Reducing false alarms in the ICU by quantifying self-similarity of multimodal biosignals

To cite this article: Christoph Hoog Antink et al 2016 Physiol. Meas. 37 1233

View the article online for updates and enhancements.
Reducing false alarms in the ICU by quantifying self-similarity of multimodal biosignals

Christoph Hoog Antink, Steffen Leonhardt and Marian Walter

Philips Chair for Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany

E-mail: hoog.antink@hia.rwth-aachen.de

Received 23 February 2016, revised 25 May 2016
Accepted for publication 3 June 2016
Published 25 July 2016

Abstract
False arrhythmia alarms pose a major threat to the quality of care in today’s ICU. Thus, the PhysioNet/Computing in Cardiology Challenge 2015 aimed at reducing false alarms by exploiting multimodal cardiac signals recorded by a patient monitor. False alarms for asystole, extreme bradycardia, extreme tachycardia, ventricular flutter/fibrillation as well as ventricular tachycardia were to be reduced using two electrocardiogram channels, up to two cardiac signals of mechanical origin as well as a respiratory signal.

In this paper, an approach combining multimodal rhythmicity estimation and machine learning is presented. Using standard short-time autocorrelation and robust beat-to-beat interval estimation, the signal’s self-similarity is analyzed. In particular, beat intervals as well as quality measures are derived which are further quantified using basic mathematical operations (min, mean, max, etc). Moreover, methods from the realm of image processing, 2D Fourier transformation combined with principal component analysis, are employed for dimensionality reduction. Several machine learning approaches are evaluated including linear discriminant analysis and random forest.

Using an alarm-independent reduction strategy, an overall false alarm reduction with a score of 65.52 in terms of the real-time scoring system of the challenge is achieved on a hidden dataset. Employing an alarm-specific strategy, an overall real-time score of 78.20 at a true positive rate of 95% and a true negative rate of 78% is achieved. While the results for some categories still need improvement, false alarms for extreme tachycardia are suppressed with 100% sensitivity and specificity.
Keywords: multimodal signal processing, data fusion, interval estimation, ECG, ICU, false alarm reduction, machine learning

(Some figures may appear in colour only in the online journal)

1. Introduction

Better safe than sorry seems to be an overall reasonable approach when monitoring patients in the intensive care unit (ICU) in general and triggering alarms indicating a life-threatening cardiac arrhythmia in particular. And probably everyone can agree that a few false alarms can be tolerated if, in consequence, no actual arrhythmia condition is missed. A scientific definition of ‘a few’ may be hard to obtain, but false alarm ratios of up to 86% as reported by Lawless (1994) exceed any reasonable definition and still pose a serious problem in today’s ICU. First, an excess of false alarms leads to alarm fatigue, which describes a decreased sensitivity to monitor alarms by the ICU staff that in turn leads to a decreased quality of care (Chambrin 2001, Graham and Cvach 2010). Moreover, the alarms themselves, with sound levels exceeding 80 dB, can have negative influences on the ICU patients directly, for example by decreasing their sleep quality (Parthasarathy and Tobin 2004).

A straightforward approach to prevent excessive amounts of false alarms would be the fine-tuning of existing methods and thresholds towards a less conservative alarming policy. While this could potentially increase the overall quality of care, it might result in serious life threatening conditions for individual patients, and serious legal consequences for individual doctors.

A more promising approach is the integration of multimodal biosignals, i.e. electrocardiogram readings (ECG) in combination with, for example, photoplethysmogram (PPG) or arterial blood pressure (ABP) signals. This was initially addressed in the PhysioNet/Computing in Cardiology Challenge 2014 titled ‘robust detection of heart beats in multimodal data’ (Silva et al 2015). During the course of the challenge, it was demonstrated that the performance of state-of-the-art QRS detectors could be significantly improved by the exploitation of redundant cardiac related information present in multimodal patient data. As a consequent continuation, the PhysioNet/CinC Challenge 2015 aimed at ‘reducing false arrhythmia alarms in the ICU’ (Clifford et al 2015). The details of the challenge including a description of test and training data, the scoring mechanism as well as an overview of the competing approaches can be found in the editorial accompanying this special issue (Clifford et al 2016). In short, the challenge aimed at reducing false alarms by exploiting multimodal cardiac signals recorded by a patient monitor. In particular, false alarms for asystole, extreme bradycardia, extreme tachycardia, ventricular flutter / fibrillation as well as ventricular tachycardia were to be reduced: for this, training data was publicly available for download on www.physionet.org and could be used for algorithm development. Evaluation of an algorithm was performed on a hidden dataset by an automated system that the developed code could be uploaded to.

Following the progression of the challenges, the algorithm presented here is developed from the entry submitted by our group to the 2014 challenge (Hoog Antink et al 2015a). This entry was based on multimodal beat-to-beat interval (BBI) estimation which was used to correct beats located by state-of-the-art peak detectors and reached the 3rd place in the follow-up analysis. The central part of this algorithm was originally developed for BBI estimation using the ballistocardiogram (BCG) of sleeping subjects obtained with a bed-integrated sensor (Brüser et al 2013). Additionally, it has been applied to sensor fusion of unobtrusively acquired multimodal signals (Hoog Antink et al 2015b): a BCG was obtained with a sensor on
the seat of a chair, and PPG imaging as well as cardiac related head movement were extracted
from consumer grade webcam video streams. Signals in the ICU are obtained in a much more
obtrusive fashion, for example by using glued electrodes, and thus exhibit a much higher
signal-to-noise ratio (SNR) on average. However, their SNR might be significantly lowered
when false alarms are triggered, for example, when signals are contaminated with strong
movement artifacts. We thus propose the application of the robust BBI estimator for the reduc-
tion of false arrhythmia alarms. However, in contrast to the previous application scenarios, we
claim that the exact localization of individual heart beats is not necessary but that false alarms
can directly be reduced by the analysis of the multimodal BBI estimation, the estimator qual-
ity and other general rhythmicity features.

