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Abstract
This work introduces a new single-lead ECG delineator based on phasor
transform. The method is characterized by its robustness, low computational
cost and mathematical simplicity. It converts each instantaneous ECG sample
into a phasor, and can precisely manage P and T waves, which are of notably
lower amplitude than the QRS complex. The method has been validated making
use of synthesized and real ECG sets, including the MIT-BIH arrhythmia,
QT, European ST-T and TWA Challenge 2008 databases. Experiments
with the synthesized recordings reported precise detection and delineation
performances in a wide variety of ECGs, with signal-to-noise ratios of 10 dB
and above. For real ECGs, the QRS detection was characterized by an average
sensitivity of 99.81% and positive predictivity of 99.89%, for all the analyzed
databases (more than one million beats). Regarding delineation, the maximum
localization error between automatic and manual annotations was lower than
6 ms and its standard deviation was in agreement with the accepted tolerances
for expert physicians in the onset and offset identification for QRS, P and T
waves. Furthermore, after revising and reannotating some ECG recordings by
expert cardiologists, the delineation error decreased notably, becoming lower
than 3.5 ms, on average, and reducing by a half its standard deviation. This
new proposed strategy outperforms the results provided by other well-known
delineation algorithms and, moreover, presents a notably lower computational
cost.

Keywords: ECG delineation, P wave, Phasor transform, QRS detection,
T wave
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1. Introduction

The surface electrocardiogram (ECG) provides a widely used and comfortable way to study
the heart function, being a conventional tool for the diagnosis of cardiac diseases, which
are the main cause of mortality in our society (Sörnmo and Laguna 2005, Petrutiu et al 2006).
Given that most of the clinically useful information in the ECG is found within the time
intervals and amplitudes determined by its fiducial points, the development of accurate and
robust methods for automatic ECG delineation is a very interesting challenge for clinicians
and biomedical engineers (Martı́nez et al 2004). In this respect, precise ECG fiducial point
detection could help in the achievement of more accurate results in applications such as pattern
recognition or arrhythmia classification (Minhas and Arif 2008) and to develop improved
solutions for the diagnosis of certain phenomena such as T-wave alternans (Ghaffari et al
2009), atrial fibrillation (Minhas and Arif 2008) or QT-prolongation (Christov and Simova
2007).

The lack of any universally accepted rule defining the ECG waves onset and offset has
been an extra complication to systematize ECG waves delineation; however, many authors
have addressed this issue. Thus, a wide diversity of algorithms have been proposed in
the literature (Martı́nez et al 2004). Most of them work on a single ECG lead and relay,
as a first step, on R-peak detection in order to take this point as a reference. The most
significant proposed approaches to locate the R-peak are summarized in Köhler et al (2002).
The next usual step is to delineate the QRS complex and, next, the P and T waves. In
this respect, most of the algorithms usually start from the R-peak and define forward and
backward seek windows. However, the precise detection of the wave onset and offset
directly from the ECG is a hard task because, in general, the signal amplitude is notably
low near the wave boundaries and the noise level can be even higher than the signal itself
(Martı́nez et al 2004). Thereby, once the seek window is defined, some technique has to
be applied to the ECG in order to enhance the proper waves and fiducial points. In this
respect, different mathematical tools, including filters (Koeleman et al 1985, Soria-Olivas
et al 1998), first-order (FD) and second-order derivatives (Arzeno et al 2008, Kemmelings
et al 1994), low-pass differentiation (LPD) (Laguna et al 1994, Speranza et al 1993), nonlinear
time-scale decomposition (Strumillo 2002), dynamic time warping (Vullings et al 1998),
artificial neural networks (Dokur et al 1997), Hilbert Transform (HT) (Hickey et al 2004),
hidden Markov models (Clavier et al 2002), etc, have been used. However, wavelet transform
(WT) has proved to be the delineation method with the highest accuracy (Martı́nez et al
2004, Ghaffari et al 2009). Nevertheless, WT-based delineation algorithms require intensive
mathematical operations and, therefore, notable computational time and cost (Patil and Abel
2009).

In the present contribution, an easy to implement and fast algorithm based on phasor
transform (PT) is proposed to detect and delineate QRS, P and T waves from the ECG. The
performance of this technique is assessed using synthesized ECGs and standard real ECG
databases manually annotated, with which other algorithms have already been tested: MIT-
BIT arrhythmia (Moody and Mark 1990), QT (Laguna et al 1997), European ST-T (Taddei
et al 1992) and TWA Challenge 2008 (Moody 2008) comprise the real tested datasets.

The paper is structured as follows. Section 2 describes the proposed PT-based algorithm
for detection and delineation of ECG waves together with its validation from synthetic and
real ECG recordings. Section 3 summarizes the results obtained for the different analyzed
databases. These outcomes are discussed and compared with others provided by well-known
delineation methods in section 4. Finally, section 5 presents the concluding remarks bringing
the paper to its end.
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x[n]

ϕ[n]

Figure 1. Example of an ECG beat, x[n], with P and T waves of notably low amplitude together
with the resulting phasor transformed signal, ϕ[n], in which these waves are remarkably enhanced.

