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Abstract
Short-term, beat-to-beat cardiovascular variability reflects the dynamic
interplay between ongoing perturbations to the circulation and the
compensatory response of neurally mediated regulatory mechanisms. This
physiologic information may be deciphered from the subtle, beat-to-beat
variations by using digital signal processing techniques. While single signal
analysis techniques (e.g., power spectral analysis) may be employed to quantify
the variability itself, the multi-signal approach of system identification permits
the dynamic characterization of the neural regulatory mechanisms responsible
for coupling the variability between signals. In this review, we provide an
overview of applications of system identification to beat-to-beat variability
for the quantitative characterization of cardiovascular regulatory mechanisms.
After briefly summarizing the history of the field and basic principles, we
take a didactic approach to describe the practice of system identification in the
context of probing neural cardiovascular regulation. We then review studies in
the literature over the past two decades that have applied system identification
for characterizing the dynamical properties of the sinoatrial node, respiratory
sinus arrhythmia, and the baroreflex control of sympathetic nerve activity, heart
rate and total peripheral resistance. Based on this literature review, we conclude
by advocating specific methods of practice and that future research should focus
on nonlinear and time-varying behaviors, validation of identification methods,
and less understood neural regulatory mechanisms. Ultimately, we hope that
this review stimulates such future investigations by both new and experienced
system identification researchers.

Keywords: autonomic nervous system, cardiovascular system, heart rate
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1. Introduction

It has long been recognized that cardiovascular variables such as heart rate (HR) and arterial
blood pressure (ABP) fluctuate on a beat-to-beat basis. Indeed, in the early 18th century when
Hales made the first quantitative measurements of ABP, he noted that the inter-beat interval
and pressure level varied with the respiratory cycle (Hales 1733). However, prior to the advent
of modern digital signal processing in 1965 (Cooley and Tukey 1965), the subtle, beat-to-beat
cardiovascular variations were difficult to characterize quantitatively and therefore received
little attention. In the 1970s and early 1980s, Kitney, Cohen and their respective co-workers
applied power spectral analysis to study the genesis of resting HR variability (e.g., Akselrod
et al (1981), Hyndman et al (1971) and Kitney (1975)). These quantitative studies were
among the first to demonstrate that beat-to-beat cardiovascular variability reflects the dynamic
interplay between ongoing physiologic perturbations to the circulation and the compensatory
response of the cardiovascular regulatory system. Following these pioneering efforts, an
explosion of interest commenced in the analysis of beat-to-beat cardiovascular variability
(especially HR variability) for the quantitative assessment of cardiovascular regulation. While
power spectral analysis has been the workhorse in the field, numerous, more sophisticated
analysis techniques have also been applied to characterize the nonlinear and nonstationary
fluctuations in a single cardiovascular variable (see, e.g., reviews in Mainardi et al (2002) and
Mansier et al (1996)). These single signal analysis techniques have provided much insight into
the nature of the variability and cardiovascular regulatory function. However, the multi-signal
analysis approach of system identification may be even more illuminating, as it can provide
a quantitative characterization of the cardiovascular regulatory mechanisms responsible for
coupling the beat-to-beat variability between signals rather than merely the variability that
is elicited. Thus, beginning with the seminal studies of Cohen, Cerutti and their respective
co-workers in the mid to late 1980s (e.g., Akselrod et al (1985) and Baselli et al (1986, 1988)),
system identification has become an increasingly popular approach for quantitatively probing
cardiovascular regulation.

In this topical review, we aim to provide an overview of applications of system
identification to beat-to-beat variability for the quantitative characterization of cardiovascular
regulatory mechanisms. While the assessment of local autoregulatory mechanisms has recently
become a subject of interest (see, e.g., review in Panerai (1998)), we focus here on the
more established system identification applications for probing global regulatory mechanisms
mediated by the autonomic nervous system. Our review is specifically aimed at the reader
with some knowledge of both signals and systems theory and cardiovascular physiology. We
begin by briefly summarizing basic principles and motivating concepts (section 2). We then
review the practice of system identification in the context of studying neural cardiovascular
regulation (section 3) and describe important contributions that have been made in the field
during the past two decades (section 4). We conclude by recommending specific methods of
practice and future research directions (section 5).

2. Basic principles

We start this section with brief descriptions of the normal functioning of the neural
cardiovascular regulatory system and conditions for which this functioning is altered. We
then review alternative methods for probing neural regulatory functioning and describe their
limitations so as to motivate the use of system identification.
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2.1. Neural cardiovascular regulation

2.1.1. Physiology. Global or extrinsic cardiovascular regulation aims to maintain blood
pressures within a narrow range via multiple feedback and control systems in order to protect
blood flow to the brain, heart, and other vital organs. The autonomic nervous system is
principally responsible for extrinsic regulation over short time scales of seconds to minutes
usually through mediation of the arterial and cardiopulmonary baroreflex mechanisms. The
arterial baroreflex, which is the much more understood mechanism, operates as follows. ABP
is sensed via baroreceptors that lie in the carotid sinus and aortic arch and then conveyed to
the brainstem via afferent nerve fibers. The brain responds in an attempt to keep ABP near its
desired value by communicating with (1) the sinoatrial (SA) node via efferent parasympathetic
and β-sympathetic nerve fibers to adjust HR; (2) the ventricles via efferent β-sympathetic nerve
fibers to adjust ventricular contractility (VC); (3) the arterioles via efferent α-sympathetic nerve
fibers to adjust total peripheral resistance (TPR) and (4) the veins via efferent α-sympathetic
nerve fibers to adjust systemic venous unstressed volume (SVUV). For example, the net
feedback response of the arterial baroreflex to a reduction in ABP would be an increase in
HR, VC and TPR and a decrease in SVUV. These adjustments would, in turn, increase ABP
back towards its desired value via mechanical feedforward effects. The cardiopulmonary
baroreflex operates analogously except that its sensory receptors, which reside mostly in the
cardiac chambers but also in the walls of the pulmonary artery, seem to be very responsive
to changes in right atrial pressure (RAP) (Desai et al 1997, Raymundo et al 1989). This
mechanism appears to be more focused on the maintenance of ABP rather than RAP, as
its net response to a reduction in RAP may include an increase in TPR and HR in humans
(Desai et al 1997, Mancia and Mark 1983, Raymundo et al 1989). Proper functioning of the
rapid nervous control mechanisms is most critical during physiologic perturbations such as
postural changes and exercise. However, they contribute little to blood pressure regulation
over longer time scales, because their receptors may eventually adapt to the pressure levels
to which they are exposed. See, for example, Guyton and Hall (1996) for more thorough
accounts of the baroreflex systems and descriptions of other neural regulatory mechanisms
that are activated only during periods of hemodynamic stress (e.g., arterial chemoreflex).

2.1.2. Disease. Aberrant neural cardiovascular regulatory function can result from disease
and environmental changes. Hypertension (HTN) is perhaps the most prominent and prevalent
example of a disease of cardiovascular regulation. While HTN is likely to be due to
maladies of long-term regulatory mechanisms (Guyton and Hall 1996), malfunctioning neural
regulatory mechanisms also appear to contribute (Moreira et al 1992). Congestive heart
failure (CHF) is another prevalent disease affecting short-term regulation. Although the
primary problem of CHF is with pumping function, a hallmark of this disease is hyperactivity
of the sympathetic nervous system (Mark 1995). Examples of other common diseases
affecting short-term regulation include diabetes mellitus and Parkinson’s disease. Patients
with these disease processes frequently suffer from postural hypotension due to blunted
autonomic nervous functioning (Goldstein et al 2002, Jermendy 2003). Indeed, the presence
of postural hypotension in patients with diabetes mellitus may be associated with high mortality
(Ewing et al 1976). Interestingly, exposure to actual or simulated microgravity has also been
shown to alter rapid cardiovascular regulatory function (Hasser and Moffitt 2001). These
alterations, often referred to as cardiovascular deconditioning, likely contribute to the postural
hypotension commonly observed in astronauts upon return from spaceflight (Buckey et al
1996). Note that a measure of the utility of system identification methods for characterizing
cardiovascular regulatory function is the capacity of these methods to detect, quantify and
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monitor the deleterious changes in function seen as a result of disease (or environment) and
subsequent improvements seen with therapies.

2.2. Probing neural cardiovascular regulation

2.2.1. Conventional methods. Because of the significance of neural cardiovascular regulation
in health and disease, numerous methods have been developed for its measurement. The
conventional methods involve perturbing the circulation with an external stimulus, measuring
the regulatory response and usually, but not always, plotting the measured response as a
function of the stimulus. The external stimuli that have been employed may be broadly
classified as selective or nonselective (Mancia and Mark 1983). In principle, selective stimuli
excite and permit the study of one particular feedback mechanism (e.g., arterial baroreflex)
without any confounding contribution from other feedback mechanisms (e.g., cardiopulmonary
baroreflex). Common examples of this type of stimuli include carotid sinus pressure control
and vasoactive drugs. (The latter stimulus is often utilized for study of the arterial baroreflex
control of HR). However, these stimuli open or disturb the feedback loop and thereby preclude
study during normal physiologic conditions. Moreover, the tenet that only one feedback
mechanism has been perturbed may not be valid. Nonselective stimuli excite all feedback
mechanisms simultaneously. The archetypical example of this kind of stimuli is upright tilting.
The advantage of employing nonselective stimuli is that they can preserve normal closed-loop
operation. However, the relative contribution of each feedback mechanism to the total system
response cannot be distinguished with a simple plotting analysis. Another major limitation of
the conventional methods is that they only measure the steady-state compensatory response to
the external stimulus. However, neural regulatory mechanisms are not simply static systems
which can be described with algebraic equations but are rather complex systems with memory
that mandate description with differential equations (i.e., dynamical systems). Thus, the
conventional methods neglect the characterization of important quantitative information such
as time constants and delays.