The paper is structured as follows: in the materials and methods section, the data used and
the scoring mechanism is briefly described. Next, an overview of the algorithm is given. The
interval estimator based on self-similarity analysis using an adaptive window is recapitulated
from Hoog Antink and Leonhardt (2015). Moreover, feature extraction and machine learning
approaches as well as global and individual strategies are described. Results on the training
data as well as the hidden test set and their discussion are presented in the next sections, fol-
lowed by a conclusion.

2. Materials and methods

The following section describes the data and the scoring system as well as the algorithm used
for false alarm reduction.

2.1. Data

The data used in this study consist of patient monitor data recorded in the ICU. Every record-
ing includes two ECG channels as well as one ABP and/or one PPG channel. In some cases,
an additional respiratory signal was available. All signals are provided at 250 Hz sampling rate
and 16 bit resolution. For the real-time event, 5 min of recording preceding the alarm is avail-
able for analysis. In the retrospective event, additional 30 s of recording after the alarm could
be analyzed. Alarm labels generated by the patient monitors were verified by human annota-
tors to create the gold standard. The training dataset was publicly available for download on
www.physionet.org, while the hidden test set could only be accessed by uploading executable
code to the scoring system. The distribution of alarms and available signals is given in table 1.
An in-dept description of the data can be found in the editorial accompanying this special
issue (Clifford et al 2016).

In the presented approach, the respiratory signal was not used. For preconditioning, all
other signals were resampled to 100 Hz, not-a-number (NaN) values were replaced by zeros
and a second order Butterworth bandpass filter with a passband of 1–30 Hz was applied. After
filtering, signals are normalized to be of zero mean and unit variance in the interval 5 min
before the alarm. With this normalization, the autocorrelation calculation does not depend on
offset and scaling.

2.2. Scoring mechanism

The developed alarm reduction strategies could be uploaded as executable code to the auto-
mated scoring system at www.physionet.org, which applied it to the hidden dataset. For each
alarm, the true positive rate (TPR) and the true negative rate (TNR) was reported,
Moreover, a score that penalizes false negatives especially harshly was reported,

\[
\text{score} = \frac{TP + TN}{TP + FP + 5 \cdot FN + TN} \cdot 100.
\]

(2)

Here, \(TP, TN, FP, FN\) are the number of true positives, true negatives, false positives and false negatives as determined by the algorithm, whereas \(P\) and \(N\) are the number of true and false alarms in the evaluation data. In addition, gross results across all alarm categories are reported for the real-time and the retrospective event as well as average and maximum running time.

2.3. Algorithm overview

An overview of the algorithm is given in figure 1. All cardiac-related signals are processed with a moving window interval estimation approach (left, section 2.4). Based on this estimation, two groups of features, (I) and (II), are derived. Group (I) is based on basic statistical analysis (section 2.5.1), whereas group (II) is based on principal component analysis of the two-dimensional beat-to-beat correlogram (section 2.5.2). Moreover, all signals are subjected to a fixed window autocorrelation analysis (right), from which the third group of features (III) is derived (section 2.5.3). Finally, several machine learning strategies are trained and optimized for false alarm reduction (section 2.6).

2.4. Interval estimation

One of the most straightforward approaches to assess self-similarity is the short-time autocorrelation (STA) function. Let \(x(n)\) be a time-discrete signal and

\[
\omega(\nu) = \begin{cases} x(n_i + \nu) & \text{for } \nu \in -L/2 \ldots L/2 - 1, \\
0 & \text{otherwise} \end{cases}
\]

(3)

be an analysis window of length \(L\) with index \(i\) centered around \(n_i\). For better readability, the index is omitted in the following derivation. A common definition of the STA for each lag \(\eta\) for a window of constant length is given by
Figure 1. Overview of the algorithm.
If the interval η_{opt} between exactly two heart beats is to be estimated, the length of the analysis window L has to be set in a way that the window contains approximately two beats, i.e. $\eta_{\text{opt}} < L < 3\eta_{\text{opt}}$. If $L = \eta_{\text{opt}}$, only one beat is present and no beat-to-beat interval estimation is possible; if $L > 3\eta_{\text{opt}}$, averaging over multiple interval occurs. This can be overcome by introducing the lag-adaptive short-time autocorrelation (LASTA)

$$ S_{\text{LASTA}}(\eta) = \frac{1}{L} \sum_{\nu=-L/2}^{L/2} \omega(\nu) \omega(\nu + \eta). \quad (4) $$

which ensures that the exact number of samples necessary for each candidate lag η is considered, see also (Hoog Antink et al 2015a). Other metrics to assess self-similarity are the average magnitude difference function (AMDF) and the maximum amplitude pairs (MAP) function,

$$ S_{\text{AMDF}}(\eta) = \left(\frac{1}{\eta} \sum_{\nu=0}^{\eta} \omega(\nu) - \omega(\nu - \eta) \right)^{-1}, \quad \text{and} $$

$$ S_{\text{MAP}}(\eta) = \max_{\nu \in \{0, \ldots, \eta\}} (\omega(\nu) + \omega(\nu - \eta)). \quad (6) $$

Like the LASTA, these functions assume larger values for lags that indicate more self-similarity (Hoog Antink et al 2015a). It was shown by our group before that the presented similarity estimators exhibit a complimentary noise characteristic and results can be improved by fusing the estimators based on a Bayesian approach (Brüser et al 2013), which reduces to

$$ S_{\text{fused}}(\eta) = S_{\text{LASTA}}(\eta) \cdot S_{\text{AMDF}}(\eta) \cdot S_{\text{MAP}}(\eta). \quad (8) $$

Figure 2 illustrates the concept.