2. Methods

2.1. Phasorial signal for delineation

The PT is an easy tool that can represent a sinusoidal function in the complex domain. The
result is a complex number, called phasor, which preserves the signal information regarding
root mean square and phase values (Proakis and Manolakis 1996). Thus, for a generic discrete
sinusoid such as

x[n] = A cos(ωn + ϕ) = �{A ej(ωn+ϕ)}, (1)

A being the amplitude and ϕ the phase of the sinusoid, its PT would provide a rotating phasor
in the complex plane with magnitude A, rotation speed ω and initial phase ϕ, i.e.

PT{x[n]} = A ejϕ = A cos(ϕ) + jA sin(ϕ). (2)

To enhance the ECG waves, PT was used to convert each instantaneous ECG sample into
a phasor. A constant value Rv was considered as the real part, whereas the original value of
the ECG sample was used as the imaginary component of the phasor. Thus, if we denote an
ECG recording of N samples in length by x[n], n being the discrete time, the phasor y[n]
could be defined for each sample as

y[n] = Rv + jx[n], for n = 1, . . . , N. (3)

The magnitude M[n] and phase ϕ[n] of this phasor could be computed as

M[n] =
√

R2
v + x[n]2 and (4)

ϕ[n] = tan−1

(
x[n]

Rv

)
. (5)

In this way, by considering the instantaneous phase variation in consecutive samples of the
phasor transformed ECG, the slight variations provoked by P and T waves in the original
recording are maximized, regardless of their eventually low amplitude, such as can be observed
in figure 1, thus making their detection and delineation notably easier.

The value of Rv determines the degree with which ECG waves are enhanced in the
phasorial signal. Thus, the lower Rv , the higher the differences among phase variations in the
complex plane. In this respect, for the limit case in which Rv = 0, the phase signal ϕ[n] only
presents two values:

ϕ[n] =
{

+π
2 if x[n] � 0

−π
2 if x[n] < 0

. (6)
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Figure 2. (a) Representation of a normal beat from a typical ECG (top) together with its phase
variation obtained from the phasor transform (bottom). (b) Detailed representation of the phasor
transformed signal ϕ[n] to illustrate the process for R-peak identification.

For the opposite case, in which Rv = 1, the original ECG with a maximum amplitude of
π/4 rad would be obtained, whenever the ECG would be normalized to its maximum R-peak
amplitude.

2.2. Detection sequence of the fiducial points

2.2.1. QRS detection. QRS complexes were detected by directly applying the PT, with a
value of Rv = 0.001, to the absolute value of the original ECG, |x[n]|, previously removing
its baseline wander with forward/backward high-pass filtering of 0.5 Hz cut-off frequency. As
can be seen in the lower panel of figure 2(a), P and T waves were notably enlarged by the
PT operation. Anyway, the maximum instantaneous phase variation can yet be found for the
QRS complex, as figure 2(b) shows. Thus, by establishing a threshold of 0.003 rad below
the maximum phase variation (π/2), the QRS complexes can be located as those segments
exceeding the threshold. Similarly, the R-peak of each beat can be marked as the maximum
magnitude M[n] point within each segment. In those cases where a time longer than 150% of
the last computed R–R distance elapsed without detecting any QRS, a new backward seek with
lowered thresholds was repeated until successful detection. On the contrary, when two R points
were localized within an interval lower than 40% of the distance between the last two R peaks,
the one with lower magnitude M[n] was discarded to prevent double R detection within a
beat.

2.2.2. QRS delineation. Once the R-peak was detected, it served as a reference for the
identification of Q and S waves. Two boundary points, γQRS− and γQRS+, around the R-peak
were primarily established. They were defined as the closer points to the R-peak in which
ϕ[n] was lower than 25% of the maximum phase variation (π/2). Before γQRS−, a window
of 35 ms was considered to seek for the Q wave. Only for this window, the PT was newly
applied to the absolute value of the ECG, |x[n]|, subtracting previously the median of the
segment. In this case, the value of Rv was 0.005 in order to minimize the effect of interfering
noise. Finally, the local minimum of ϕ[n] was sought within the defined window. If any point
presented a phase higher than 50% of the maximum variation within the window, the marked
local minimum was annotated as the Q wave, given that the absence of a significant negative
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Figure 3. Example of a beat without (a) and with (b) negative deflection, with respect to the
isoelectric line, between fiducial points Q and R and how the proposed method behaves.

deflection with respect to the isoelectric line between Q and R was deduced, see figure 3(a).
In other case, among the phasors exceeding the threshold, the one with the highest magnitude
M[n] was marked as the Q wave, because this point will be the local minimum preceding the
described deflection, see figure 3(b).

The definition of γQRS− allows an appropriate Q wave delineation in wide QRS complexes
since the search window can be established accurately. On the contrary, if a fixed search
window would be considered from the R-peak, such as in most previous works (Martı́nez
et al 2004), the Q wave could not be located within the window, thus making the accurate
delineation of the wave unfeasible under some scenarios (Arzeno et al 2008).

The same strategy and window length were used for S wave delineation, with the only
particularity that the seek window was defined after the point γQRS+.

2.2.3. P wave detection and delineation. In order to detect the P wave, a seek window,
relative to the Q wave position, was considered. The width of this window was adapted to
each beat, being initially a quarter of the distance between the current R-peak and the previous
one. Afterward, the median was removed from the ECG segment within the window and PT
was applied with Rv taking a value of 0.003. The local maximum of ϕ[n] was located within
the window and it corroborated the coherence of this point with a peak. For this purpose, it
was checked that the preceding and subsequent samples presented a magnitude M[n] lower
than the marked point. In the affirmative case, the point was annotated as the maximum value
of the P wave. In contrast, the width of the seek window has to be reduced because, eventually,
some part of the T wave from the preceding beat could be considered within the initial window.
Iteratively, the aforementioned process was repeated until the detection of the P wave peak.
Finally, when the detected P wave amplitude was lower than 5% of the R-peak amplitude, an
absence of the P wave was considered.