2.2.2. Quantitative analysis of beat-to-beat cardiovascular variability. Cardiovascular
measurements such as HR, ABP, RAP and stroke volume (SV) fluctuate on a beat-to-beat basis.
These subtle variations are not simply noise in the classical sense but rather representative
of the dynamic interplay between naturally occurring perturbations to the circulation and the
negative feedback response of the cardiovascular regulatory system. The most prominent
example of such perturbations is respiratory activity, which mechanically induces inter-beat
variations in intrathoracic pressure thereby altering venous return, RAP and ABP thereafter.
Respiratory activity also directly perturbs HR via a neural coupling between the respiratory
and HR control centers in the brain (Saul and Cohen 1994). While these HR variations further
modulate RAP and ABP, note that the neurally mediated RAP changes, in particular, may
offset the mechanically induced RAP changes. (That is, the purpose of the direct neural
coupling mechanism may be to maintain RAP during respiration.) Another example of resting
perturbations is the autoregulation of local vascular beds, which alters TPR on a beat-to-
beat basis and thus ABP and RAP. The resulting ABP and RAP changes, in turn, induce
compensatory variations in HR, SV and TPR via the arterial and cardiopulmonary baroreflex
systems. (See, for example, the reviews in Baselli et al (2002) and Miyakawa et al (1984) for a
thorough description of the complex physiologic mechanisms responsible for generating beat-
to-beat hemodynamic variability.) Indeed, quantitative analysis of short-term, beat-to-beat
information in cardiovascular signals is an attractive alternative for probing neural regulatory
function, as an external perturbing stimulus may not be necessary.
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Over the last three decades, investigators have successfully applied numerous quantitative
techniques for the analysis of beat-to-beat variability in cardiovascular signals. Even simple
statistics indicating only the range of variation of a particular signal, such as the standard
deviation and histogram, have proven to be useful. For example, Kleiger et al demonstrated
that a decreased standard deviation of HR variability was associated with increased mortality
in a large number of acute myocardial infarction patients (Kleiger et al 1987). However, the
significance of beat-to-beat cardiovascular variability only became fully appreciated when
techniques that could measure both the range and speed of the variations in a signal were
applied. Examples of such techniques include the autocorrelation function and its Fourier
transform, the power spectrum. One of the earliest attempts to investigate beat-to-beat
variability with such techniques was made by Sayers (1973). He specifically employed
power spectral analysis to characterize short-term HR fluctuations. He found not only a
significant HR fluctuation at the respiratory frequency (i.e., the well-known respiratory sinus
arrhythmia (RSA) phenomena) but also significant variability at lower frequencies, which
was subsequently attributed to vasomotor activity (Akselrod et al 1981, 1985, Kitney 1975).
Akselrod et al followed this work by demonstrating for the first time that power spectral analysis
of resting HR could provide specific measures of neural regulatory function (Akselrod et al
1981). These researchers showed in a conscious canine model that high frequency HR
fluctuations (�0.15 Hz) were governed exclusively by the parasympathetic nervous system,
whereas the lower frequency HR fluctuations were jointly mediated by the β-sympathetic and
parasympathetic nervous systems. These important findings were later verified in humans
(Pomeranz et al 1985). Subsequent investigators have identified clinical correlates of HR
variability spectral indices (e.g., low frequency (LF) and high frequency (HF) power) and
employed more sophisticated, nonlinear (e.g., Lyapunov exponents, Kolmogorov entropy)
and nonstationary (e.g., short-time Fourier transform, wavelets) techniques to elucidate further
the complex nature of short-term as well as long-term HR variability (see, e.g., reviews in
Mainardi et al (2002) and Malik and Committee (1996)).

While such single signal analysis techniques have clearly contributed to the understanding
of cardiovascular regulatory functioning, these techniques are significantly limited in that they
characterize only the output response of the system under study rather than the system itself.
This limitation can be made more lucid through the following example. Let y(t) be a signal
for analysis which may represent, for example, instantaneous HR. Now, suppose that y(t)

is generated according to the convolution of an input signal u(t), which may represent, for
example, respiratory activity, and an impulse response h(t), which characterizes the direct
neural coupling mechanism between u(t) and y(t) (see equation (1)). Thus, it is h(t) that
should actually be sought for characterization. However, if only y(t) is available for analysis,
it is generally not possible to determine h(t) uniquely (e.g., convolution commutes). In other
words, alterations in y(t) (HR) occurring from one time interval to the next may be due
to changes in h(t) (autonomic nervous functioning) and/or variations in u(t) (respiratory
effort). On the other hand, if a simultaneous measurement of the input signal u(t) is obtained,
then the problem now becomes: given u(t) and y(t), what is h(t)? This is the system
identification problem, which is soluble under more general conditions (see below). (Note
that this discussion is only exemplary and not intended to imply that the cardiovascular
regulatory system is perfectly linear and time invariant (LTI) or that system identification is
only applicable to such systems.) Hence, system identification provides a means to characterize
the neural regulatory mechanisms responsible for generating the beat-to-beat variability rather
than simply the variability that is generated. Table 1 indicates the advantages of the multi-
signal approach of system identification over other methods for probing neural cardiovascular
regulation.
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Figure 1. The system identification method loop. Adapted from Ljung (1999).

Table 1. Disadvantages of popular methods for probing neural cardiovascular regulatory
mechanisms with respect to system identification.

Method Disadvantages

Application of selective external Opens or disturbs the feedback loop; measures
perturbations (e.g., vasoactive agents) only the steady-state system response

Application of nonselective external Cannot distinguish contributions of different
perturbations (e.g., upright tilting) regulatory mechanisms to the system response;

measures only the steady-state system response

Single signal analysis of beat-to-beat Cannot distinguish contributions of input and
variability (e.g., HR variability analysis) regulatory mechanism to the system response

3. The system identification method

The control systems engineering community is largely responsible for developing and
advancing the field of system identification. Their initial contributions began shortly after the
establishment of modern control theory in the 1960s. At present, the field is very mature and
several comprehensive textbooks on the subject matter exist (e.g., Ljung (1999), Marmarelis
and Marmarelis (1978) and Soderstrom and Stoica (1988)). In this section, we summarize the
practice of system identification specifically in the context of probing neural cardiovascular
regulation.

The system identification method is an iterative process consisting of three basic steps:
(1) data generation, (2) model determination and (3) model validation (see figure 1). If the
model is not validated, then steps (1) and/or (2) are adjusted and the ensuing steps are repeated
until successful model validation is achieved. A priori knowledge should be injected in this
process wherever possible.
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Figure 2. Block diagram of key input and output signals and physiologic coupling mechanisms
normally involved in cardiovascular regulation over time scales of seconds to minutes. ABP is
arterial blood pressure; RAP, right atrial pressure; HR, heart rate; VC, ventricular contractility;
TPR, total peripheral resistance; SVUV, systemic venous unstressed volume; ILV, instantaneous
lung volume; ITP, intrathoracic pressure; ANA, afferent nervous activity; EPNA, efferent
parasympathetic nervous activity; ESNA, efferent sympathetic nervous activity; sp, setpoint; NTPR,
autoregulation of local vascular beds and NHR, source of 1/f HR fluctuations.

3.1. Data generation

3.1.1. Measured signals. As described above, neural cardiovascular regulation is a highly
complex multi-input, multi-output process operating in closed-loop. The block diagram in
figure 2 illustrates the key input and output signals and physiologic coupling mechanisms
(blocks) that are normally involved. If the beat-to-beat variability in all these signals were
measured, then, in principle, a comprehensive, dynamical characterization of all of the neurally
mediated coupling mechanisms may be obtained.

Continuous ABP may be easily measured either invasively with a strain gauge in fluid
contact with a peripheral artery or noninvasively via, for example, arterial tonometry (Kenner
1988) and finger-cuff photoplethysmography (Imholz et al 1998). Instantaneous HR may be
even more easily determined by detecting the R-waves of a surface ECG lead. Respiratory
activity may also be conveniently monitored either in terms of intrathoracic pressure via
an esophageal balloon (Mead and Gaensler 1959) or in terms of instantaneous lung volume
(ILV) via chest–abdomen inductance plethysmography. RAP may be measured, but with a
considerably higher degree of invasiveness, by placing a strain gauge in fluid contact with the
right atrium via a pulmonary artery catheter. Both afferent and efferent neural signals may
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be measured with electrodes, but very invasive and technically challenging procedures are
required to do so. On the other hand, continual variations in TPR, VC and SVUV are not
directly measurable. However, it may be possible to derive beat-to-beat measurements of TPR
from central ABP alone (Bourgeois et al 1974) or with peripheral ABP and instantaneous aortic
flow (e.g., Mukkamala et al (2003)). The latter signal may be measured in animals by surgically
implanting an ultrasonic flow probe around the aorta or in humans by directing a noninvasive
Doppler ultrasound probe towards the aortic valve (e.g., Eriksen and Walloe (1990)). It may
also be possible to derive beat-to-beat changes in VC from simultaneous measurements of
ventricular pressure and volume (e.g., Senzaki et al (1996)). The ventricular volume signal
may be measured invasively with a conductance catheter (Baan et al 1984) or ultrasonic
crystals sutured to the ventricle (Ellis et al 1956) or noninvasively with echocardiographic
techniques. Finally, no technique has been proposed to derive SVUV fluctuations from other
directly measurable signals.

