
Distributed Systems Engineering

Mobile Objects and Agents (MOA)
To cite this article: Dejan S Milojicic et al 1998 Distrib. Syst. Engng. 5 214

View the article online for updates and enhancements.

You may also like
MOA-2020-BLG-135Lb: A New Neptune-
class Planet for the Extended MOA-II
Exoplanet Microlens Statistical Analysis
Stela Ishitani Silva, Clément Ranc, David
P. Bennett et al.

-

MICROLENSING BINARIES WITH
CANDIDATE BROWN DWARF
COMPANIONS
I.-G. Shin, C. Han, A. Gould et al.

-

PLANETARY AND OTHER SHORT
BINARY MICROLENSING EVENTS
FROM THE MOA SHORT-EVENT
ANALYSIS
D. P. Bennett, T. Sumi, I. A. Bond et al.

-

This content was downloaded from IP address 3.145.166.7 on 08/05/2024 at 02:35

https://doi.org/10.1088/0967-1846/5/4/007
https://iopscience.iop.org/article/10.3847/1538-3881/ac82b8
https://iopscience.iop.org/article/10.3847/1538-3881/ac82b8
https://iopscience.iop.org/article/10.3847/1538-3881/ac82b8
https://iopscience.iop.org/article/10.1088/0004-637X/760/2/116
https://iopscience.iop.org/article/10.1088/0004-637X/760/2/116
https://iopscience.iop.org/article/10.1088/0004-637X/760/2/116
https://iopscience.iop.org/article/10.1088/0004-637X/757/2/119
https://iopscience.iop.org/article/10.1088/0004-637X/757/2/119
https://iopscience.iop.org/article/10.1088/0004-637X/757/2/119
https://iopscience.iop.org/article/10.1088/0004-637X/757/2/119

Distrib. Syst. Engng 5 (1998) 214–227. Printed in the UK PII: S0967-1846(98)98488-1

Mobile Objects and Agents (MOA)

Dejan S Miloji či ć†‖, William LaForge ‡¶ and Deepika Chauhan §+

† Mailstop 1U-14, Hewlett-Packard, 1501 Page Mill Road, Palo Alto, CA 94303,
USA
‡ JXML Inc., PO Box 425275, Cambridge, MA 02142, USA
§ EMC Corp., Engineering Department, 171 South Street, Hopkinton, MA 01748,
USA

Received 1 June 1998

Abstract. This paper describes the design and implementation of the Mobile
Objects and Agents (MOA) project at the Open Group Research Institute. MOA
was designed to support migration, communication and control of agents. It was
implemented on top of the Java Virtual Machine, without any modifications to it.
The initial project goals were to support communication across agent migration, as
a means for collaborative work; and to provide extensive resource control, as a
basic support for countering denial of service attacks. In the course of the project
we added two further goals: compliance with the Java Beans component model,
which provides for additional configurability and customization of agent system and
agent applications; and interoperability, which allows cooperation with other agent
systems.

This paper analyses the architecture of MOA, in particular the support for
mobility, naming and locating, communication, and resource management. Object
and component models of MOA are discussed and some implementation details
described. We summarize the lessons learned while developing and implementing
MOA and compare it with related work.

1. Introduction

Mobility has always attracted researchers in computer
science. The attraction falls into two principal categories:
(1) analogies with the real world, such as the migration
of birds and nomadic tribes due to lack of resources, and
(2) purely technical reasons, such as improving locality
of reference and the difference between local and remote
semantics.

Worms [36] represent one of the earliest types of mobile
software entities, which could spread across nodes and
arbitrarily clone. Unrestricted implementations of worms
and viruses have received negative connotations, due to
security breaches and denial of service attacks [15].

Another class of mobile entities, migrating processes,
was implemented at the operating system (OS) level.
There were many implementations of process migration
[4, 12, 38], but none has achieved wide acceptance. Due
to inherent complexity, it was hard to introduce process
migration without impacting the stability and robustness of
the underlying OS [26].

In order to eliminate OS semantics dependences and
to support finer granularity than processes, mobile objects
were introduced at the programming environment level
[2, 23, 35]. Nevertheless, mobile objects shared some
of the process migration complexity required to support

‖ E-mail address: dejan@hpl.hp.com
¶ E-mail address: b.laforge@jxml.com
+ E-mail address: chauhandeepika@emc.com

transparent migration, and until recently they were confined
to homogeneous architectures [37].