For identification of the P wave onset and offset, the detected P-peak served as a reference.
Both boundaries were individually searched. Thus, a 15 ms window relative to the P-peak
was established before this point. The median was removed and PT, with Rv = 0.005, was
applied to the ECG segment within the window. Next, the first derivate of ϕ[n] was obtained
to locate the phase transition from its minimum to its maximum, see figure 4. Afterward,
from this point toward the window start, the nearest zero-crossing in ϕ′[n] was searched and
marked as the P wave onset. The P wave offset detection was based on the same process, but
with two differences. Obviously, the seek window was established after the P-peak and the
closest zero-crossing in ϕ′[n] was sought from its local minimum toward the window end. In
those cases where the P wave onset or offset was not found after the aforementioned process,
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ϕ[n]

ϕ’[n]

x[n]

Figure 4. Representation of the phasorial signals, ϕ[n], and their corresponding derivative, ϕ′[n],
used to delineate the onset and offset associated with P and T waves of the ECG beat.

the same approach would be repeated with a lower value of Rv until the location of both
boundaries.

2.2.4. T wave detection and delineation. The strategy to identify the T wave peak and
boundaries was similar to that described for the P wave. In this case, a wider seek window of
25 ms was used to determine the onset and offset of the T wave, because it is generally longer
than the P wave. Additionally, given that the T wave amplitude is higher than the P wave, a
lower enhancement of this wave was required and, therefore, a value of Rv = 0.1 was used as
PT computational parameters.

2.3. Validation of the delineator

Given the lack of a gold standard to determine ECG fiducial points, the proposed delineator
was validated making use of manually annotated databases. Thus, in order to evaluate the
robustness of the algorithm against random noise, a database with synthetic ECG recordings
annotated by expert cardiologists was used first. Afterward, the algorithm was assessed making
use of easily available databases of real ECGs, which has been widely used for validation in
previous works (Martı́nez et al 2004, Ghaffari et al 2009).

2.3.1. Synthetic ECG database. Fifty 30 s synthetic ECG signals were generated making
use of a previously published algorithm (McSharry et al 2003) with a sampling frequency of
250 Hz. The most typical morphologies for QRS complexes (QRS, RSR’, RS, R and QS),
P wave (positive, negative, biphasic and absent) and T wave (positive, negative, biphasic and
absent) were considered and randomly distributed throughout the signals, as figure 5 shows.
To obtain realistic ECG waveforms, the amplitude of each wave was modulated, in a beat-to-
beat basis, being divided by a random factor between 1 and 2.5, thus achieving an attenuation
between 0% and 60% of its original value (Sörnmo and Laguna 2005). In addition, the distance
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(a) (b) (c) (d)
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)n()l(

Figure 5. Different morphologies of QRS, P and T waves included in the synthetic signals set:
(a) normal QRS, P and T waves, (b) normal QRS and attenuated P and T waves, (c) attenuated
normal QRS with normal P and T waves, (d) R complex with attenuated P and T waves, (e) RS
complex with normal P and T waves, (f) normal QRS and T waves with biphasic P, (g) normal
QRS and P waves with biphasic T, (h) RSR’ complex with normal P and T waves, (i) QS complex
with negative P and T waves, (j) normal QRS and P waves with negative T, (k) normal QRS and
T waves with negative P, (l) normal QRS and P waves without T, (m) normal QRS and T waves
without P, and (n) premature ectopic ventricular contraction.

between consecutive R peaks was also varied within an interval of ±30% of the mean heart
rhythm, which was randomly selected between 60 and 140 beats min−1 for each synthesized
recording.

The generated recordings were manually annotated by expert cardiologists from a digital
support in order to avoid possible digitalization errors in the annotations. It should be noted that
the parameters of the proposed delineation algorithm were fixed, making use of this database as
a training set. Afterward, different levels of random noise were added to the synthetic signals
to analyze the robustness of the delineator. Precisely, signal-to-noise ratios (SNR) of 40, 30,
20 and 10 dB were studied, given that the SNR of a typical ECG recording ranges from 10 to
40 dB (Yu and Chen 2009). The delineator was applied to these noisy signals and its
performance was assessed for comparison with the initial annotations. In this respect,
the detection of each analyzed point was evaluated by computing the sensitivity, Se =
TP/(TP + FN), the positive predictivity, P + = TP/(TP + FP), and the failed detection
percentage, Fd = (FP + FN)/TB, TP being the number of true positives, FP the number
of false positives, FN the number of false negatives and TB the number of analyzed beats.
The location error (LE) was computed from the differences between manual and automatic
annotations in order to validate the wave delineation accuracy.

2.3.2. Real ECG database. Several databases with different sampling frequencies (fs) and
SNRs were used to validate the proposed delineator performance from real ECGs. The MIT-
BIH arrhythmia database (MITDB), the QT database (QTDB), the European ST-T database
(EDB) and the TWA Challenge 2008 database (TWADB) were enrolled in the study. Their
main characteristics are summarized in table 1.