Thus, it is not practical (or possible) to obtain simultaneously beat-to-beat measurements
of most (or all) of the key signals involved in neural cardiovascular regulation, and a choice
of the specific signals to be measured must be made. This choice invariably reflects
a trade-off between the effort and feasibility of measuring the signal in the particular
experiment (e.g., animal or human) and the importance of the particular neural regulatory
mechanism to be investigated. It should therefore not be surprising that much of the previous
system identification studies have involved only the analysis of ABP and HR. With these
measurements, the arterial HR baroreflex mechanism may be characterized by identifying the
dynamic coupling from ABP fluctuations to HR fluctuations. Note that this coupling actually
lumps together the functioning of the baroreceptors, autonomic nervous system and SA node
(see figure 2). To characterize each of these individual components or other neural regulatory
mechanisms in the block diagram of figure 2, additional beat-to-beat measurements would be
needed. In general, if n signals are available for analysis, then n(n − 1) causal physiologic
coupling mechanisms (some of which represent nonregulatory mechanisms) may be identified.

3.1.2. Informative data. The data generation step not only involves choosing which
signals are to be measured and by what means but also designing the experiments such
that the measured signals permit reliable model determination in the subsequent step. In
the identification of linear models (see below), the measured data should be ‘sufficiently
informative’ such that the model determination process results in a unique model. More
specifically, for nonparametric models, which do not assume any particular structure (see
below), the input signal should contain all the frequencies of the system under study. For
parametric models, which assume a particular structure (see below), the input signal should
contain at least as many frequency components as the number of parameters characterizing the
system in question. Since the system frequency bandwidth or number of system parameters is
generally unknown a priori, the measured input signal would ideally be a white noise process
of uniform spectral density. For multi-input systems, sufficiently informative also means that
the input signals are different enough from each other. For example, if the input signals
differ only by a scale factor, then it would be impossible to distinguish the contribution of
each input to the output. Ideally, the measured input signals would also be uncorrelated.
However, spontaneous, beat-to-beat variations in neural regulatory input signals such as
ABP and RAP are both colored and correlated processes due to feedback and mechanical
couplings. While spontaneous variability may nevertheless be sufficiently informative for a
particular identification task, the experimental design may include the application of external
randomized perturbations in order to ensure enough information or, at least, enhance the
measured information. Moreover, for reasons described below, the statistical requirements of
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the measured inputs can even be more stringent in the identification of nonlinear models (e.g.,
zero-mean white noise processes defined by Gaussian or normal distributions). Thus, such
external perturbations can some times be necessary for the accurate identification of these
models.

3.1.3. Preprocessing. Once the experiments have been completed, the measured data usually
require preprocessing before the model determination step can be executed. Perhaps, the most
significant aspect of preprocessing in the context of probing neural regulatory mechanisms
is the derivation of input and/or output signals from the measured data. The archetypical
example is the formation of an instantaneous HR signal from a surface ECG measurement
(e.g., Berger et al (1986)). Additional examples are provided above. Another important aspect
of preprocessing is the choice of the sampling frequency. If the sampling frequency is chosen
to be too low relative to the bandwidth of the particular system under study, then it will not
be possible to characterize completely the dynamical properties of that system. On the other
hand, if the sampling frequency is chosen to be too high, then unnecessary measurement noise
will be introduced in the data. Since the system bandwidth is usually unknown a priori, it is
generally recommended that the chosen sampling frequency be about ten times the expected
bandwidth of the system in question (Ljung 1999). In this way, uncertainty in the expected
bandwidth will likely not compromise the information in the data. (For example, in the
identification of the arterial HR baroreflex, the expected bandwidth is about 0.5 Hz. Thus,
sampling the measured ABP and HR signals at ∼3 Hz would satisfy this recommendation.
Typically, these signals are sampled by first forming sequences of beat-to-beat values (e.g.,
systolic blood pressure) and then interpolating between these values to create time series.)
A final aspect of preprocessing is the removal of measurement noise such as high frequency
disturbances, baseline wander, missing data and outliers. Noise removal may be achieved
with, for example, filtering or splining techniques. Note that imperfect noise removal can be
dealt within the model determination step, because the models not only include a deterministic
component but also a stochastic component (see below). However, nonstationary noise (e.g.,
linear trends or outliers) should be treated as much as possible prior to model determination,
as the stochastic components are usually assumed to be stationary.

3.2. Model determination

3.2.1. Overview. Model determination is the step in which the model that ‘best’ couples
the input–output data is selected. To make this step tractable, a candidate set of models must
first be established. Then, the optimal model in the set is usually determined by minimizing
the variance of the unobserved stochastic disturbance. This least squares estimation approach
is appropriate when the unobserved disturbance is normally distributed, which may often
be the case due to central limit theorem arguments. However, the least squares criterion
may not always be appropriate, such as when the unobserved disturbance is characterized by
more heavy tailed distributions (e.g., significant presence of outliers). In these cases, other
minimization criteria (e.g., mean absolute error) should be employed.

3.2.2. Linear versus nonlinear. A key question that must be addressed in establishing a set
of candidate models is: can the system under study be represented with a linear model? The
answer is generally no for neural cardiovascular regulatory mechanisms, as their high degree of
complexity must mandate nonlinear behaviors. Indeed, previous experimental investigations
have reported nonlinearities such as baroreflex saturation and hysteresis (Mancia and Mark
1983) as well as cross talk between the arterial and cardiopulmonary baroreflex mechanisms
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(Pawelczyk and Raven 1989, Victor and Mark 1985). Nevertheless, linear models may be
preferable to nonlinear models, because they are much more intuitive and may therefore be
more useful in gaining insight into neural regulatory functioning (see below). Moreover, linear
models may be nearly valid when applied to beat-to-beat variability elicited spontaneously
at rest or with low amplitude random excitation, as the fluctuations in the measured signals
are relatively small (i.e., Taylor series-like approximation). Many of the nonlinear behaviors
that have been observed have been elicited under extreme experimental conditions. Indeed,
many studies demonstrating nonlinear couplings give results consistent with linear responses
for small perturbations (e.g., Bertinieri et al (1988), Hirsch and Bishop (1981) and Levison
et al (1966)). Thus, linear models of neural regulatory mechanisms should be thought of as
approximating small signal system behavior around a given operating point. They should not
be assumed to be indicative of small signal system behavior around a significantly different
operating point. Nonlinear models are needed to characterize small signal system behavior
fully and to illuminate large signal system behavior. Finally, we note that the utilization
of linear models in the presence of significant nonlinearity may, at least, provide a partial
characterization of system behavior.

3.2.3. Stationary versus nonstationary. Another key question that must be resolved in
establishing a candidate set of models is: can the system under study be regarded as stationary?
That is, can the system and unobserved disturbances be respectively represented with time-
invariant equations and statistics? Again, the answer is generally no for the highly complex
neural regulatory system, as it is well known that sympatho-vagal balance shifts, for example,
upon assuming the upright posture or initiation of exercise (Guyton and Hall 1996). However,
time-invariant models may be nearly valid when the data are collected during short time
periods of stable, unchanging experimental conditions. On the other hand, time-varying
models that assume piece-wise stationarity are needed to study neural regulatory functioning
during transient events such as postural changes or acute hemorrhage.

3.2.4. Linear and time-invariant models. If the system to be identified is regarded as LTI, then
the system input u(t) may be mapped to the system output y(t) according to the convolution
equation:

y(t) =
∞∑

i=−∞
h(i)u(t − i) + e(t) =

∞∑
i=−∞

u(i)h(t − i) + e(t), (1)

where t is discrete time, h(t) is the system impulse response and e(t) is an unobserved,
stochastic process that is uncorrelated to u(t). The term e(t) may represent, for example,
measurement noise and/or omitted inputs. Note that the impulse response not only completely
defines an LTI system but also represents the system response to an arbitrarily narrow, unit-area
input applied at time zero.

To specify further the candidate set of LTI models, a choice must be made between the
use of nonparametric or parametric representations of the impulse response or its Fourier
transform, the transfer function. If a nonparametric model is chosen, then the transfer function
in the set that minimizes the variance of e(t) in equation (1) may be estimated in closed form
as follows:

H(ej2πf ) = Suy(ej2πf )

Suu(ej2πf )
, (2)
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where Suy(ej2πf ) is the cross-spectrum from u(t) to y(t), Suu(ej2πf ) is the auto-spectrum
of u(t) and H(ej2πf ) is the optimal transfer function which is also known as the Wiener
filter (see, e.g., Marple (1987) for a description of spectral estimation methods). Since the
cross-spectrum is generally complex, the Wiener filter provides both system magnitude and
phase characteristics. Additionally, the confidence in the estimated transfer function may be
computed via the coherence function, K2(ej2πf ):

K2(ej2πf ) = |Suy(ej2πf )|2
Suu(ej2πf )Syy(ej2πf )

. (3)

The coherence function may be thought of as the squared correlation coefficient as a function
of frequency. A coherence value near unity at a particular frequency indicates strong linear
coupling between u(t) and y(t) at that frequency, whereas a coherence value near zero at the
frequency reflects significant nonlinearity, nonstationary, omitted inputs and/or noise.

Nonparametric models are attractive, because they do not assume any particular
mathematical structure and are relatively easy to estimate. However, in general, these models
are only applicable to systems operating in open-loop conditions. This limitation is particularly
significant in the context of probing the neural regulatory system, which operates in closed-
loop. Consider, for example, the physiologic relationship between fluctuations in HR and
ABP (see figure 2). On one hand, HR fluctuations influence ABP fluctuations through the
mechanical properties of the heart and vasculature (feedforward mechanism). On the other
hand, ABP fluctuations induce HR fluctuations via the neurally mediated arterial HR baroreflex
(feedback mechanism). Standard nonparametric determination (i.e., with equation (2)) of the
transfer functions from HR to ABP fluctuations and ABP to HR fluctuations would not result
in selective representations of the feedforward mechanical and feedback neural mechanisms.
Rather, each of the two estimated transfer functions would intertwine the two totally distinct
physiologic mechanisms. While standard nonparametric models have nevertheless been
applied to cardiovascular signals related in closed-loop, strictly speaking, these models are only
appropriate when the feedback loop is experimentally opened. However, as discussed above,
this type of open-loop experiment precludes study during normal physiologic conditions. It
should be noted that nonparametric models may be utilized to disentangle the feedforward and
feedback mechanisms as they operate in closed-loop provided that an uncorrelated reference
signal is applied to the system. In this case, the optimal nonparametric filter model is
determined as the ratio of the cross spectrum from the reference signal to the output and the
cross spectrum from the reference signal to the input. However, application of the reference
signal may likewise disrupt normal system operation.