Moreover, self-similarity is principally modality-independent and this concept can be extended towards multiple channels and modalities:

$$ S_{\text{fused,ALL}}(\eta) = S_{\text{fused,ECG}}(\eta) \cdot S_{\text{fused,PPG}}(\eta) \cdot \ldots \quad (9) $$

Please note that the lag-adaptive fused self-similarity metric $S_{\text{fused}}(i, \eta)$ is computed for every window position i. Thus, for every window position i, the optimal interval can be obtained via

$$ \eta_{\text{opt}}(i) = \arg \max_{\eta} [S_{\text{fused}}(i, \eta)]. \quad (10) $$

Additionally, a quality metric can be estimated,

$$ Q(i) = \frac{S_{\text{fused}}(i, \eta_{\text{opt}})}{\sum_{\eta_{\text{opt}}=1}^{\sum_{\eta_{\text{opt}}=1}^{L} S_{\text{fused}}(i, \eta)}} = \frac{\hat{S}_{\text{fused}}(i)}{\sum_{\eta_{\text{opt}}=1}^{L} \hat{S}_{\text{fused}}(i, \eta)}. \quad (11) $$

which is the ratio of the peak height to the area under the curve, see also figure 2. L is the length of the analysis window and should be chosen according to the maximum beat-to-beat interval that needs to be estimated. The quality metric indicates how much self-similarity the ith window actually exhibits, i.e. the reliability of the interval estimation and can be used by itself to characterize a signal or by the use of a threshold Q_{th} below which interval estimations are excluded.
The difference between the STA using a fixed window length and the adaptive window method is visualized in figure 3. Here, the length \(L \) of the analysis window was set to 2000 ms. As one can see, all three intervals that occur in the artificial signal in the top row are permanently present in the 2D-correlogram of the STA (second row) as visible bands. On the other hand, the 2D-correlogram using LASTA (third row) only shows one distinct line at the correct location when the window is centered between two consecutive beats. Finally, the estimation of \(\eta_{\text{opt}} \) in the third row reveals that the STA is likely to detect multiples of the actual intervals present, while the lag-adaptive window approach is consistent with the ground truth. A median-filter of width \(n_{\text{median}} \) can be applied to remove jumps in the interval estimation that might occur when the window is centered between two intervals, i.e. centered on one impulse in this synthetic example.

It should be noted that the presented interval estimation approach can be seen complementary to the regular STA, as it detects the most likely interval between exactly two beats, even if more than two beats are present in the analysis window. If, on the other hand, the average heart rate in a larger window (multiple seconds) is of interest, the STA will exhibit a peak at the corresponding lag.

2.5. Feature extraction

Three groups of features are generated for the reduction of false arrhythmia alarms, numbered (I) to (III) in figure 1. Additionally, each feature is given an Arabic numeral.

2.5.1. Beat-to-beat interval quantification

For the calculation of the first group of features, the results of equations (10) and (11) are applied to an interval \(i \in [t_0 - t_0, t_0] \), with \(t_0 = 16 \) s before the alarm at \(t_0 \). This interval was adopted from the example code provided by the challenge organizers. A hop size of 8 samples (i.e. 80 ms) as used in Hoog Antink et al (2015a) was employed.

![Figure 2](image-url)
Equation (9) is used to fuse all available cardiac signals (ultimately resulting in \(\eta(i), Q(i)_{opt,ALL} \), fusing the two ECG signals \(\eta(i), Q(i)_{opt,ECG} \) and fusing all available signals related to mechanical cardiac activity, i.e. all channels named ABP and/or PLETH, \(\eta(i), Q(i)_{opt,M} \). Basic statistical analysis is performed on each of the three sources (ALL, ECG, M), in particular

1–3) the minimum interval, \(\min(\eta_{opt,ALL}(i)), \min(\eta_{opt,ECG}(i)), \min(\eta_{opt,M}(i)) \).
4–6) the maximum interval, \(\max(\eta_{opt,ALL}(i)), \max(\eta_{opt,ECG}(i)), \max(\eta_{opt,M}(i)) \).
7–9) the sum of intervals, \(\sum(\eta_{opt,ALL}(i)), \sum(\eta_{opt,ECG}(i)), \sum(\eta_{opt,M}(i)) \).
10–12) the standard deviation of intervals, \(\text{std}(\eta_{opt,ALL}(i)), \text{std}(\eta_{opt,ECG}(i)), \text{std}(\eta_{opt,M}(i)) \).
13–15) the normalized standard deviation of intervals, i.e. the standard deviation divided by the mean, \(\text{std}(\eta_{opt,ALL}(i)), \text{std}(\eta_{opt,ECG}(i)), \text{std}(\eta_{opt,M}(i)) \).
16–18) the median absolute deviation from the median of intervals, \(\text{mad}(\eta_{opt,ALL}(i)) \).
19–21) the mean quality, \(Q_{opt,ALL} = \text{mean}(Q_{opt,ALL}(i)), Q_{opt,ECG} = \text{mean}(Q_{opt,ECG}(i)), Q_{opt,M} = \text{mean}(Q_{opt,M}(i)) \).
22–24) the median quality, \(\text{median}(Q_{opt,ALL}(i)), \text{median}(Q_{opt,ECG}(i)), \text{median}(Q_{opt,M}(i)) \).