The MITDB includes mainly selected Holter recordings with anomalous but clinically
important phenomena. This database presents annotations of the R-peak position. The EDB
files contain ischemic episodes extracted from Holter signals with annotations of the QRS
placement. The QTDB includes some recordings from EDB and MITDB and also from
several other MIT-BITH databases (ST change, supraventricular arrhythmia, normal sinus
rhythm, sudden death and long term). This database was developed for wave limit validation
purposes with more than 3600 annotated beats. More precisely, it provides annotations,
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Table 1. Characteristics of the real ECG databases used for validation in this work.

Database Files Leads fs (Hz) Resol. Rec. duration

MITDB 48 2 360 5 μV 30 min
QTDB 105 2 250 5 μV 15 min
EDB 90 2 250 5 μV 120 min
TWADB 100 2–12 500 5 μV 2 min

by an expert cardiologist, for at least 30 beats per recording, with marks including QRS
complexes, P and T wave peaks, onsets and offsets. Additionally, in 79 out of 105 recordings,
manually annotated QRS positions are provided for the whole signal. Finally, the TWADB
contains annotations of R-peak positions for recordings obtained from patients with myocardial
infarctions, transient ischemia, ventricular tachyarrhythmias and other risk factors for sudden
cardiac death, as well as healthy controls and synthetic cases with calibrated amounts of
T-wave alternants.

The QRS detection stage was validated making use of the four databases. R-peaks were
only detected in the first lead of each recording in order to compare the obtained results with
other published works. As for synthetic ECG signals, sensitivity, positive predictivity and
failed detection percentage were computed to quantify the algorithm performance.

Regarding the delineation assessment of the proposed method, only the QTDB was used.
Although the delineator works on a single-channel basis, it has to be remarked that annotations
on the QTDB were performed having the two available leads in sight (Laguna et al 1997). This
aspect could explain why a LE standard deviation higher than the tolerances recommended
by the Common Standards of Electrocardiography (CSE) working party (CSE 1985) was
noticed for several QTDB recordings. Thus, after revising the first channel of these recordings
by expert cardiologists, notable differences between the original manual annotations and the
recorded fiducial points were observed in several signals, as figure 6 shows for some of them.
Thereby, expert cardiologists re-annotated the first channel of these recordings following a set
of single-lead criteria. Next, the performance of the delineator was assessed again taking into
consideration the new annotations, in a similar way to previous works (Ghaffari et al 2009
2010).

3. Results

Sensitivity and positive predictivity values of 100% and a LE of 0 ms were obtained in
detection and delineation over synthesized ECGs without noise (SNR = ∞ dB), see table 2.
This result has to be considered as not outstanding, given that the delineator was trained using
these recordings. For the remaining SNRs, random noise was generated 100 times and added
back to the synthesized ECG signals. Hence, the method’s performance, both for detection
and delineation, was assessed for the 100 noise realizations. The obtained mean values are
also presented in table 2. As can be seen, the sensitivity and positive predictivity for detection
of all the ECG waves were 100% for SNRs � 20 dB and slightly lower for a SNR of 10 dB.
Similar behavior can be observed for delineation, becoming the LE standard deviation higher
than the accepted two standard deviation (2σCSE) tolerances, recommended by the CSE
working party (CSE 1985), for the P wave onset and offset and the QRS onset, when the
SNR was 10 dB.

The QRS detection performances on the MITDB, QTDB, EDB and TWADB obtained by
the proposed algorithm and other previous single-lead methods are presented in tables 3–6.
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Original manual annotations performed following multi-lead criteria. 
Manual re-annotations performed using single-lead criteria. 

(a)

(d)
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(c)

Tpeak

Toff

Tpeak

Toff

Ppeak
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Pon

Ppeak
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Figure 6. Examples of QTDB recordings with remarkable differences between manual annotations,
performed on a multi-lead basis, and the fiducial points recorded in the lead. The plotted ECG
segments belong to (a) sel102, (b) sel308, (c) sel104 and (d) sel213 recordings. Re-annotations
performed by expert cardiologists based on single-lead criteria are also shown.

Most of the previous detectors were tested on the MITDB (Ghaffari et al 2009, Martı́nez
et al 2004, Li et al 1995, Moody and Mark 1982, Pan and Tompkins 1985, Hamilton and
Tompkins 1986, Hickey et al 2004), although a few of them were also checked on the
QTDB, EDB (Ghaffari et al 2009, Martı́nez et al 2004) and TWADB (Ghaffari et al 2009).
Considering that in the most significant single-lead detectors presented to date (Martı́nez et al
2004, Ghaffari et al 2009) the segments with ventricular flutter in record 207 of the MITDB
and those others annotated as unreadable in the EDB were excluded, we also followed the
same procedure to validate the proposed algorithm. The obtained results are presented in
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Table 2. Detection and delineation performance achieved by the proposed delineator when tested
over the synthesized ECG database.