To disentangle the feedforward and feedback mechanisms without disrupting normal
operating conditions, it is necessary that (1) the feedforward and/or feedback mechanism
is strictly causal (i.e., fluctuations in HR can only influence future fluctuations in ABP
and/or vice versa) and (2) this causality is imposed in the model (Wellstead and Edmunds
1975). Although physical systems usually meet the first requirement, parametric models are
needed to satisfy the second requirement. An extensive number of a parametric LTI models
have been made available for system identification analysis (see Ljung (1999)). Below, we
present two such models that have frequently been employed for probing neural cardiovascular
regulation. While these models are illustrated in single-input/single-output form, we expect
that extensions to multi-input/single-output form will be clear. We also describe the standard
least squares techniques for identifying each model assuming that the number of parameters
characterizing the investigated system (model order) is known. The challenging problem of
model order selection is discussed in a subsequent section.
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The autoregressive exogenous input (ARX) equation is perhaps the most widely employed
parametric model in identification. The ARX model with input u(t) and output y(t) is given
as follows:

y(t) =
m∑

i=1

aiy(t − i) +
nu∑

i=nl

biu(t − i) + e(t), (4)

where e(t) is an unobserved, white noise disturbance that is uncorrelated with the input
u(t). The unknown coefficients {ai} and {bi} are respectively referred to as the autoregressive
(AR) and moving average (MA) parameters, and the summation limits m, nl and nu specify
the number of these parameters (model order). Note that strict causality can be imposed
here by not allowing nl to be less than 1. The transfer function characterizing the input–
output relationship of the ARX model may be made evident by applying the Z-transform to
equation (4):

Y (z) = B(z)

1 − A(z)
U(z) +

1

1 − A(z)
E(z). (5)

This equation indicates that the ARX transfer function is parametrized by both poles and zeros.
Thus, the corresponding impulse response is built from a set of complex exponential basis
functions. An ARX model can therefore represent an infinite-order impulse response with
only a finite number of parameters, which is a nice feature for representing complicated neural
regulatory mechanisms. Equation (5) further illustrates that the influence of the unobserved,
white disturbance on the system output is colored by the ARX poles. Thus, the ARX model
is able to represent LTI systems in the presence of colored noise.

While other parametric models share the above features, the enhanced popularity of
the ARX model is due to the fact that it is linear in its parameters (see equation (4)). Thus,
estimation of the unknown parameters by minimization of the variance of e(t) may be achieved
analytically via the linear least squares solution. To obtain this solution, equation (4) is
rewritten in vector-product notation as follows:

y(t) = φT(t)θ + e(t), (6)

where
φT(t) = [y(t − 1) · · · y(t − m) u(t − nl) · · · u(t − nh)]

θT = [
a1 · · · am bnl

· · · bnh

]
.

The linear least squares solution (θ̂) determined from N pairs of measured samples of u(t) and
y(t) may then be given as follows:

θ̂ =
{

1

N

N∑
t=1

φ(t)φT(t)

}−1
1

N

N∑
t=1

φ(t)y(t), (7)

provided that the above inverse exists (i.e., the data are sufficiently informative). Importantly,
the uncertainty in θ̂ may also be estimated (see Ljung (1999)) and mapped to approximate the
uncertainty in the physically meaningful impulse response (Perrott and Cohen 1996).

A limitation of the ARX configuration is that it does not include parameters that solely
account for noise coloring, as the model poles are also utilized to represent the impulse
response. Thus, the number of parameters required to represent a system with an ARX model
may be unnecessarily high. Among the more flexible parametric LTI models that have been
made available, the generalized least squares (GLS) model (also known as the ARARX model)
may be the most popular. The Z-transform of the GLS model is given as follows:

(1 − A(z))Y (z) = B(z)U(z) +
1

D(z)
E(z), (8)
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where the additional polynomial D(z) serves to represent only the disturbance to the system
output. The disadvantage of the GLS model with respect to the ARX model is that it is
not linear in its parameters, and thus, parameter estimation may not be achieved in closed
form. However, if D(z) were known, then the model would be linear in the parameters of
A(z) and B(z). On the other hand, if the parameters in A(z) and B(z) were both known,
then the model would be linear in the parameters of D(z). Thus, rather than conducting
a full numerical search, the GLS parameters may be conveniently estimated by a back-to-
back iteration between two analytic linear least squares solutions with an initial guess for
the parameters in D(z). (Note that this iteration is not guaranteed to converge to the global
minimum.) Additionally, a measure of the uncertainty in the resulting GLS model may be
computed (see Ljung (1999) and Perrott and Cohen (1996)).

Finally, we note that the assumption of a particular input–output structure by parametric
models such as those above may be unsatisfying. However, as implied above, this assumption
facilitates unique model determination even when limited information is available in the
measured data.

3.2.5. Time-variant models. If the system to be identified is regarded as linear but time
varying (LTV), then the input–output relationship is characterized according to the convolution
sum of equation (1) with h(t, i) replacing h(t −i). The LTV system impulse response h(t, i) is
usually identified by (1) selecting a time window for which the data are assumed to be stationary
(i.e., piece-wise stationary), (2) scaling the measured data with time shifted versions of the
window and (3) estimating the LTI impulse response at each time shift so as to update the
impulse response over time. While the window may be defined as a rectangular function, it is
often specified as an exponential function in order to enhance the influence of the most recent
dynamics on model estimation. The exponential window is characterized by a ‘forgetting
factor’ λ (generally between 0.8 and 1), which indicates the effective width of the window.
If a parametric model is employed that is linear in its parameters (e.g., ARX model), then
this estimation procedure may be solved efficiently through the recursive least squares (RLS)
algorithm. Inheriting the notation in equation (6), the RLS estimate at time t can be derived
based on that of t − 1 as follows:

θ̂ (t)RLS = θ̂ (t − 1)RLS + K(t)(y(t) − φT(t)θ̂ (t − 1)), (9)

where
K(t) = P(t − 1)φ(t)[λI + φT(t)P (t − 1)φ(t)]−1

P(t) = [I − K(t)ϕT(t)]P(t − 1)/λ.

The initial values θ̂ (0) and P(0) can be estimated by utilizing a priori information or taken
arbitrarily as 0 and ρI , respectively, where ρ is a ‘large’ number (see Soderstrom and Stoica
(1988)). The choice of the value of the forgetting factor is often very important. A large
forgetting factor (near 1) leads to good convergence properties and small variance of the
parameter estimates, while a small forgetting factor enhances alertness and ability of the
algorithm to track time variations of the system parameters. Note that this approach is not
able to handle rapidly varying systems, which require a very small forgetting factor leading to
increased sensitivity to noise. A solution for these types of systems is to expand each model
parameter onto a set of time-varying basis functions (e.g., Subba Rao (1970)). However, a
uniform rule does not exist in choosing the particular type of basis functions.

3.2.6. Nonlinear models. If the system to be identified is regarded as nonlinear and time
invariant with finite memory, then the Volterra series may be utilized to specify the candidate
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model set for characterizing the general input–output relationship. The Volterra series is an
infinite sum of functionals representing multidimensional convolutions of increasing order
and may therefore be thought of as a generalization of linear convolution in equation (1).
The discrete-time Volterra series causally relating the input u(t) to the output y(t) is given as
follows:

y(t) = k0 +
p∑

i=0

k1(i)u(t − i) +
p∑

i1=0

p∑
i2=0

k2(i1, i2)u(t − i1)u(t − i2) + · · · + e(t), (10)

where the summation limits p represent the finite system memory; e(t) is an unobserved,
stochastic process of zero mean that is uncorrelated to u(t) and k0, k1(t), k2(t1, t2), . . . are
the Volterra kernels which completely characterize the above system. The zeroth-order
constant kernel k0 represents the system response to zero input, whereas the first-order
functional is exactly the linear convolution sum. However, the impulse response of the above
system is not given by the first-order kernel k1(t) but rather is determined from components
of all the kernels. The higher order kernels represent nonlinear interaction effects. While
it is often difficult to obtain intuition about system behavior from these kernels, the kernels
may be utilized to predict the system output for a given input. Finally, note that generalizing
equation (10) to multiple inputs would also include cross term functionals that consist of
different inputs within a multidimensional convolution sum.

To facilitate the estimation of the optimal system kernels in the set from the generated
input–output data, the Volterra functionals may be transformed into an orthogonal set of
functionals. In this way, the estimation of the kernel associated with each orthogonal
functional may be performed one at a time without any confounding influence from the
other functionals. The Wiener series is such a set of functionals obtained by orthogonalizing
the Volterra functionals via a Gram–Schmidt procedure in which the input signal is a zero-
mean Gaussian white noise. The discrete-time, causal Wiener series is specifically given as
follows:

y(t) =
∞∑

n=0

Hn[u(t)] + e(t), (11)

where the first three orthogonal functionals are

H0[u(t)] = h0, H1[u(t)] =
p∑

i=0

h1(i)u(t − i),

H2[u(t)] =
p∑

i1=0

p∑
i2=0

h2(i1, i2)u(t − i1)u(t − i2) − γ

p∑
i=0

h2(i, i);

h0, h1(t), h2(t1, t2), . . . are the Wiener kernels and γ is the variance of the white noise input.
The Volterra kernels may be derived from the Wiener kernels and vice versa (see Marmarelis
and Marmarelis (1978)). For systems including up to second-order kernels (i.e., second-order
nonlinear systems), the first- and second-order Wiener and Volterra kernels are identical.