Figure 3. Comparison of STA and LASTA. The top row shows an artificial train of impulses. The second and third row preset the 2D-correlogram using STA and the LASTA, respectively. The bottom row shows the ground truth and the estimated intervals using both methods.
2.5.2. Beat-to-beat correlogram analysis. To determine the second set of features, the two dimensional beat-to-beat correlogram is analyzed. It is obtained from equation (9) by plotting i on the horizontal axis, η on the vertical axis and by the use of color coding for $S_{\text{fused,ECCG}}(i, \eta)$, see figure 4. Note that it exhibits obvious similarities with the spectrogram, a tool frequently used in audio signal processing (Flanagan 2013). To reduce its computational time, a reduced window of $t_D = 10$ s was used. To classify true / false alarms based on the two dimensional correlogram, methods used in image processing are employed. Here, the classification of images is a common problem, for example, for driver assistance systems or face recognition (Turk and Pentland 1991). One important part in this discipline is dimensionality reduction, since even small images like 16 by 16 pixel icons are signals of 256 dimensions. Thus, for classification, features need to be extracted before machine learning steps can be applied. One option is spatial Fourier transformation. Let us consider a discretized image $h(x, y)$ with the pixel coordinates $x \in 0...N_x - 1$ and $y \in 0...N_y - 1$. Now the discrete two-dimensional Fourier transform is given by

$$H(k, l) = \mathcal{F}(h(x, y)) = \sum_{x=0}^{N_x-1} \sum_{y=0}^{N_y-1} h(x, y) e^{-j2\pi \left(\frac{k x}{N_x} + \frac{l y}{N_y} \right)}.$$

Thus, for every image $h(x, y)$, a complex 2D-spectrum $H(k, l)$ of the same dimensionality but symmetric with respect to the origin can be computed. If we interpret our 2D correlogram as image, the same process can be applied with

$$h(x, y) \triangleq S_{\text{fused}}(i, \eta), \quad x \triangleq i, \quad y \triangleq \eta.$$

To classify the correlogram images based on their spatial spectrum, energy content in certain (spatial) frequency ranges could be evaluated. These ranges would have to be defined based on physiological parameters of the respective alarm of interest, for example the expected intervals. Another computationally inexpensive alternative is applying principal component analysis (PCA). In this data-driven approach, no a priori physiological information is included. Instead, dimensionality reduction via PCA and subsequent machine learning are used to automatically extract patterns that identify true and false alarms.

In a first step, for every recording in the training dataset, the 2D-correlograms $S_{\text{fused,ECCG}}^u(i, \eta)$ and $S_{\text{fused,M}}^u(i, \eta)$ are calculated. Here, $u \in 1...750$ being the index of training recordings. Next, the correlograms are transformed into the 2D Fourier-domain and the phase information is discarded.

Figure 4. Example two dimensional beat-to-beat correlograms fusing two ECG channels for the recordings v140s and v131l.
From these matrices, column vectors

\[H^n = \begin{bmatrix} H^1(1), & H^2(1), & \ldots, & H^n(1), & H^n(i_{\text{max}}, 1), & H^n(2, 1), & \ldots, & H^n(i_{\text{max}}, \eta_{\text{max}}) \end{bmatrix}^T \]

are created and the data matrix \(X \) is assembled,

\[
X = \begin{bmatrix}
H^1(1) & H^2(1) & \ldots & H^n(1) \\
H^1(2) & H^2(2) & \ldots & H^n(2) \\
\vdots & \vdots & \ddots & \vdots \\
H^1(i_{\text{max}}, \eta_{\text{max}}) & H^2(i_{\text{max}}, \eta_{\text{max}}) & \ldots & H^n(i_{\text{max}}, \eta_{\text{max}})
\end{bmatrix}.
\]

Next, the mean is subtracted,

\[X_0 = X - \bar{X}. \]

\(\bar{X} \) is the matrix with the same size as \(X \) where each element represents the mean of the respective row of \(X \). Singular value decomposition is applied such that

\[\Sigma = XUW^T. \]

Here, \(U \) is the matrix of eigenvectors. In the training phase, the training data can be projected on the first \(p \) eigenvectors,

\[\mathbf{V} = X_0 \cdot U_p, \]

with \(U_p(i, j) = U(i, j), i \leq i_{\text{max}} \cdot \eta_{\text{max}} \) and \(j \leq p \). This process is carried out separately on the ECG and the BP channels.

To visualize the concept in figure 5, \(p \) was set to 5 and the average true/false correlogram for each alarm category was calculated fusing both ECG channels using the first 5 singular vectors. One observation that can be made is that all average correlograms of false alarms are relatively homogeneous over time. On the other hand, the average correlograms for true alarms show changes over time for some alarm categories. This is most notable in the average true extreme tachycardia alarm, where an increase in the correlogram in a band of about 550 ms, approximately 4 s prior to the alarm can be observed. This corresponds to a heart rate of 110 beats per minute (BPM). The average true alarm for asystole shows a different behavior: here, a distinct decrease in the correlogram indicating a lack of beat-to-beat similarity can be observed prior to the alarm, approximately 4.5 s before the alarm was triggered. Interestingly, this is similar for ventricular tachycardia, where the decrease in the average correlogram can be observed approximately 3 s before the alarm. For extreme bradycardia and ventricular flutter/fibrillation, a different visual impression for the average true/false alarm is apparent. However, no physiological explanation suggests itself. Note that the average correlogram is presented for visualization only. In it, randomly appearing short patterns such as artifacts or burst of ventricular beats are masked due to the averaging. In the algorithm, however, the phase information is discarded before PCA and machine learning. Note that the 2D Fourier transform of an image and its shifted version will have the same magnitude but different phase information. Thus, any arrhythmia or artifact patterns in the 2D correlogram, for example, of 3 s duration that start at \(t_0 - 9 \) s in one recording and at \(t_0 - 5 \) s in another, will give identical inputs to the algorithm.