SNR
Boundaries TB Parameters ∞ dB 40 dB 30dB 20dB 10 dB 2σCSE(ms)

Pon 225 200 Se (%) 100 100 100 100 99.41

P +(%) 100 100 100 100 93.18

LE
(μ ± σ)(ms)

0 ± 0 2.8 ± 7.1 3.4 ± 10 4.1 ± 14.2 4.5 ± 38.5 10.2

Ppeak 225 200 Se (%) 100 100 100 100 99.41

P +(%) 100 100 100 100 93.18

LE
(μ ± σ)(ms)

0 ± 0 −0.8 ± 2.7 1.9 ± 4.4 4.2 ± 9.0 6.1 ± 33 –

Pend 225 200 Se (%) 100 100 100 100 99.41

P +(%) 100 100 100 100 93.18

LE
(μ ± σ)(ms)

0 ± 0 3.0 ± 7.1 5.9 ± 9.3 6.5 ± 14.0 7.8 ± 42.9 12.7

QRSon 225 200 Se (%) 100 100 100 100 100

P +(%) 100 100 100 100 100

LE
(μ ± σ)(ms)

0 ± 0 −3.1 ± 4.1 4.7 ± 4.7 5.9 ± 6.8 5.3 ± 12.0 6.5

R 225 200 Se (%) 100 100 100 100 100

P +(%) 100 100 100 100 100

LE
(μ ± σ)(ms)

0 ± 0 0.04 ± 0.2 0.2 ± 0.8 0.5 ± 2.1 0.6 ± 3.5 –

QRSend 225 200 Se (%) 100 100 100 100 100

P +(%) 100 100 100 100 100

LE
(μ ± σ)(ms)

0 ± 0 0.9 ± 1.6 0.92 ± 2.2 −0.11 ± 3.7 0.47 ± 7.5 11.6

Ton 225 200 Se (%) 100 100 100 100 99.48

P +(%) 100 100 100 100 95.45

LE
(μ ± σ)(ms)

0 ± 0 1.6 ± 3.9 2.4 ± 9.2 14.5 ± 17.2 23.2 ± 25.4 –

Tpeak 225 200 Se (%) 100 100 100 100 99.48

P +(%) 100 100 100 100 95.45

LE
(μ ± σ)(ms)

0 ± 0 0.7 ± 3.4 −0.8 ± 5.6 0.7 ± 9.8 1.30 ± 17.8 –

Tend 225 200 Se (%) 100 100 100 100 99.48

P +(%) 100 100 100 100 95.45

LE
(μ ± σ)(ms)

0 ± 0 1.4 ± 3.4 5.84 ± 9.6 13.9 ± 20.2 20.2 ± 26.4 30.6

the first row of tables 3–6. Moreover, recording 58 of the TWADB was not included in the
analysis, because most parts of its P and T waves were masked by muscle noise, which is
very difficult to remove. Nonetheless, note that there exists a standard protocol, specified
in ANSI/AAMI EC57 (ANSI/AAMI-EC57 1998/(R)2008/(R), for meaningful performance
comparison between QRS detection algorithms. Thus, to facilitate comparison with other
detectors, the performance has also been assessed following the aforementioned protocol for
the MITDB, QTDB and EDB databases. Results are presented in the second row of tables 3–5.
In this case, segments with ventricular flutter in record 207 of the MITDB were also excluded,
but those annotated as unreadable in the EDB were considered in the study. Furthermore, the
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Table 3. Performance comparison of several QRS detection algorithms: application to MITDB
(N/R: not reported).

Detection algorithm TB TP FP FN Fd(%) Se(%) P +(%)

PT (this work) 109 428 109 111 35 317 0.32 99.71 99.97
PT following the protocol 84 164 83 885 32 259 0.34 99.69 99.96

ANSI/AAMI EC57
Ghaffari et al (2009) 109 428 109 327 129 101 0.21 99.91 99.88
Martı́nez et al (2004) 109 428 109 208 153 220 0.34 99.80 99.88
Hickey et al (2004) N/R N/R N/R N/R N/R 98.50 98.40
Li et al (1995) 104 182a 104 070 65 112 0.17 99.89 99.94
Hamilton and Tompkins (1986) 109 267 108 927 248 340 0.54 99.69 99.77
Pan and Tompkins (1985) 109 809a 109 532 507 277 0.71 99.75 99.54
Moody and Mark (1982) N/R N/R 212 241 N/R 99.77 99.81

a Values computed according to the record-by-record tables in the referred works.

Table 4. Performance comparison of several QRS detection algorithms: application to QTDB.

Detection algorithm TB TP FP FN Fd(%) Se(%) P +(%)

PT (this work) 86 892 86 852 55 40 0.11 99.95 99.93
PT following the protocol 57 773 57 745 43 28 0.12 99.95 99.92

ANSI/AAMI EC57
Ghaffari et al (2009) 86 892 86 845 79 47 0.15 99.94 99.91
Martı́nez et al (2004) 86 892 86 824 107 68 0.20 99.92 99.88

Table 5. Performance comparison of several QRS detection algorithms: application to EDB.

Detection algorithm TB TP FP FN Fd(%) Se(%) P +(%)

PT (this work) 787 103 784 515 2054 2588 0.59 99.67 99.73
PT following the protocol 759 878 757 280 2087 2598 0.61 99.66 99.72

ANSI/AAMI EC57
Ghaffari et al (2009) 787 103 784 210 3554 2893 0.82 99.63 99.55
Martı́nez et al (2004) 787 103 784 059 4077 3044 0.90 99.61 99.48

Table 6. Performance comparison of two QRS detection algorithms: application to TWADB.