The most simple and popular approach for estimating the Wiener kernels is by way of
cross correlation. To employ this approach, a zero-mean Gaussian white noise input must be
applied to the investigated system. Then, the zeroth-order kernel may be computed as the
mean of the resulting output and the remaining Wiener kernels may be estimated recursively
starting from the first-order kernel as follows:

hn(i1, . . . in) = 1

n!λn
E

{(
y(t) −

n−1∑
m=0

Hm[u(t)]

)
u(t − i1) · · · u(t − in)

}
. (12)
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In addition to the strict Gaussian white noise requirement, a further limitation of this approach
is that the estimation variance of the higher order kernels is considerable, unless long data
records are available.

The kernels may also be estimated according to a parametric approach (Marmarelis 1993,
Watanbe and Stark 1975). That is, each kernel is represented as a linear combination of
orthonormal Laguerre functions as follows:

hn(i1, . . . , in) =
q∑

j1=0

· · ·
q∑

jn=0

cj1,...,jn
Lj1(i1) . . . Ljn

(in), (13)

where
{
cj1...jn

}
are the Laguerre parameters, the summation limits q specify the number of

these parameters (model order) and the jth-order Laguerre function, Lj(t), is defined as

Lj(t) = α(t−j)/2(1 − α)1/2
j∑

i=0

(−1)i
(

t

i

)(
j

i

)
αj−i (1 − α)i

with α establishing the decay rate of the Laguerre functions. For a fixed model order, the
Laguerre parameters may be estimated from the input–output data through the linear least
squares solution (substitute equation (13) into equation (11)). This parametric approach can
sometimes provide a more compact representation of the system kernels and therefore reduce
the estimation error variance for a given length of data record. Moreover, strict whiteness
of the input is not necessary. (However, when the input deviates significantly from white
noise, then the Wiener series functionals are no longer orthogonal.) A disadvantage of this
approach is that it may be difficult to specify appropriate values for α and p. Note that a
further reduction in the parameters needed for system representation may be achieved with
nonlinear ARX models in conjunction with Laguerre functions (Chon et al 1997a). It should
also be noted that the above approaches are typically effective in estimating only up to second-
or third-order kernels.

In addition to the Volterra–Wiener series, conditional probability density functions may
also be utilized to represent the input–output relationship of a general nonlinear and time-
invariant system (e.g., P(y(t)/u(t − 1), . . . , u(t − r)) where r is the model order). The
probability functions may be estimated, for example, by the nonparametric Parzen window
technique (Parzen 1962). Then, an index of the estimated probability function may be
computed to indicate succinctly the statistical (rather than just linear) dependence of the
past values of the input on the output. One such index is the conditional entropy (e.g.,
−E{log[P(y(t)/u(t − 1), . . . , u(t − r)]}), which summarizes the randomness of y(t) given
the r previous values of u(t). Although this type of candidate model set is powerful from a
theoretical point of view, in practice, nonparametric probability estimators require enormous
data sets and are typically unreliable even with modest values of r. Note that parametric density
estimators (e.g., Gaussian mixture models (Dempster et al 1977)) or heuristic procedures
(Porta et al 1999) can alleviate this significant limitation.

3.2.7. Model order selection. To capitalize fully on the benefits afforded by parametric
models, the problem of determining the number of parameters needed for system representation
must be confronted. This so-called model order selection problem may be tackled by first
establishing a set of candidate model orders and then determining the ‘best’ model order in
the set.

Forming an appropriate candidate model order set is a difficult task that amounts to a trade-
off between completeness of the set and computational tractability. Typically, the candidate
set is established simply with models of successively increasing number of parameters (e.g.,
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Table 2. Selected model order selection criteria.

Criterion Formula Physical meaning

A-information AIC = log
(V (p,N)

N

)
+ 2p

N
A metric of the difference

criterion (AIC) between the actual and
estimated unobserved disturbance

Final prediction FPE = V (p,N)
(
1 + p

N

)/(
1 − p

N

)
Estimate of the expected

error (FPE) value of the loss function
that would be obtained
with new data

Minimum MDL = V (p,N)
(
1 + p

N
· log N

)
Number of bits

description (information) needed to
length (MDL) represent the estimated

model parameters

Vapnik’s measure V M = V (p,N)
(

1 −
√

p(1+log(N/p))+log N/2
N

)−1

An upper bound on the loss

(VM) function that would be
obtained with new data

V (p,N) is the minimum loss function computed with p parameters and the N data samples available for analysis.

successively increasing values of m and nu in equation (4)) up to a maximal model order that is
believed to nest the ‘true’ system parametrization. However, more sophisticated, data driven
approaches have also been proposed that are based on, for example, the significance of each
estimated parameter of a maximal model (Perrott and Cohen 1996) or the group method of
data handling (Chon and Lu 2001).

The selection of an optimal model order in the chosen set may be an equally challenging
task. For example, suppose the best model order in the set is selected by minimizing the
variance of the unobserved disturbance (loss function). However, the loss function is a
monotonically decreasing function of the model order, and this approach would therefore
result in an overly complicated model that fits the particular realization of the unobserved
noise corrupting the measured data. On the other hand, this approach would prove successful
if it were applied to a fresh set of data not utilized for parameter estimation, because these
data would be corrupted by a different realization of unobserved noise. This cross validation
approach is indeed an effective option for selecting the best model order. However, the trade-
off is that not all the measured data can be utilized for parameter estimation. Thus, due to
asymptotic arguments, the quality of the models to be selected from will not be as high as
possible. Several strategies have been proposed to avoid overparametrization while utilizing
all the data for parameter estimation (see Ljung (1999)). The most popular strategy is to
minimize a theoretically derived formula or criterion, which includes a goodness-of-fit index
such as the loss function and a penalty factor for model complexity (see table 2). Amongst
the most widely used criteria, the final prediction error (FPE) does not satisfactorily prevent
overparametrization, whereas the minimum description length (MDL) criterion is able to do
so but only for large data samples (Gustafsson and Hjalmarsson 1995). However, the recently
proposed Vapnik’s measure (VM) based on structural risk minimization (SRM) may be more
effective in model order selection than classical criteria (Cherkassky and Ma 2003). Strictly
speaking, most of these criteria are only applicable to models that are identified with the linear
least squares solution (e.g., ARX model). For more general models, model order selection
based on achievement of a pre-defined value of the loss function normalized by the output
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variance (Qi and Zhang 2001) or the more general SRM approach (Cherkassky et al 1999)
may be considered.

3.3. Model validation

Once the best model in a candidate set has been determined from the generated data, a final
step remains as to demonstrate the validity of the model for its intended purpose. For example,
a linear model need only be validated in terms of representing the small signal behavior of
the investigated neural regulatory mechanism around the current operating point. The most
convincing approach for model validation would be to obtain an independent measure of
the system dynamics (without the use of system identification) against which the estimated
model may be compared. Unfortunately, such an independent measurement would require
precise control of the studied inputs that would be very difficult to achieve experimentally.
For example, to obtain an independent measure of an impulse response or step response
(integral of the impulse response), an impulse or step change would have to be applied to
appropriate point in the neural regulatory system while all other investigated inputs are held
perfectly constant. A more realizable approach for model validation would involve obtaining
an independent measure of the system dynamics by application of system identification to
data obtained under different experimental conditions. For example, a model estimated
from spontaneous beat-to-beat variability may be validated against the corresponding model
estimated from data collected during precise randomized control of the considered inputs (to
ensure sufficient information). Note that, in establishing either of these independent measures,
closed-loop operation of the neural regulatory system would invariably be destroyed. Thus,
comparisons with models estimated from different operating conditions should be made with
caution.

While demonstrating the quantitative validity of models (e.g., time constants) estimated
from experimental data may be difficult, other more practical, but less convincing, validation
approaches may be employed. One approach is to apply the system identification method
to computer simulated data and compare the resulting model estimates with the actual
system dynamics responsible for generating the data. Of course, this type of theoretical
validation would only be as meaningful as the extent to which the simulated data coincide
with experimental data. A simple validation approach that utilizes experimental data is to
illustrate that the identified model is consistent with known physiologic mechanisms. For
example, since the arterial HR baroreflex is known to be a negative feedback mechanism,
the estimated step response relating fluctuations in ABP to HR can be shown to reach
asymptotically a value below zero. Another experimental approach that is far more
powerful is to demonstrate that the estimated dynamics change appropriately in response
to known alterations to the system. For example, the impulse response estimate relating
fluctuations in ILV to HR, which characterizes the direct neural coupling mechanism, can
be shown to diminish after pharmacological blockade of the autonomic nervous system.
Finally, if the model is not supported by any of the above or alternative means, then the
previous system identification steps should be modified and repeated until model validation is
achieved.

4. Review of progress

Over the past two decades, numerous system identification studies for probing neural
cardiovascular regulation have appeared in the literature. These studies have mostly focused
on the quantitative characterization of the SA node, RSA mechanisms and the baroreflex.
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In this section, we review the progress that has been made with respect to these neural
regulatory mechanisms. It should be noted that we do not intend to provide an exhaustive,
detailed coverage of all related literature but rather to review selected studies with the goal of
enhancing our insight and fostering novel ideas for future exploration.

4.1. The sinoatrial node

The HR response of the SA node to the changes in vagal and β-sympathetic excitation
(see figure 2) has been examined for many decades. The initial efforts were not based on
mathematical analysis methods. For example, Penaz (1962) and Chess and Calaresu (1971)
investigated the response of the SA node to sinusoidal stimulation of the vagus nerves in
rabbits and cats, respectively. To assess system behavior over a wide frequency range, their
approach required numerous trials to vary the frequency of the sinusoidal stimulation.

