studies (Clayton et al 1993, Jekova 2000). The 
comparisons showed the importance of threshold tuning and choosing the appropriate criteria.

To detect VFB in this study, the ABP SQI was evaluated and compared to the threshold 
of 0.9. If SQI was above threshold, then the maximum heart rate in the alarm segment was 
compared to the VF threshold. The VFB threshold was set to 250 bpm with a tolerance of  
10 bpm. If the maximum heart rate of alarm segment was greater than the VFB threshold with 
the tolerance, the VFB alarm was set to true. A similar algorithm was repeated for PPG signal. 
Either of the pulsatile signals satisfying the criteria resulted in an alarm being triggered.

4. Results and discussion

The results of train and test set are shown in tables 2 and 3 respectively. The best alarm detec-
tion was achieved for the tachycardia alarm which obtained a score of 96% for train and 99% 
for test set. The average score of train set was 79%. While for the test set, the real-time score 
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achieved 69.9% and retrospective score reached 74% which was placed among the top ten 
scores of the PhysioNet/Computing in Cardiology Challenge 2015.

While ECG signals assisted in arrhythmia detection, the noisy characteristics of ECG 
signals were found to trigger false alarms. Hence, multiple steps were taken to minimize 
the corruption and negative effect of artefact. Interference removal of ECG signal, signal 
quality index, and utilizing information from multimodal signals was investigated to dif-
ferentiate the inferences and improve false alarm detection. On the other hand, in some 
arrhythmias, interference removal, noise reduction and examining the signal quality did 
not help in false alarm reduction. We did not apply interference removal to ECG for the 
VTA arrhythmias. This was because the VTA signals exhibited behavior similar to the 
noise which our noise removal algorithms were designed to remove. For further improve-
ment, a redesign of our noise removal algorithms so they did not knock out the VTA 
signal could enhance the results. The VTA alarm identification was reported as the most 
difficult alarm for detection among the entries of the PhysioNet/Computing in Cardiology 
Challenge 2015 (Clifford et al 2015). An analysis of algorithms of the top scored entries 
revealed that better VTA and VFB alarm detection was achieved through algorithms that 
included descriptive statistics and QRS detection by amplitude envelopes using Fourier 
and Hilbert transform (Plesinger et al 2015), statistical analysis and hand-selected trans-
form (Plesinger et  al 2015), phase wrapping and machine learning (Ansari et  al 2015) 
and adaptive frequency tracking and adaptive mathematical morph ology approach (Fallet 
et al 2015). The top entries utilized all of the signals comprising the ECG signals for VFB 
detection. In our approach, ECG signals were not utilized in the VFB and extreme brady-
cardia detection algorithms, and hence incorporating ECG information may improve the 
false alarm detection of these arrhythmias.

Table 2. The results of true positive rates, true negative rates, and scores of  
training set.

TP FP FN TN
TPR 
(%)

TNR 
(%)

Score 
(%)

Asystole 0.164 0.057 0.016 0.762 91.11 93.04 87.11
Bradycardia 0.517 0.247 0 0.236 100 48.86 75.3
Tachycardia 0.936 0.043 0 0.021 100 32.81 95.7
VFB 0.103 0.19 0 0.707 100 78.82 81.0
VTA 0.246 0.361 0.015 0.378 94.25 51.15 58.87

Average 0.393 0.18 0.006 0.421 98.50 70.05 79.49
Gross 0.383 0.225 0.009 0.383 97.70 62.99 73.94

Table 3. Results of final submission from test set.

TPR (%) TNR (%) Score (%)

Asystole 78 93 82.46
Bradycardia 100 52 71.13
Tachycardia 100 80 99.10
VFB 100 59 65.52
VTA 91 55 58.07

Real-time 95 65 69.92
Retrospective 98 66 74.03
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Table 4 shows a list of the features that were incorporated and contributed in each arrhyth-
mia alarm detection. It demonstrates which features were responsible in making the decision 
of each arrhythmia alarm identification. The last feature of the table, ‘Number over threshold’, 
refers to the number of beats above the tachycardia threshold and tolerance which exceeded 
the minimum acceptable beats. The results of arrhythmia detection and their employed fea-
tures of table 4 suggest that the drawback of the proposed algorithm is the variety of features 
used. The more features employed, the better detection is achieved. We obtained our best 
result with extreme tachycardia alarm detection which the results of this exploration at table 4 
showed to have the largest variety of features.

The various characteristics of the arrhythmias led to different implementation processes 
for individual arrhythmia alarm detection. This meant that some required noise reduction, 
while others needed the application of raw data with minimal noise removal. SQI evalua-
tion improved the processing performance in some of the arrhythmia detection. Thus, a fixed 
method of signal quality evaluation is not suitable for analysis of a variety of arrhythmias with 
different properties. The evaluation techniques should be adapted to each arrhythmia.