Detection algorithm TB TP FP FN Fd(%) Se(%) P +(%)

PT (this work) 18 847 18 830 16 17 0.17 99.90 99.91
Ghaffari et al (2009) 11 789 11 776 18 13 0.26 99.89 99.84

first 5 min of each recording was excluded and MITDB signals 102, 104, 107 and 217 were
also not considered, because they contain poorly recorded paced beats. It should be noted that
the aforementioned protocol cannot be applied to the TWADB, provided that its recordings
are shorter than 5 min.
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Table 7. Delineation performance comparison with the most significant previous works making
use of the QT database (N/A: not applicable, N/R: not reported, LE: location error).

Method Parameters Pon Ppeak Pend QRSon QRSend Tpeak Tend

PT on Se (%) 99.27 99.27 99.27 99.91 99.91 99.77 99.77

re-annotated P +(%) 98.75 98.75 98.75 99.94 99.94 99.66 99.66

QTDB LE (μ ±
σ)(ms)

−3.2 ± 7.7 1.1 ± 2.0 −0.2 ± 3.5 −1.6 ± 3.3 −2.8 ± 4.0 0.46 ± 2.8 −2.5 ± 6.2

PT on originally Se (%) 98.65 98.65 98.65 99.85 99.85 99.20 99.20

annotated P +(%) 97.52 97.52 97.52 99.72 99.72 99.01 99.01

QTDB LE (μ ±
σ)(ms)

2.6 ± 14.5 32 ± 25.7 0.7 ± 14.7 −0.2 ± 7.2 2.5 ± 8.9 5.3 ± 12.9 5.8 ± 22.7

Ghaffari et al Se (%) 99.46 99.46 99.46 99.94 99.94 99.87 99.87

(2009) P +(%) 98.83 98.83 98.83 99.91 99.91 99.80 99.80

LE (μ ±
σ)(ms)

−1.2 ± 6.3 4.1 ± 10.5 0.7 ± 6.8 −0.6 ± 8 0.3 ± 8.8 0.3 ± 4.1 0.8 ± 10.7

Martı́nez et al Se (%) 98.87 99.87 98.75 99.97 99.97 99.77 99.77

(2004) P +(%) 91.03 91.03 91.03 N/A NA 97.79 97.79

LE(μ ±
σ)(ms)

2.0 ± 14.8 3.6 ± 13.2 1.9 ± 12.8 4.6 ± 7.7 0.8 ± 8.7 0.2 ± 13.9 −1.6 ± 18.1

Laguna et al Se (%) 97.7 97.7 97.7 99.92 99.92 99.0 99.0

(1994) P +(%) 91.17 91.17 91.17 N/A NA 97.74 97.71

LE(μ ±
σ)(ms)

14.0 ± 13.3 4.8 ± 10.6 −0.1 ± 12.3 −3.6 ± 8.6 −1.1 ± 8.3 −7.2 ± 14.3 13.5 ± 27.0

Vila et al (2000) Se (%) N/A N/A N/A N/A N/A 92.6 92.6

P +(%) N/A N/A N/A N/A N/A N/R N/R

LE(μ ±
σ)(ms)

N/A N/A N/A N/A N/A −12 ± 23.4 0.8 ± 30.3

Tolerances 2σCSE(ms) 10.2 – 12.7 6.5 11.6 – 30.6

Finally, with regard to delineation, table 7 shows a comparison of the results between the
proposed delineator and other methods (Martı́nez et al 2004, Ghaffari et al 2009, Laguna et
al 1994, Vila et al 2000) when analyzing the QT database.

4. Discussion

4.1. Synthetic ECG recordings

Regarding QRS detection, results with synthetic ECG signals showed that R-peaks were
robustly localized by the proposed algorithm since sensitivity and positive predictivity
presented values of 100%, even with notably high noise levels (SNR of 10 dB), see
table 2. This good outcome proves that the method is able to correctly detect the QRS
complex independently of its morphology, given that the synthesized database included a
wide variety of the most common cases. A similar observation could be made for P and
T waves in which, for all the synthesized different morphologies, sensitivity and positive
predictivity were higher than 99.41% and 93.18%, respectively (see table 2).

For the T wave offset delineation, a considerably reduced LE was observed for all the
SNRs, its standard deviation being lower than the accepted CSE tolerance (CSE 1985), even for
SNRs of 10 dB, see table 2. Similar behavior was also observed for the QRS offset delineation.
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SNR = 40 dB

SNR = 30 dB

SNR = 20 dB

SNR = 10 dB

(a) (b)

Figure 7. Representation of a synthetically generated (a) R complex and (b) normal beat with
different noise levels. It can be seen that Q and P waves are disfigured and finally disappeared as
noise increases.

However, for the QRS onset, the LE standard deviation was higher than the accepted CSE
tolerance for an SNR � 20 dB. The fact that the Q wave can be easily masked by the noise
when there is no significant negative deflection between Q and R points, as figure 7(a) shows,
could be a possible justification of this result. With regard to the P wave edges delineation, a
higher LE standard deviation than the accepted CSE tolerances was also observed for an SNR
� 20 dB. In this case, a possible reason could be that the P wave is notably disfigured and
finally masked by the noise corresponding to SNRs of 20 and 10 dB, respectively, such as can
be seen in figure 7(b). Overall, it could be considered that the proposed algorithm is able to
correctly delineate T waves from ECGs with SNRs higher than 10 dB and QRS complexes
and P waves from recordings with an SNR > 20 dB.