To achieve a more efficient input–output characterization of the SA node, Berger et al
(1989b) stimulated the vagus and sympathetic nerves of dogs with Gaussian white noise
bandlimited to 0.7 Hz and measured the resulting HR response. In this study, all endogenous
neural influences to HR were interrupted. These investigators then employed standard
nonparametric LTI analysis to show that the SA node behaved as a low-pass filter in response
to either parasympathetic or β-sympathetic stimulation with the β-sympathetic filter having
a much lower corner frequency than the vagal filter. They also demonstrated that the filter
characteristics depended significantly on the mean level of vagal and sympathetic stimulation.
Thus, the linearity approximation of the SA node could only be valid for small perturbations.

Berger et al (1989b) selectively stimulated one set of cardiac nerves at a time with the
other set remaining inactive. However, prior experimental studies not employing system
identification (Furukawa and Levy 1984, Levy 1984, Mace and Levy 1983) have shown that
the SA node system behavior is dependent on the interaction between parasympathetic and
β-sympathetic excitations. To examine this nonlinearity with system identification, Kawada
et al (1996) carried out experiments in which one set of cardiac nerves was stimulated with
band-limited Gaussian white noise, while the other set was excited tonically (i.e., with constant
frequency). These investigators then employed standard nonparametric LTI analysis to identify
the filter properties relating the white noise nerve stimulation to the HR response. They
verified the previous experimental studies by showing that the gains of both the β-sympathetic
and parasympathetic filters were augmented by the concomitant tonic stimulation. These
investigators postulated that by virtue of this interaction, the autonomic nervous system is able
to extend its dynamic range of operation.

In the above studies, the SA node system dynamics were examined by modulating the
frequency of the nerve stimulation without regard to their time of arrival in the cardiac
cycle. However, phase dependence of the chronotopic response to autonomic stimulation,
especially in the vagal branch, has been experimentally demonstrated (Katona et al 1970,
Levy et al 1969). To assess quantitatively any phase dependence, Mokrane et al (1995)
applied beat-to-beat stimulatory pulses to the vagus nerves synchronized to the A waves of
the atrial electrogram. These investigators then utilized standard nonparametric LTI analysis
to identify the filter characteristics relating the nerve stimulation to the sinus rate response.
They showed that the estimated filter included two components, one slow and one fast. They
also demonstrated phase dependence of the SA node by reporting that the fast component was
not found in the filter estimated from nonsynchronized vagal stimulation.

The findings from the above system identification studies have not only provided a solid
basis for forward modeling of related processes (Chiu and Kao 2001, Pyetan and Akselrod
2003) but have also enabled the development of a noninvasive methods for selectively
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quantifying parasympathetic and β-sympathetic responsiveness (see section 4.2) as well as
for estimating SA node dynamic properties. With regard to the latter topic, Porta et al (2003)
aimed to model the SA node from only noninvasively measured, spontaneous fluctuations in
the RR interval (RRI, inverse of HR), systolic blood pressure (SBP) and respiration. These
investigators specifically employed a causal, dual-input ARARX model with RRI as the output
(Baselli et al 1988, Porta et al 2000). They then assumed that the dynamic properties of the SA
node were related to the AR terms of the model. Using experimental data, these investigators
demonstrated that the estimated SA node dynamics were low frequency dominant, obliterated
in heart transplant patients, and altered by high-dose atropine injection. Although this measure
of SA node behavior may not be specific, this work represents the first attempt to noninvasively
estimate these important dynamics through system identification.

4.2. Respiratory sinus arrhythmia mechanisms

To identify the physiologic mechanisms responsible for mediating RSA, the respiratory input
signal is usually measured in terms of ILV while the output signal is given as either HR
or RRI. Since the ILV signal measured during spontaneous breathing is normally narrow-
band, early studies of the relationship between ILV and HR relied on fixed rate breathing
experiments to probe the system over a range of frequencies (Hirsch and Bishop 1981). To
study this relationship more efficiently, Berger et al (1989a) devised a broadband breathing
protocol in which the subject inspires on cue to a sequence of auditory tones spaced at
random intervals in time. These investigators demonstrated that this random interval breathing
protocol substantially broadens the spectral content of the ILV signal. The subsequent system
identification investigations below have all employed this protocol in order to characterize the
open-loop ILV to HR coupling over a broad range of frequencies.

Saul et al (1989, 1991) identified the transfer function from ILV to HR in humans
based on standard nonparametric LTI analysis. These investigators utilized postural changes
and pharmacological autonomic blockade to gain insight into the resulting transfer function
estimates. They reported that the estimated RSA transfer function resembled a low-pass
filter and that it included both cardiac sympathetic and parasympathetic components. The
sympathetic component was low frequency dominant, whereas the parasympathetic component
was characterized by high magnitude in both the low and high frequency regimes with a slight
phase lead (i.e., a noncausal system in which HR alterations lead respiration).

Parametric LTI methods have also been applied to investigate the ILV to HR coupling.
Yana et al (1993) employed a single-input, single-output MA model to couple the fluctuations
in ILV to HR. Subsequently, Mullen et al (1997) and Triedman et al (1995) introduced a
dual-input ARX model that also accounted for the baroreflex influence of ABP on HR. (The
validity of this identification method was later supported with respect to a realistic human
cardiovascular simulator (Mukkamala and Cohen 2001).) These parametric models confirmed
the noncausality of the ILV to HR coupling. Importantly, Triedman et al (1995) observed
that the ILV to HR impulse response typically included two components, a fast, positive
deflection and a delayed, slower negative deflection with lower magnitude. Moreover, Mullen
et al (1997) and Triedman et al (1995) demonstrated that each of these deflections was nearly
obliterated after pharmacological autonomic blockade, thereby indicating that the ILV to HR
coupling is indeed a neurally mediated regulatory mechanism. Based on these findings and
the data from the SA node experiments of Berger et al (1989b) (see section 4.1), Xiao et al
(2004) assumed that the initial, positive wave in the ILV to HR impulse response was a
consequence of parasympathetic withdrawal and the slower, negative wave was a reflection
of β-sympathetic withdrawal. These investigators then showed through postural changes that
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the areas of the positive and negative waves can respectively provide selective quantification
of parasympathetic and β-sympathetic responsiveness. This technique may improve upon HR
spectral analysis, which is only able to provide selective quantification of parasympathetic
responsiveness (though respiratory effort may be a confounding factor here).

In an interesting comparative study, Barbieri et al (1997) evaluated the ILV to HR
transfer function estimated from both single-input (ILV) and dual-input (ILV and ABP) ARX
models. These investigators found that the gain of the transfer function estimates (defined
as its amplitude at the frequency associated with the largest coherence in the HF range of
0.15–0.5 Hz) was significantly lower using the dual-input model. This finding may be due to
differences in the physiologic meaning of the two differently estimated transfer functions. That
is, the transfer function estimated from the single-input model is representative of the direct
neural coupling mechanism between respiration and HR as well as the interaction between
ABP and HR (due to the correlation between ILV and ABP), while the transfer function
identified with the dual-input model does not encompass the ABP interactions.

Besides ABP, the cardiopulmonary baroreflex control of HR may also complicate the
coupling of ILV to HR. Through simulation studies, Mukkamala and Cohen (2001) showed
that the ILV to HR impulse response identified with a dual-input ARX model may also be
reflective of the cardiopulmonary baroreflex due to the tight correlation between ILV and
RAP. Barbieri et al (2002) studied the ILV to RRI gain (as defined above) in humans based
on a single-input ARX model at six different levels of RAP induced by lower body negative
pressure, leg raise and saline infusion. They found that the gains (both in the LF range of 0.04–
0.15 Hz and HF range) generally increased with RAP. However, at the highest investigated
RAP level, the gains decreased, thereby indicating a Bainbridge-type of reflex at hypervolemic
states. These interesting findings may suggest a nonlinear interaction between the ILV to HR
coupling and the cardiopulmonary baroreflex. However, since a single-input model was
employed, it may be difficult to determine if the nonlinear interactions are between these two
mechanisms and/or the arterial and cardiopulmonary baroreflex systems (see section 4.3.2).

While most studies have utilized linear models to represent the ILV to HR coupling, only
a couple of studies have sought to elucidate more complicated behaviors through nonlinear
models. Ahmed et al (1986) examined the effect of controlled breathing on HR by attempting
to identify a second-order nonlinear Volterra model. These investigators interpreted the
second-order kernel as indicating ‘a restraining force’ and ‘an escape-like phenomenon’ in the
system. However, they did not take into account the effects of ABP on HR. Chon et al (1996)
incorporated these effects through a second-order, dual-input Volterra model in which Laguerre
functions were utilized to parametrize the system kernels. These investigators reported a
considerable reduction in both first-order and second-order ILV to HR kernel amplitudes after
autonomic double blockade in humans (see section 4.3.2).

Finally, the ILV to HR coupling has also been assessed under a few patho-physiologic
conditions. Freeman et al (1995) employed standard nonparametric LTI analysis to estimate
the ILV to HR transfer function in patients with diabetic autonomic neuropathy. These
investigators reported significant differences in the transfer function amplitude and phase
between healthy controls and patients with varying degrees of autonomic dysfunction.
Mukkamala et al (1999) also studied the ILV to HR coupling in diabetic patients, but they
implemented the dual-input ARX technique of Mullen et al (1997) in their investigation.
They found that the peak amplitude of the ILV to HR impulse response decreased with
increasing severity of the disease. Moreover, they reported that this parameter was more
sensitive in detecting autonomic dysfunction than both the conventional methods and HR
spectral analysis. Stanley et al (1996, 1997) examined age effects on the ILV to HR
coupling using standard nonparametric LTI analysis. They reported that the magnitude of
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the estimated transfer function tended to decrease with age, and the HR response to ILV
stimulation was slower in older subjects than in younger subjects. These results are consistent
with prior knowledge that parasympathetic function decreases with aging. Xiao et al (2004)
utilized the ILV to HR impulse response to assess both parasympathetic and β-sympathetic
responsiveness (see above) during cardiovascular deconditioning induced by prolonged bed
rest. These investigators found that both β-sympathetic and parasympathetic responsiveness
were diminished in the subjects after the bed rest and that the subjects with high sympathetic
responsiveness and low parasympathetic responsiveness at baseline tended to tolerate better
orthostatic challenges both before and after bed rest.