For the algorithm, \(p \) was set to 30, leading to 2 \cdot p = 60 features, namely

(25–54) \(V_{\text{ECG}1, \ldots, 30} \), and

(55–84) \(V_{\text{M1}, \ldots, 30} \).
2.5.3. Short term autocorrelation analysis. To quantify general rhythmicity and detect corrupted signals, the regular short-time autocorrelation was analyzed in a single window of $t_0 = 5$ s, centered at $t_0/2 = 2.5$ s before triggering of the alarm. Visual inspection of the raw signals revealed that many artifacts or signal losses in this timeframe seemed to trigger false alarms. Thus, equation (3) was applied to all available channels. After this calculation, the maximum of the sum of individual autocorrelations,

\[
\text{max}(\text{STA}) = \max[S_{\text{STA}, \text{ECG1}}(\eta) + S_{\text{STA}, \text{ECG2}}(\eta) + S_{\text{STA}, \text{ABP}}(\eta) + S_{\text{STA}, \text{PLETH}}(\eta)].
\]
as well as the maximum of maxima,

\[
\max(\text{STA}) = \max \left(\max \left[S_{\text{STA,ECG}}(\eta) \right] + \cdots + \max \left[S_{\text{STA,PLETH}}(\eta) \right] \right),
\]

was determined. Hereby, \(\max(\text{STA}) \) is focused on determining the average rhythmicity, while \(\max(\text{STA}) \) aims at identifying cases where no channels exhibit any reoccurring events and thus no self-similarity.

Finally, the two STA-based features \(\text{STA}_{\text{ECG}} \) and \(\text{STA}_{\text{M}} \) separately analyze electrical and mechanical cardiac activity signals. Here, a window of \(t_p = 16 \text{ s} \) centered \(t_p/2 = 8 \text{ s} \) before the alarm was used to estimate the average self-similarity of the signals in the interval of 300–2000 ms, corresponding to heart rates of 200–30 BPM, respectively:

\[
\tilde{S}_{\text{STA}} = \max(S_{\text{STA}}(\eta)) \quad \text{with} \quad \eta \in 300 \text{ ms} \ldots 2000 \text{ ms}.
\]

The ratio of the peak of the autocorrelation function to the signal's energy is calculated,

\[
\text{STA} = \frac{\tilde{S}_{\text{STA}}}{S_{\text{STA}}(0)}.
\]

If multiple ECG/BP channels are available, the maximum value is determined,

\[
(87) \quad \text{STA}_{\text{ECG}} = \max(\text{STA}_{\text{ECG}}^{*}, \text{STA}_{\text{ECG}}^{*}),
\]

\[
(88) \quad \text{STA}_{\text{M}} = \max(\text{STA}_{\text{M}}^{*}, \text{STA}_{\text{M}}^{*}).
\]

2.6. Machine learning

For classification, several machine learning and feature selection or reduction strategies were implemented using the tools provided in MATLAB and its ‘statistics and machine learning toolbox’. In the previous section, a total of 88 features was proposed. Considering the limited amount of training data, this is clearly too much for efficient machine learning and will lead to massive overfitting. For example, for ventricular flutter/fibrillation, only 58 alarms exist in the training dataset, of which in turn only six are true. Thus, classifier-specific measures as described below were employed to reduce the number of features. To compensate the imbalance of true/false alarms in the training dataset and to account for the extra penalization of false negatives (equation (2)), the cost for false negative classification was set to 10 times the cost of false positive in the training of the classifiers.

In the course of the challenge, the feature sets introduced above were combined with several classifiers and trained on the training data. The parameters quality threshold \(Q_{\text{th}} \) and the size of the median filter \(n_{\text{median}} \) had a small but varying effect and were fine-tuned for each alarm, classifier and feature set, ranging from \(0.13 < Q_{\text{th}} < 0.38 \) and \(n_{\text{median}} = 1 \lor 3 \). For this optimization and the selection of \(N_{\text{feat}} \) features, classifier specific quality metrics and strategies were used.

2.6.1. Binary classification decision tree (BCT). This basic classification algorithm was trained using the features of group (I). Fine-tuning was performed optimizing the re-substitution error for each alarm. In a next step, pruning was used to reduce the complexity of the tree and \(N_{\text{feat}} \), the number of features used. As optimization criterion, the 10-fold cross-validation error using the training dataset was used.

2.6.2. Regularized linear discriminant analysis classifier (LDA). To train a regularized linear discriminant analysis classifier, the following combination of feature groups were used:
groups (I & III), group (II), groups (II & III) and groups (I–III). For each combination and alarm, repeated 10-fold cross-validation on the training dataset is used to optimize Q_{th} and n_{median} as well as the regularization parameters δ and γ. Hereby, $\gamma < 0 \ldots 1$ is used to regularize the covariance matrix of predictors. The parameter $\delta \in 0 \ldots \delta$ is used to reduce the number of features used for classification N_{feat}. In the training process, the value δ_j is calculated for all j features, δ being the maximum value. A 29×29 grid search is used to find δ_{opt} and γ_{opt}. Thus, N_{feat} is reduced as only features with $\delta_j > \delta_{\text{opt}}$ are used in the prediction process. For more information on the regularization, the interested reader is referred to Guo et al (2007), where γ and δ are represented by α and Δ, respectively.

2.6.3. Support vector machine (SVM). For this classification method, a straightforward ‘greedy’ training approach was employed: for every alarm, the training set was randomly divided into a training- and a cross-validation set and an SVM was trained using only one of the 88 feature. The process is repeated n_{iter} times for each feature and the SVM with the lowest mean cross-validation error is chosen as initialization. For $n_{\text{iter}} = 300$ the standard deviation of the cross validation error was found to have converged for all alarms. Using the same strategy, features are added until no feature can be found that decreases the mean cross-validation error by at least 5%. Q_{th} and n_{median} are also optimized based on the cross-validation error.