4.2. QRS detection with real ECGs

By averaging the results provided by the four analyzed real ECG databases, the proposed
method achieved a sensitivity of 99.81% and a positive predictivity of 99.89% in QRS
detection. In this case, the databases were evaluated following the procedure described in
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the most significant single-lead delineators presented to date (Martı́nez et al 2004, Ghaffari et
al 2009), which did not follow the standard protocol ANSI/AAMI EC57. When the protocol
was followed, the obtained results were almost the same, given that, on average, sensitivity
was 99.77% and positive predictivity was 99.87%. Thus, in the worst case, failed detection
percentage was only increased by 0.02%, and sensitivity and positive predictivity were only
reduced by 0.02% and 0.01%, respectively. Regardless of protocol ANSI/AAMI EC57, in
both experiments one million beats with different morphologies were used, approximately, to
validate the detector. The obtained outcomes were equal or slightly better than those reported
by the aforementioned single-lead delineation algorithms, i.e. Ghaffari et al (2009) (Se =
99.84% and P + = 99.80%) and Martı́nez et al (2004) (Se = 99.66% and P + = 99.56%).
Additionally, it should be noted that the proposed method was only trained making use of the
synthetic ECG database. Hence, the detector parameters were not tuned to any of the real ECG
used sets. In contrast, in the two aforementioned previous works (Ghaffari et al 2009, Martı́nez
et al 2004), the MITDB was simultaneously used as the training and test set, which could
imply an over-improvement of the real outcomes for this database.

The MITDB is characterized by a high density of premature ventricular contractions.
The notably high amplitude of these ectopic beats in comparison with normal complexes
complicates a reliable detection of all the R-peaks existing in the ECG by using thresholding
(Arzeno et al 2008). Thus, to improve the QRS detection, more than one threshold and
complex decision rules are normally required, such as several previous works have reported
(Ghaffari et al 2009, Martı́nez et al 2004, Hickey et al 2004, Li et al 1995, Hamilton and
Tompkins 1986, Pan and Tompkins 1985, Moody and Mark 1982). However, the proposed
algorithm in this work only requires a threshold to reliably detect the R-peaks, given that the
PT application to normal and ectopic beats, independently of their amplitude, produces a very
similar phase variation, such as can be observed in figure 8. Obviously, this advantage is a
valuable aid in the arduous detection of low-amplitude QRS complexes, as figure 9 shows.
This fact could be the reason why the proposed method attains a performance on the MITDB,
see table 3, slightly better than the one presented by the FD-based (Hamilton and Tompkins
1986, Pan and Tompkins 1985, Moody and Mark 1982) and HT-based (Hickey et al 2004)
techniques, which use two thresholds, and very similar to those others reported by the WT-
based methods (Ghaffari et al 2009, Martı́nez et al 2004, Li et al 1995), which make use
of several thresholds and complex decision rules, thus notably increasing the computational
burden.

As mentioned in section 2.2.1, the proposed method prevents the detection of two R-peaks
within a beat. This fact is essential to reduce the number of false positives provoked by high
and narrow T waves, which have been found to be a problem in methods in which R-peak
detection relies on automatic thresholding (Martı́nez et al 2004, Ghaffari et al 2009, Li et al
1995, Pan and Tompkins 1985, Moody and Mark 1982, Hamilton and Tompkins 1986). As
an example, in Martı́nez et al (2004), only the signal e0305 of the EDB, which presents the
described T wave morphology, provoked the 42% of the FP and the 57% of the FN reported for
the whole database. On the contrary, for the PT-based method, this recording only provoked
0.58% of the FP and 3.79% of the FN obtained in the EDB. This could be the reason why the
proposed algorithm presented the best sensitivity and positive predictivity for the European
ST-T database in comparison with the works published to date, see table 5.

Regarding the QRS detection on the QTDB and TWADB, slightly better results were
obtained with the proposed method than with other R-peak detectors, as can be seen in
tables 4 and 6. In addition, it is noteworthy that the proposed algorithm was validated with a
higher number of beats than the one used in previous works for the TWADB (Ghaffari et al
2009). Specifically, 59.87% of additional beats have been used in this study.
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(a)

(b)
(c)

x[n] 
ϕ[n]
R-peak amplitude in x[n]
R-peak amplitude in ϕ[n]

Figure 8. ECG segment extracted from recording 208 of the MITDB in which the application of
the PT to (a) a ventricular ectopic, (b) a wide QRS and (c) a normal beat can be visualized. It can
be seen that the amplitude differences in the ECG among beats disappear in the phasor transformed
signal, ϕ[n].

ϕ[n]

x[n]

Figure 9. Representation of an ECG, x[n], with a low-amplitude QRS complex, compared with
the P and T waves, in which direct R-peak detection could be arduous by thresholding. Result of
the phase transformed signal, ϕ[n], in which QRS detection is made easier.

4.3. Wave delineation with real ECGs

The delineation performance on the QTDB demonstrated that the proposed delineator was able
to detect the edges of the QRS, P and T waves with sensitivity and positive predictivity higher
than 98.60% and 97.52%, respectively, see table 7. In addition, the algorithm identified the
onset and offset of the P and QRS waves with mean localization errors smaller than one sample
(4 ms). These results are very similar to previous works also based on single-lead delineators
(Martı́nez et al 2004). For the T wave offset delineation, a mean difference between automatic
and manual annotations slightly higher than one sample (around 5.8 ms) was observed. This
result was similar to the one presented in Martı́nez et al (2004), if we consider the sampling
time interval. Moreover, it should be remarked that identification of this point is the most



1482 A Martı́nez et al

difficult task in ECG delineation, because a specific criterium to mark the T wave offset has
not yet been adopted by specialists (Martı́nez et al 2004). Indeed, T wave offset annotations
by different cardiologists on the same ECGs generally show larger differences (Martı́nez et al
2004).