The proportion of each arrhythmia alarm detected by each signal of training set is shown in 
table 1. Since we had the hierarchical or priority-based approach to selecting the signals to use 
(i.e. ECG was used firstly, then ABP followed by PPG), we did not necessarily use all of the 
signals to make the final decision. The results are comparable with the obtained scores from 
train and test set. It can be observed that asystole alarm identification was mainly detected by 
the first ECG signal and the distributions match the order of selection criteria. For instance, the 

Table 4. The features that were selected in the evaluation process for each alarm type.

Featuresa Asystole Bradycardia Tachycardia VFB VTA

Number of first ECG  
beats

√ √ √

Max RR of first ECG √ √
First ECG SD √
Number of second ECG  
beats

√ √ √

Max RR of second ECG √ √
Second ECG SD √
Number of ABP  
beats

√ √ √

Max pulse  
intervals of ABP

√

ABP SQI √ √ √
Low HR of ABP √
Max HR of ABP √
Number of PPG beats √ √ √
Max of RR PPG √
PPG SQI √ √ √
Low HR of PPG √
Max HR of PPG √
Length of filter vector √
Number over threshold √

a The features were measured over the alarm segment and the detected beats and peaks in the 
segment.
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ECG signals were firstly investigated for asystole detection and then the algorithm progressed 
to pulsatile signals for processing. The results from investigating the usage of the signals (see 
table 1) validated our  assumption of giving the highest priority to ECG signals for asystole 
detection. It revealed that only 5.7% of the asystole alarms were not suppressed. In contrast, 
76.4% of the bradycardia alarms and 69.0% of the VFB alarms were not suppressed by input 
signals. As we did not utilise ECG signals for detection of either of these alarms, the results 
suggest that utilising the ECG signals may improve suppression of these false alarms. The 
VTA alarm detection algorithm relied heavily on the first ECG signal for heart beat detection. 
A small number of cases (3.2%) were detected with second ECG signal and 8.2% were not 
successfully suppressed.

We found that varying the threshold setting significantly affected false alarm detection. 
Thus, implementation of parameter optimization methods such as SVM (support vector 
machine) as a threshold tuning and model selection algorithm could enhance the scores.

As a final comment, we describe one signal processing step we trialed and abandoned as it 
did not result in improvement in the scores of either the train or test set. The signal process-
ing step attempted to boost the heart rate identification by multimodal signal integration. The 
algorithm examined the detected beats of the ECG signals. In case of low quality ECG signals 
or missing beats, it switched to pulsatile signals. In order to match the R peaks of ECG with 
pulse onsets of pulsatile signals, the delay between R peaks of ECG signals and pulse onset 
of pulsatile signals was measured. We adapted a fusion method proposed in the PhysioNet/
Computing in Cardiology Challenge 2014 by Johnson et al (2015). The peaks of the avail-
able ECG signals and pulsatile signals in the alarm segment were checked. In the case that 
more than 90% of the R peaks were followed by the pulse onsets of the pulsatile signal, the 
delays between the peaks were measured. The average of the delays in the alarm segment 
was set to the delay for the whole segment containing the alarm. A default delay value of 
200 ms was used for the segments which did not satisfy the criteria. Then, the R peaks and the 
corresp onding pulse onset beats of the pulsatile signal were compared in a one second window 
through the whole alarm segment. The percentage of the R peaks matching the pulsatile onset 
beats in an interval of the corresponding delay between them was calculated. If the matching 
rate was above 90% then the signal quality was deemed acceptable. As our algorithm was not 
successful, further work is needed to improve the integration technique. Finding an optimum 
matching rate and adjusting the delay for the available signals could enhance the performance 
of the algorithm.

5. Conclusion

Our result placed us among the top ten scores of the PhysioNet/Computing in Cardiology 
Challenge 2015. Our proposed system achieved the highest score in detecting tachycardia 
false alarms. Our best performing algorithm used multimodal signals, combined the infor-
mation from ECG and pulsatile signals, extracted and evaluated a number of features of the 
signals for alarm identification. Modification of the signal quality measures for different 
arrhythmias rather than employing a fixed SQI for every arrhythmia, setting the threshold in 
an iterative performance evaluation, and considering various possible effects of each arrhyth-
mia on the features of the signals enhanced the arrhythmia identification performance. For 
future alarm management systems, a modified noise removal algorithm, adaptive SQI mea-
surements for each arrhythmia, multimodal signal integration with optimum matching rate 
and adjusted delay could improve the performance.
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