2.6.4. Random forest (RF). In this ensemble learning method, a number of n_{tree} unpruned binary classification trees is learned, each on the basis of a random subset of the training data and a random subset of available features. When a new prediction is to be made, each of the n_{tree} trees decides individually and a majority vote is taken. This method offers many advantages: one is that the quality of the learned classifier can be evaluated without an additional cross-validation dataset. Instead, every tree created using a subset of the training data is used to predict the outcome of the remaining data set, called ‘out-of-bag’ (OOB) data. Aggregated over the whole forest, this will produce the OOB error rate. Q_{th} and n_{median} are optimized based on the OOB error rate. Additionally, the random forest method can be used to estimate feature importance. This is achieved by permuting OOB data for the respective feature for all trees and calculating the increase in error rate. Initially, the classifier was trained using all available features and 5000 trees were generated to ensure convergence of the OOB error. In a next step, the feature importance was determined and the 10 most important features, i.e. the features with the highest permutation error rate, were identified. These 10 features are used to train a new random forest, from which the 5 most important features are selected. A new forest is trained and the $N_{\text{feat}} = 3$ most important features are selected.

2.7. Alarm reduction strategies

The waveforms of cardiac signals show very different patterns depending on the type of arrhythmia. Thus, it is reasonable to develop individual strategies to accept or reject an alarm, i.e. use the a priori information generated by the patient monitor. Based on the alarm label generated by the patient monitor, a specific classifier trained on the training data for this specific alarm is chosen. At the same time, analysis of the training data indicated that false alarms are often triggered by seemingly alarm-independent reasons, in particular artifacts. In the 2D correlogram, these cases were represented by apparently random patterns. This could explain why all average correlograms for false alarms as presented in figure 5 show no apparent structure. Thus, instead of learning alarm specific classifiers, a global false alarm reduction strategy seems possible. Such a classifier would ideally reject alarms generated by the patient monitor.
during periods of strong artifacts when any alarm based on such data may be questionable. For one, such a strategy has the advantage of being universally applicable. For another, the dataset available to train such a classifier contains 750 data points and thus potentially allows the application of more sophisticated machine learning approaches.

3. Results

In the following, the results for alarm-specific and global false alarm reduction strategies as well as a combination of both are presented.

3.1. Individual strategies

The classifiers described above were trained and optimized on the training dataset. To prevent overfitting on the hidden test set, a limited number of 25 entries could be submitted to the scoring system. Thus, not every combination of features and classifier could be evaluated on the hidden set. At the same time, the scores achieved on the very limited training dataset were often inconsistent with the ones achieved on the hidden test set. Thus, figure 6 shows an ROC analysis of all individual strategies that were submitted to the scoring system. These entries received a score on the hidden test set and are comparable to the results of other participants. The best scoring entry is marked with an x and three strategies are highlighted which used a BCT trained with features from group I (diamond), and LDAs trained with features from groups II and III (circle) as well as I, II and III (square).

Figure 6. ROC parameters estimated on the hidden test set for all individual strategies submitted to the scoring system during the course of the challenge. The top scoring strategy is marked with an x. Three strategies are highlighted which used a BCT trained with features from group I (diamond), and LDAs trained with features from groups II and III (circle) as well as I, II and III (square).
For the reduction of false asystole alarms, a relatively simple decision tree visualized in figure 7 resulted in a score of 74.33 at a TPR of 56% and a TNR of 94%. Here, large values in average and maximum rhythmicity, max(STA) and max(S TA), are indicators for false alarms. This is consistent with physiology, as asystole by definition constitutes a lack of rhythm.

3.1.2. Extreme bradycardia

A score of 74.23 at a TPR of 100% and a TNR of 57% is achieved for the extreme bradycardia alarm. Here, a regularized linear discriminant classifier showed optimal results using 10 features. Those features were 9 of the first 17 eigenvectors of the 2D correlogram of the ECG and the maximum rhythmicity feature, max(STA).

As stated above, the average correlograms for true/false extreme bradycardia alarms presented in figure 5 exhibit visual differences. While the underlying mechanics have to be investigated further, it is interesting to note that the linear discriminant classifier is able to exploit these differences for classification. For the maximum rhythmicity feature, max(STA), a straightforward explanation can be found. It has a value of 170 A.U. for the average true alarm, whereas the average false alarm shows a value of 530 A.U. This observation can be explained by analyzing the raw waveform, where strong rhythmic artifacts were often found before a false alarm was triggered.

3.1.3. Extreme tachycardia

Out of the five arrhythmia alarms presented in this challenge, the extreme tachycardia alarm shows the best separability using the proposed interval

<table>
<thead>
<tr>
<th>Classifier, feature group</th>
<th>Training dataset</th>
<th>Hidden dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nfeat</td>
<td>TPR (%)</td>
</tr>
<tr>
<td>Asystole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCT, (I)</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>LDA, (II & III)</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>LDA, (I–III)</td>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>Extreme Bradycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCT, (I)</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>LDA, (II & III)</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>LDA, (I–III)</td>
<td>18</td>
<td>96</td>
</tr>
<tr>
<td>Extreme Bradycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCT, (I)</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>LDA, (II & III)</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>LDA, (I–III)</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Extreme Tachycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCT, (I)</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>LDA, (II & III)</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>LDA, (I–III)</td>
<td>27</td>
<td>83</td>
</tr>
<tr>
<td>Ventr. Tachycardia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCT, (I)</td>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>LDA, (II & III)</td>
<td>13</td>
<td>97</td>
</tr>
<tr>
<td>LDA, (I–III)</td>
<td>70</td>
<td>93</td>
</tr>
</tbody>
</table>
estimation approach. For one, this is suggested visually in the 2D correlogram presented above, see figure 5. It becomes even more apparent numerically by inspecting the minimum detected interval fusing all available cardiac signals ($\eta_{\text{min}}^{\text{opt,fused}}$), see figure 8. The histogram reveals that, in the training data, all true alarms show at least one detected interval less than 450 ms, which corresponds to a heart rate above 133 BPM. At the same time, the minimum detected interval for false alarms was at least 600 ms, corresponding to a heart rate below 100 BPM. Thus, by introducing the decision rule ‘if and only if the minimum detected interval fusing all cardiac signals is below 475 ms, the extreme tachycardia alarm is true’, perfect accuracy (TPR = 100%, TNR = 100%) is achieved on the training as well as the hidden dataset.