4.3. The baroreflex

4.3.1. Control of sympathetic nerve activity. The arterial baroreflex control of regional
sympathetic nerve activity (SNA) has been characterized in animals by identifying the
coupling from fluctuations in ABP to SNA to a particular effector organ. While this coupling
encompasses the baroreceptor and autonomic nervous function, it does not incorporate end
organ function (see figure 2).

Ikeda et al (1996) studied the arterial baroreflex response of cardiac SNA to changes
in carotid sinus pressure (CSP) in rabbits. These investigators experimentally opened the
baroreflex loops by sectioning the vagus and aortic depressor nerves and perturbing CSP over
a wide range with a binary white noise process. Using standard nonparametric LTI analysis,
they found that the estimated transfer function relating CSP to the cardiac SNA behaved as a
high-pass filter with a passband between 0.1 Hz and 1 Hz. Through simulation studies, these
investigators concluded that these filter characteristics optimized closed-loop ABP regulation
in terms of stability and quickness.

While the above investigation characterized the carotid sinus baroreflex during open-loop
conditions, Kawada et al (1997, 2000) sought to characterize the CSP to cardiac SNA coupling
as it operates in closed-loop. Rather than dealing with the difficulties involved in identifying
parametric models, these investigators were able to utilize a more convenient, nonparametric
LTI model by introducing a reference white noise perturbation to aortic pressure or the aortic
depressor nerve in rabbits. This approach resulted in CSP variations over a wide range.
Importantly, they showed that parameters of the transfer function estimated under the closed-
loop conditions did not significantly differ from those identified by experimentally opening
the loop.

The above system identification studies approximated the carotid sinus baroreflex control
of the SNA with linear models. However, previous experimental studies have indicated that
the static relationship of the ABP to SNA coupling resembles a sigmoid rather than a line
(Mohrman and Heller 1997, Sato et al 1999). Such nonlinear threshold and saturation effects
may render a linear approximation to be dependent on both input amplitude and operating
point. To circumvent this problem, Sato et al (2003) studied the open-loop relationship from
CSP to renal SNA in rats by limiting the range of CSP perturbations to be within ±10 mm Hg
in order for the linearity approximation to be more tenable. Using standard nonparametric
LTI analysis, they reported that the estimated transfer function from CSP to renal SNA also
possessed highpass filter characteristics. Kawada et al (2003) examined the effect of input
amplitude on the open-loop transfer function relating CSP to cardiac SNA as identified by
standard nonparametric LTI analysis. They confirmed the existence of the sigmoidal static
nonlinearity by showing that the static gain as well as the slope of the transition band of the
high pass transfer function estimates both decreased with increasing binary white noise input
amplitude. Importantly, they also demonstrated that a model consisting of linear dynamics
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followed by a static sigmoidal nonlinearity (rather than vice versa) represents a good first
approximation of the characteristics of the carotid sinus baroreflex control of SNA. This result
suggests that the baroreflex nonlinearity may dominate in the efferent pathway rather than at
the baroreceptors.

4.3.2. Control of HR. As discussed in section 3.1.1, the arterial HR baroreflex has been the
subject of many system identification studies due to its importance in neural regulation and the
relative ease of measuring the ABP input signal and the HR (or RRI) output signal. (Note that
the coupling from ABP to HR encompasses baroreceptor, autonomic nervous system and SA
node effector organ function.) In these studies, either average ABP or SBP has been regarded
as the system input. Since the variance of SBP is usually larger than average ABP, the HR
baroreflex gains may be dependent on the particular input variable that is chosen. However,
there is no in-depth discussion or consensus in the literature regarding the appropriateness of
either variable.

The most simple method that has been employed for the identification of the arterial HR
baroreflex is standard nonparametric LTI analysis of spontaneous HR and ABP fluctuations
(Malliani et al 1991, Pagani et al 1988, Robbe et al 1987, Saul et al 1991). An assumption
of this single-input method is that all other influences on HR variability are negligible.
However, as discussed above, the RSA phenomenon is also important. Thus, the resulting
arterial HR baroreflex transfer function estimates may be biased by correlated respiratory
fluctuations. On the other hand, since spontaneous respiratory activity mainly resides in the
HF range, the LF transfer function estimates should be less affected by respiration and more
reliable than the HF estimates. Indeed, the enhanced reliability of the LF transfer function
estimates has been indicated in several previous studies (de Boer et al 1985, Guasti et al 2002,
Taylor and Eckberg 1996). Thus, the arterial HR baroreflex as identified in this manner is
usually carried out in the LF and HF regions separately.

Standard nonparametric LTI analysis is not only convenient but has also been shown to
provide a sensitive measure of arterial HR baroreflex functioning in both experimental and
clinical studies. For example, using this method, Saul et al (1991) showed that autonomic
changes induced by pharmacological blockade can be detected in the arterial HR baroreflex
transfer function magnitude (for additional examples, see table 3 and the review by Lanfranchi
and Somers (2002)). On the other hand, there is also considerable evidence indicating poor
agreement between the results of nonparametric LTI analysis and those based on conventional
methods for measuring the arterial HR baroreflex (e.g., phenylephrine administration),
especially in individuals with mild or more severe cardiovascular disease (Colombo et al
1999, Lipman et al 2003, Maestri et al 1998, Pitzalis et al 1998). This is likely due to the fact
that standard nonparametric LTI analysis intertwines the feedforward and feedback couplings
between ABP and HR. Thus, this type of analysis may provide a sensitive but nonspecific
measure of the arterial HR baroreflex.

If the feedback loop were experimentally opened (see section 4.3.1), then standard
nonparametric LTI analysis may be utilized to characterize baroreflex functioning distinctly.
However, as we have discussed, this approach may disrupt normal physiologic conditions.
Akselrod et al (1985) proposed a nonparametric method to disentangle the feedback loop
from spontaneous, resting fluctuations but only over a particular band of frequencies. These
investigators argued that LF HR fluctuations in conscious dogs are solely due to mediation by
the arterial baroreflex. Based on this assumption, they showed that the transfer function of the
arterial HR baroreflex in the LF regime can be decoupled from its feedforward counterpart by
using auto-spectral analysis of ABP and HR fluctuations. However, this interesting method
has not been subsequently verified.
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Table 3. Summary of selected system identification studies of the arterial HR baroreflex under
different clinical or physiological conditions.

Condition References Population Data Method Findings

Hypertension (Pagani et al 7 hypertensive, Spontaneous Nonparametric ↓baroreflex gain
(HTN) 1988) 7 normotensive ABP and ECG LTI model with HTN

Diabetic (Mukkamala 37 control, 60 Random Dual-input Baroreflex amplitude
autonomic et al 1999) diabetic subjects breathing ARX model progressively
neuropathy ILV, ABP decreased with
(DAN) and ECG increasing severity

of DAN

Syncope Mainardi 8 subjects with Spontaneous LTV, single- Inhibition of the
et al 1997) episodes of ABP and input baroreflex preceding

vasovagal ECG parametric the syncopal event
syncope model

Sleep Apnea (Belozeroff 13 patients with Random Dual-input ↑baroreflex gain in
(SA) et al 2002) SA before and breathing MA model compliant subjects

after continuous ILV, ABP with CPAP therapy
positive airway and ECG
pressure
(CPAP) therapy

Aging (Parati 8 young and Spontaneous Nonparametric ↓baroreflex
et al 1995) 8 elder HTN ABP and ECG LTI model sensitivity with

patients aging

Exercise (Iwasaki 11 healthy Spontaneous Nonparametric ↑baroreflex
training et al 2003) subjects ABP and ECG LTI model sensitivity after 3 mo

of training, but
returned to control
value at 12 mo

(Lucini 40 ischemic Spontaneous Dual-input ↑baroreflex gain
et al 2002) heart disease ABP, ECG ARARX (↑cardiopulmonary

29 with exercise and ILV model component) after
training, 11 training
controls

Physical (Iwasaki 9 healthy Spontaneous Nonparametric ↓baroreflex gain
deconditioning et al 2000) subjects, 2- ABP and ECG LTI model in HF region

week bed rest

(Xiao et al 29 healthy Random Dual-input ↓baroreflex gain
2004) subjects, breathing ARX model after bed rest

16-day ILV, ABP
bed rest and ECG

Baselli et al (1988) were the first to employ parametric LTI models that impose causality
and therefore permit the distinct and comprehensive characterization of the arterial HR
baroreflex as it operates during normal closed-loop conditions. These investigators specifically
utilized a dual-input ARARX model to represent the relationship between spontaneous
fluctuations in RRI, SBP and ILV (Baselli et al 1988, 2001, Porta et al 2000). Mullen et al
(1997), Patton et al (1996) and Triedman et al (1995) followed this work by proposing dual-
input ARX models to study the interactions between HR, ABP and ILV fluctuations obtained
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during random interval breathing. More recently, Faes et al (2004) developed a causal version
of the coherence function from fluctuations in SBP to RRI based on a single-input ARX model.

Several studies have sought to compare the arterial HR baroreflex as identified from
parametric and nonparametric models. Barbieri et al (2001), Faes et al (2004) and Porta et al
(2000) showed that the arterial HR baroreflex gain derived from standard nonparametric
LTI analysis is always larger than that determined using parametric models. One plausible
explanation to account for this difference is that the buffering of the SBP variability by the
feedforward mechanical effect of HR on SBP is attributed to the SBP to HR feedback coupling
by the nonparametric model. Thus, as Barbieri et al (2001) states, there is an apparently larger
change in HR per a unit change in SBP. In contrast, only one previous study has attempted to
compare the arterial HR baroreflex as identified with parametric models to the conventional
baroreflex measurement methods. In this important study, Patton et al (1996) reported that the
maximal value of the SBP to RRI impulse response and the one-beat step response identified
by a dual-input ARX model correlates with the gain value derived by the classical method
involving the injection of vasoactive agents.