Several previous works have considered the values given by the CSE Working Party (CSE
1985) as the limits that should not exceed the LE standard deviation for an appropriate ECG
delineation. However, two interpretations of these tolerances can be found in the literature.
Thus, some authors considered as strict limits (strict criterion) the standard deviation values
recommended by CSE (σCSE) (de Chazal and Celler 1996, Strumillo 2002), while others took
double these values (2·σCSE) as tolerances (loose criterion) (Ghaffari et al 2009, Martı́nez et al
2004, Vila et al 2000, Laguna et al 1994, Sahambi et al 1997, Vullings et al 1998). In
this respect, the proposed delineation algorithm accomplished the loose criterion in QRS
and T offsets, and nearly for the P onset and offset and the QRS onset, in a similar way to
Martı́nez et al’s single-lead delineator (Martı́nez et al 2004). To our knowledge, only the
most recently published single-lead delineator (Ghaffari et al 2009) currently accomplishes
the strict criterion for the T wave offset identification and nearly for P onset and offset and
QRS offset. However, annotations for challenging cases were revised and re-annotated by
specialists prior to the method’s validation (Ghaffari et al 2009). In a similar way, after
re-annotating the first channel of some QTDB recordings with a set of single-lead criteria,
the proposed algorithm provided a notably reduced LE for delineation of all the wave edges,
accomplishing the strict criterion of the CSE recommendations for the P and T wave offsets
and the QRS onset and offset, and nearly for the P onset. Additionally, the LE for the P and T
peaks delineation was drastically reduced to be lower than 1.2 ms, thus making the PT-based
delineator results better than the ones reported in Ghaffari et al (2009), except for the P wave
onset.

The agreement between this study and Ghaffari et al’s work (Ghaffari et al 2009), regarding
the achievement of better delineation results when some QTDB recordings were re-annotated
following a single-lead basis, leads us to suggest that the validation of any single-channel
algorithm should be carried out making use of databases annotated in only one lead. In this
way, a more effective assessment and comparison between algorithms could be obtained, such
as other authors have also highlighted in previous works (Martı́nez et al 2004). However,
it should be noted that the time-variant electrical activity of the heart is reflected on each
ECG lead within different time instants which, eventually, could impair accurate identification
of the onset and end of the cardiac phenomena from only one lead (Almeida et al 2009).
Nevertheless, the multi-lead algorithms presented to date have only marginally outperformed
the delineation accuracy achieved by single-lead methods (Almeida et al 2009, Ghaffari
et al 2010). Additionally, these multi-lead methods are based on a single-lead algorithm
which, later, makes some decision about which lead has to be selected at any time. This
fact notably increases their computational burden and/or complexity with no dramatical
improvement. In this respect, some methods combine information obtained from the single-
channel delineation of each available lead to provide a global identification of the cardiac
events. Others apply an approach, previously performed over a single-channel delineation, to
the signal obtained from the transformation of several leads in order to exploit their spatial
information (Almeida et al 2009, Ghaffari et al 2010). As a consequence, the development
of a single-lead delineator can be considered as the natural first step which is introduced in
this work. Nonetheless, the information provided by the present algorithm, when applied over
each available ECG lead, could be combined to deliver multi-channel delineation. However,
this is not a trivial task and requires future investigations in the development of robust decision
rules.
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5. Conclusions

An innovative method for detection and delineation of single-lead ECG fiducial points has
been presented. The phasor transform-based algorithm is characterized by its robustness,
low computational cost, mathematical simplicity and ability to properly delineate the most
typical morphologies of QRS, P and T waves. Furthermore, the method is able to delineate
without requiring specific rules adapted to each specific ECG wave, whenever the SNR of the
recording is higher than 10 dB. Thus, the method has proved to be a reliable and accurate
delineator of real ECGs, slightly outperforming other previously published algorithms. Results
with manual re-annotation suggest that the use of databases with single-channel annotations
would allow a more effective assessment of new single-lead methods and comparison among
them.
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Appendix A. Table of symbols and abbreviations

Symbol or abbreviation Description

CSE Common standards of electrocardiography
EDB European ST-T database
ECG Electrocardiogram
FD First derivative
FN False negative
FP False positive
Fs Sampling frequency
HT Hilbert transform
LE Location error
LPD Low-pass differentiation
MITDB MIT-BIH arrhythmia database
N/R Not reported
N/A Not applicable
PT Phasor transform
P + Positive predictivity
Pon P wave beginning
Ppeak P wave peak
Pend P wave ending
QTDB QT database
QRSon QRS wave beginning
R R peak
QRSend QRS wave ending
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Symbol or abbreviation Description

Se Sensitivity
SNR Signal-to-noise ratio
TB Total beats
TP True positive
TWADB T-Wave Alternants Challenge Database
Ton T wave beginning
Tpeak T wave peak
Tend T wave ending
WT Wavelet transform
M[n] Magnitude
x[n] Original signal
φ[n] Phase
φ′[n] Phase’s Derivative
Rv Enhancement variable
γQRS− Fiducial point for Q wave delineation
γQRS+ Fiducial point for S wave delineation
μ Mean
σ Standard deviation
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