Table 3. Numeric results on the training and hidden test dataset using individual optimal false alarm reduction strategies.

<table>
<thead>
<tr>
<th>Strategy, N_{feat}</th>
<th>Training dataset</th>
<th>Hidden dataset</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asystole BCT, 3</td>
<td>TPR(%) 100</td>
<td>TNR(%) 92</td>
<td>Score 93.44</td>
</tr>
<tr>
<td>Extreme bradycardia LDA, 10</td>
<td>TPR(%) 100</td>
<td>TNR(%) 77</td>
<td>Score 88.76</td>
</tr>
<tr>
<td>Extreme tachycardia BCT, 1</td>
<td>TPR(%) 100</td>
<td>TNR(%) 100</td>
<td>Score 100.00</td>
</tr>
<tr>
<td>Ventr. Flut./Fib. LDA, 5</td>
<td>TPR(%) 100</td>
<td>TNR(%) 92</td>
<td>Score 93.10</td>
</tr>
<tr>
<td>Ventr. Tachycardia LDA, 70</td>
<td>TPR(%) 93</td>
<td>TNR(%) 85</td>
<td>Score 81.64</td>
</tr>
</tbody>
</table>

Figure 7. Optimal binary classification decision tree for asystole false alarm reduction.

Figure 8. Histogram of true and false extreme tachycardia alarms in terms of the feature ‘minimum detected interval fusing all cardiac signals’.

3.1.4. **Ventricular flutter/fibrillation.** The optimal false alarm reduction for ventricular flutter / fibrillation in terms of score was achieved using a similar approach as the one used for extreme bradycardia. Again, a regularized linear discriminant classifier is used and resulted in a score of 72.86 at a TPR of 67% and a TNR of 92%. To train it, the first three eigenvectors of the 2D
correlogram of the mechanical cardiac signals (V_{M1-3}), as well as the average and maximum rhythmicity features, $\max(\tilde{S}T\tilde{A})$ and $\max(\tilde{S}T\tilde{A})$, respectively, were used. Analyzing the distributions of $\max(\tilde{S}T\tilde{A})$ yielded the same tendency as the extreme bradycardia classifier, as the average values were 533 A.U. for true and 1012 A.U. for false alarms, caused by rhythmic artifacts.

3.1.5 Ventricular tachycardia. To reduce the amount of false alarms in this category, the largest training dataset consisting of 341 alarms is available. Here, the support vector machine yielded the score of 71.30 at a TPR of 94% and a TNR of 70%. The five features used were one eigenvector of the 2D correlogram of the ECG, two eigenvectors derived from the mechanical cardiac signals, $\eta_{\text{opt,fused}}$ and Q_{ECG}. Still, a slightly better top score of 71.58 at a reduced TPR of 84% but an increased TNR of 80% is achieved using a regularized linear discriminant classifier with 70 features.

3.2 Global strategy

For the global strategy, a random forest classifier was chosen. The final classifier was trained using 200 trees and the three most important features, namely the first eigenvector of the 2D correlogram fusing both ECG channels, V_{ECG1}, the mean quality of the ECG beat-to-beat interval estimation, Q_{ECG}, and the minimum detected interval fusing all available cardiac signals, $\eta_{\text{opt,fused}}$. The results are displayed in table 4. Several observations can be made. First, the results on the hidden dataset are inferior to the (almost perfect results) on the training dataset. Second, the results achieved for asystole using a global strategy are actually better than the results achieved using an individual strategy (score 74.33, TPR of 56%, TNR of 94%). Apart from this, the results are inferior to those of the individual strategy.

3.3 Combined strategy

For a combination of the individual strategies for extreme bradycardia, extreme tachycardia, ventricular flutter/fibrillation, and ventricular tachycardia with the global strategy applied to asystole, the machine learning strategies, the number of features used as well as the numeric results for test and training dataset are presented in table 5. In terms of computational cost on the evaluation system, the average (maximum) running time was 10% (13%) on the test as well as the training dataset.
4. Discussion

The work presented constitutes an extension of a conference proceedings paper in association with the CinC Challenge 2015 published earlier (Hoog Antink and Leonhardt 2015). First, a more rigorous feature elimination strategy helped to improve the results for ventricular tachycardia false alarm reduction on the hidden test set from TPR 90%, TNR 71%, score 68.91 to TPR 84%, TNR 80%, score 71.58.

Second, the possibility of a global false alarm reduction strategy using the proposed rhythmicity features was explored. While the results were inferior compared to the individual strategies for most alarms, the false alarm reduction for asystole was improved from TPR 56%, TNR 94%, score 74.33 to TPR 100%, TNR 74%, score 76.77. Additionally, the overall score of the global strategy would have placed it on the 11th rank in the real-time event in the official phase of the challenge, where the mean (median) score of the 24 submitted entries was 62.25 (59.61). To further improve the outcome of such a strategy, training records where the signal is contaminated with artifacts should be identified manually, which was done by three human annotators in the work by Daluwatte et al (2015). These recordings could then be used to train a classifier that identifies cases where it is impossible for the monitor to make an accurate decision.