In identifying the arterial HR baroreflex with parametric models, some investigators have
neglected respiration in the analysis (e.g., Nollo et al (2001) and Turjanmaa et al (1990)),
while others have included spontaneous respiration (e.g., Baselli et al (1988) and Porta et al
(2000)) or random-interval respiration as a second input (e.g., Mullen et al (1997), Patton et al
(1996) and Triedman et al (1995)). A couple of studies have compared these approaches in
terms of estimating the arterial HR baroreflex mechanism. O’Leary et al (1999) employed the
identification method of Patton et al (1996) to compare the arterial HR baroreflex estimated
during spontaneous and random interval breathing. These investigators found no significant
difference in the maximum values of the impulse response between SBP and RRI determined
from the two types of breathing patterns. This important study suggests that spontaneous
breathing may excite enough frequency components in the relevant signals to enable accurate
estimation of the peak value of the impulse response. Barbieri et al (1997) compared single-
input (SBP) and dual-input (SBP and ILV) ARX models in terms of characterizing the arterial
HR baroreflex during random interval breathing. Interestingly, they reported that the LF
baroreflex gain was approximately the same whether the ILV signal was utilized in the model
or not.

While the above studies have assumed stationarity, only a few recent studies have
employed TV models to characterize the arterial HR baroreflex during transient events.
Barbieri et al (2001), Di Virgilio et al (1997) and Mainardi et al (1997) developed single-
input TV models coupling the fluctuation in SBP to RRI in which the model parameters were
updated by each cardiac beat using the RLS algorithm. These investigators employed the TV
models to study changes in arterial HR baroreflex functioning during physical exercise as well
as vasovagal syncope (table 3). Significantly, their preliminary results indicate that the arterial
HR baroreflex gain is diminished just prior to the syncopal event, which is consistent with
current beliefs concerning the mechanisms responsible for vasovagal syncope.

Similarly, there have only been a few system identification studies addressing the
nonlinearity of the arterial HR baroreflex. Barbieri et al (2002) showed that the arterial
HR baroreflex gain estimated with a single-input parametric LTI model decreases with RAP.
These results may suggest a nonlinear interaction between the arterial and cardiopulmonary
baroreflex mechanisms (see section 4.2). Chon et al (1996) developed a second-order nonlinear
Volterra model, which accounted for the influence of both fluctuations in ABP and ILV on
HR. These investigators reported that a pure linear model accounted for approximately 67% of
the variance in HR, while the second-order nonlinear model accounted for only an additional
13%. According to spectral analysis, they showed that the nonlinear contribution of the
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HR variability was concentrated at frequencies below 0.05 Hz. To assess potential higher
order nonlinearities, Chon et al (1997b) found that a third-order nonlinear model identified by
neural network analysis further accounted for HR variability, whereas a fourth-order nonlinear
model did not. Nollo et al (2002) studied the causal coupling from SBP to RRI based on
cross-conditional entropy corrected for short data samples (Porta et al 1999). Using this index
in conjunction with a surrogate data approach, these investigators reported that the arterial
HR baroreflex feedback regulation was damaged after acute myocardial infarction (AMI) and
nonlinear mechanisms may be more important in elderly subjects and post-AMI patients than
in healthy young subjects.

While the above system identification methods may have their respective limitations, their
usefulness and promise for the evaluation of arterial HR baroreflex functioning have been
demonstrated in many studies. Table 3 presents a summary of selected system identification
studies of the arterial HR baroreflex under different clinical or physiological conditions.
Briefly, it has been shown that pathological conditions such as HTN, diabetes and syncope are
associated with reduced baroreflex control; physical or physiological deconditioning (aging,
prolonged bed rest) impairs the baroreflex gain; and short-term exercise training may enhance
baroreflex sensitivity.

4.3.3. Control of TPR. The arterial TPR baroreflex couples fluctuations in ABP to TPR, while
the cardiopulmonary TPR baroreflex relates fluctuations in RAP to TPR. There have been very
few system identification studies of these two important neural regulatory mechanisms due to
the difficulties in determining beat-to-beat TPR fluctuations and the invasiveness needed to
measure RAP. To circumvent these problems, Mukkamala et al (2003) proposed a potentially
noninvasive identification method that analyzes beat-to-beat measurements of ABP, CO and
SV. Their method is based on the concept that the dynamic relationships between fluctuations
in the measured signals indirectly reflect the fluctuations in TPR that are induced by the
baroreflex mechanisms. These investigators specifically formulated physiologic models to
show that the static gains characterizing each TPR baroreflex mechanism may be computed
based on the identified impulse responses from CO to ABP and SV to ABP. They then
corroborated this method in a cardiovascular simulator study. Based on this work, Aljuri and
Cohen (2004) and Aljuri et al (2004) developed invasive methods to identify the static gains
as well as the impulse responses of each TPR baroreflex mechanism. These investigators
ensured sufficiently informative data by decorrelating the inputs (ABP and RAP) via the
application of two independent excitation sources: random pacing of the heart and random
inflation/deflation of a balloon catheter in the inferior vena cava. However, the above TPR
baroreflex identification methods are yet to be fully validated.

5. Discussion and conclusions

Short-term, beat-to-beat cardiovascular variability reflects the interplay between naturally
occurring physiologic perturbations to the circulation and the dynamic, compensatory response
of neurally mediated regulatory mechanisms. This physiologic information may be deciphered
from the subtle, beat-to-beat variations by use of modern digital signal processing techniques.
While single signal analysis techniques (e.g., power spectral analysis) may be employed to
quantify the variability itself, the multi-signal approach of system identification provides a
powerful means to characterize the dynamic input–output properties of the neural regulatory
mechanisms responsible for generating the variability.
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Over the past two decades, many system identification studies for quantitatively probing
neural cardiovascular regulation have appeared in the literature. Some of these studies
have involved the invasive application of randomized perturbations so as to ensure that
the measured beat-to-beat variability is sufficiently informative for subsequent estimation of
system dynamics. Like conventional probing methods, these particular studies effectively
opened the feedback loop. In contrast to the conventional methods, the use of system
identification permitted, for the first time, a comprehensive dynamical representation of neural
regulatory mechanisms including the SA node and the carotid sinus baroreflex control of
SNA. However, an advantage of system identification is that it may also be applied to the
neural regulatory system operating under normal feedback conditions. Indeed, many of the
studies reported in the literature have employed system identification to study normal closed-
loop neural regulation. For the most part, these studies have involved the analysis of easily
measured ABP and HR in order to characterize quantitatively the arterial HR baroreflex.
Although many different system identification methods have been developed and employed
to elucidate the dynamics of this important mechanism, there have been very few studies
comparing the relative effectiveness of each method.

While it would be most convenient to estimate the arterial HR baroreflex from only
naturally occurring fluctuations, it is yet to be shown conclusively that such spontaneous
variability is sufficiently informative. Thus, to identify this feedback mechanism, we currently
support the use of random interval breathing, which enhances the information content in the
measured variability while preserving closed-loop operation. With this broadband excitation
approach, we believe that it is imperative that both ABP and easily measured ILV are
simultaneously considered as inputs to HR in order to prevent estimation bias resulting from the
correlation between ILV and ABP. (We would also like to point out here that other correlated
inputs whose contributions to HR are lumped into the unobserved disturbance can likewise
bias the estimate.) Moreover, in this way, a characterization of the direct neural coupling
mechanism involved in RSA may also be obtained. We also stress the use of parametric
models here to impose causality and therefore disentangle the feedback baroreflex mechanism
from the feedforward mechanical coupling from HR to ABP. Finally, at least at this point,
we believe that linear models may be adequate for representing the small signal behavior of
the arterial HR baroreflex, as they have been shown to be effective in discriminating disease.
However, we caution that it is possible that the linear models may be measuring shifts in
operating point in addition to, or in lieu of, actual disease-induced changes in baroreflex
functioning.

Up to now, very few studies have attempted to characterize the complex, nonlinear
behavior of neural regulatory mechanisms. Thus, the precise nature of the nonlinear beat-
to-beat couplings and the validity of the commonly used linearity approximation remain
to be demonstrated conclusively. Likewise, there is a paucity of studies addressing the
nonstationarity aspects of neural regulatory mechanisms. Thus, the manner in which
neural regulatory functioning is altered during transient events such as postural changes
remains poorly understood. We therefore advocate that future system identification studies
of (especially the previously investigated) neural regulatory mechanisms employ nonlinear
and/or time-varying techniques. Note that we have summarized these more sophisticated
techniques in this review, partly to encourage their implementation in future research efforts.

We also feel that it is important that future system identification studies focus on
demonstrating the validity of the estimated dynamics. We acknowledge however that such
validation studies may be especially challenging if, for example, neural regulatory functioning
is significantly altered from open-loop to closed-loop conditions. Finally, we believe that
future system identification studies that aim to elucidate the dynamical properties of other
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less understood neural regulatory mechanisms will be most beneficial. For example, very
little is known about the system dynamics governing the control of TPR and VC or the
cardiopulmonary baroreflex. The main challenge here is to be able to measure and/or derive
the relevant signals involved.

Indeed, although many studies concerning the use of system identification for probing
neural cardiovascular regulation have already been reported in the literature, there remains a
strong need for future investigations of this type. We expect that future system identification
studies will not only lead to the elucidation of the currently unknown dynamical properties
of neural regulatory and other physiologically mediated mechanisms but also to powerful
clinical tools for patient monitoring and diagnosis. It is our hope that this topical review has
been both didactic and uniformly representative of the literature such that it facilitates the
undertaking of such future work by researchers that are both new to and experienced in the
system identification method.
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