Analysis of the results presented in table 5 further confirm the observation shared by many participants of the challenge that false alarms of some categories are easier to reduce than others. Using the presented approach, extreme tachycardia alarms were reduced with a straightforward decision rule that can be motivated physiologically and works in 100% of the cases. On the other hand, the strategy for ventricular tachycardia considers 70 features and produces only a score of 71.58.

Several submissions by several research groups were contributed, of which the top 9 entries are listed in Clifford et al (2015):

- The top score in the real-time event, 84.96, was achieved by Plesinger et al (2015). In contrast to our approach, an initial, alarm-independent test for regular activity precedes an individual false alarm reduction strategy. While the results for all alarm categories are relatively high, the score for asystole (TPR 100%, TNR 96%, score 97.42) and ventricular tachycardia (TNR 85%, TPR 84%, score 75.07) are exceptional.

- Kalidas and Tamil (2015) received a top score of 79.44 using a SVM using a Gaussian kernel. In our work, the SVM was in general outperformed by the LDA, which we attribute to overfitting. A hand selection process of the training data to balance true and false alarms was reported by Kalidas and Tamil (2015), which might have also helped in alleviating the overfitting problem.

- In Krasteva et al (2015), the outputs of an open source pulse wave analysis module and a closed source ECG arrhythmia detection library were analyzed in an open source decision module. Here, linear decision rules were applied, resulting in an overall real-time score of...
As best result in this category, alarms for bradycardia could be suppressed with TNR 100%, TPR 90%, score 93.81. Couto et al (2015) showed the second best performance in false tachycardia alarm reduction (TNR 100%, TPR 80%, score 99.10), which, in terms of score, is comparable to the approach presented here. In particular a trust threshold was applied to all alarm scenarios. Overall, a score of 79.02 was achieved.

It was demonstrated in the challenge that retrospective analysis allows improved reduction of false alarms. While the best real-time strategy during the official phase achieved an overall score of 81.39, the work by Fallet et al (2015) achieved a top score of 85.04 in the retrospective event and a score of 76.11 in the real-time event. Thus, their work demonstrates that longer response times can help to reduce false alarms. In our work, no retrospective analysis was performed and the difference in score is coincidental.

Individual random forest classifiers were used in Eerikäinen et al (2015). Here, an overall score of 75.54 was achieved in the real-time event, while the highest individual score was 91.75 for bradycardia. Here, a TPR of 100% at a TNR of 86% was achieved using only two heart-rate based features.

The best score for the reduction of false ventricular fibrillation alarms was achieved by Ansari et al (2015), TNR 100%, TPR 90%, score 91.38. Here, an indicator signal based on peak quality is generated in the subroutines for ventricular tachycardia and flutter/fibrillation.

In Liu et al (2015), an algorithm that uses a combination of single-channel and multi-channel fusion rules is presented. Different approaches were used for the real-time and retrospective event, resulting in scores of 71.68 and 75.91, respectively. In context of other groups that used separate real-time and retrospective strategies, future work has to show how much extra response time has to be traded in for what scale of false alarm reduction. As of now, not all groups have reported the length of the time frame analyzed after the alarm.

The comparison with other groups raises the question if a combination of approaches on the feature level can optimize false alarm reduction. It was already demonstrated in Clifford et al (2015) that a voting algorithm, i.e. a fusion on the decision level using the top 13 entries, achieves an overall real-time score of 84.26, which outperforms all individual submissions. Comparing the top result for each group and alarm category to our results revealed that the score of 74.33 for asystole shows the largest difference to the top score of 97.42 (Plesinger et al 2015). It is worth noting that the quality parameter Q_{ECG} is not used in the individual strategy for asystole false alarm reduction but in the global strategy, which in turn improves results for asystole to a moderate 76.77. We assume that the inclusion of an established signal quality parameter would improve results. Q_{ECG} only quantifies self-similarity. Thus, both a clean sinus ECG and an ECG signal consisting only of rhythmic artifacts would have a high value, whereas a clean signal with changing beat morphology would exhibit a low value.

The discrepancies in results on the test and training dataset further indicate that some overfitting of the training data occurs. For one, this could be alleviated by larger test and training datasets. Additionally, a more rigorous feature selection regime needs to be developed. In particular, physiological considerations should be included to augment the presented data-driven selection approaches.

5. Conclusion

In this paper, a combination of multimodal rhythmicity estimation and machine learning to reduce false arrhythmia alarms was presented. Using standard short-time autocorrelation as well as robust beat-to-beat interval estimation, rhythmicity features were derived from electrical and mechanical cardiac signals. In particular, methods from the realm of image processing were employed for
dimensionality reduction of the 2D beat-to-beat correlogram. Using an alarm-independent reduction strategy, an overall false alarm reduction with a score of 65.52 in terms of the PhysioNet/Computing in Cardiology Challenge 2015 real-time scoring system was reached on the hidden dataset. Employing an alarm-specific strategy, an overall real-time score of 78.20 at a TPR of 95% and a TNR of 78% is achieved. While the results for some categories still need improvement, false alarms for extreme tachycardia are suppressed with 100% sensitivity and specificity.

References

Chambrin M C 2001 Alarms in the intensive care unit: how can the number of false alarms be reduced? Crit. Care 5 184–8

Guo Y, Hastie T and Tibshirani R 2007 Regularized linear discriminant analysis and its application in microarrays Biostatistics 8 86–100

Hoog Antink C, Brüser C and Leonhardt S 2015a Detection of heart beats in multimodal data: a robust beat-to-beat interval estimation approach Physiol. Meas. 36 1679–90

Lawless S T 1994 Crying wolf: false alarms in a pediatric intensive care unit Crit. Care Med. 22 981–5

Parthasarathy S and Tobin M J 2004 Sleep in the intensive care unit Intensive Care Med. 30 197–206