Mobile agents have attracted significant attention
recently. In addition to mobile code (such as applets),
agents consist of data and a non-transient agent system state
that can travel between the nodes in a distributed system
(intranet or Internet). Compared with mobile objects,
mobile agents also represent someone; they can perform
autonomous actions on behalf of a user or another agent.
A number of academic mobile agent systems (such as Agent
Tcl [24], Mole [5], Ara [32] and Tacoma [22]) and industrial
mobile agent systems (such as Telescript [42], Aglets [1],
Concordia [10] and Voyager [41]) exist. Products using
mobile agents have started to appear, such as Guideware
[18]. The government is interested in funding work on
agents [11]. A patent has been approved on mobile agents
[43]. A standard has been adopted (OMG MASIF [31]),
and reference implementations are in progress. A couple
of books have been published on agents [7, 9] and a few
more are in progress [25, 28, 29].

This paper describes the Mobile Objects and Agents
(MOA) project at the Open Group Research Institute. The
obvious question is: why introduce yet another mobile
agent system? There were a few reasons. None of the
existing mobile agent systems at the beginning of the
project was mature enough to be used as a starting point for
our work. Additionally, some areas of our interest, such as
communication and resource control, are deeply involved in
the design decisions of any mobile agent system, making

0967-1846/98/040214+14$19.50 c© 1998 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

Mobile Objects and Agents (MOA)

it very hard to add them as an afterthought. Finally, we
were interested in interoperability between the mobile agent
systems, and therefore supporting another implementation
was a good idea.

At the beginning of the project we were interested in
the first two of the four features listed below, and during
the course of development we added the last two.

Collaboration. Frequently, agents need to collaborate
during their execution either with other agents or their user.
For agent collaboration, it is necessary to support naming,
locating and communication among agents.

Denial of service attacks. Agents, as well as hosts, are
vulnerable to mutual attacks, either over a network or
locally. In order to prevent denial of service attacks, it is
necessary to maintain resource control of agents and agent
systems, and to impose security and resource policies.

Configurability and customization. It is increasingly
difficult to configure and customize software. In the case
of mobile agents, this applies to both agent applications, as
well as agent systems. Being compliant with a component
model, such as Java Beans, allows for a standardized way
to access and change component properties.

Interoperability. Agents, as well as agent systems,
need to interoperate. In the case of agent systems,
interoperability leads to a larger base that agents can visit.

More details on how these goals have been achieved are
described in sections 4.3, 4.6, 4.2 and 4.10, respectively.

The rest of this paper is organized as follows. In
section 2 we provide a background on mobile agents
and component-based computing. Section 3 describes
Java’s suitability for mobile agents and for component-
based computing. Section 4 presents the MOA design and
implementation. The current status of MOA is discussed
in section 5. Section 6 describes some MOA applications.
In section 7 we present lessons learned while designing
and implementing MOA. MOA is compared with related
work in section 8. Finally, conclusions and future work are
presented in section 9.

2. Background

In this section, we provide a background on mobile agents
and component-based computing.

2.1. Mobile agents

Among the benefits of mobile agents we would like to
emphasize the following.Improving locality of reference
is achieved by moving the action towards the source
of data or other endpoint of communication, resulting
in substantial performance improvement.Survivability:
similar to nomadic tribes or migratory birds, agents can
survive if moved closer to resources, or away from partially
failed nodes [28, 29].Analogy to the real worldhelps some

programmers to better understand programming paradigms
expressed in terms of mobile agents. Examples are
travelling salesmen, shoppers and workflow management
systems [42].Customizationof software can be achieved
using mobile agents, for example, by adjusting the search
according to a user-specific criteria, or by performing
an action specific to a remote site [24].Autonomicity
represents an agent’s independence from its owner. A user
can start an agent to act on his behalf and disconnect. When
the user reconnects, the agent returns or otherwise provides
results.

Agents have various areas of deployment. One is
slow and unreliable links, such as radio communication,
where locality of reference improves performance, and
avoids potential loss while transferring large amounts of
data. Software distribution becomes increasingly hard.
Mobile code has provided a revolutionary breakthrough,
by allowing downloading code for a heterogeneous
environment. Mobile agents makes this effort even easier,
by associating actions and state with each distributed
version and copy of a particular software.Network
management: agents migrate both code and data, making
them useful for automating control and configuration
in large-scale environments, such as networks [17].
Electronic commercedeploys mobile agents by modelling
travelling salesmen or shoppers visiting stores in an
electronic mall. Data mining is a convenient application
for mobile agents due to locality of reference: agents
optimize a search by wandering from site to site with large
volumes of information. (See [8] for additional benefits.)

Nevertheless, mobile agents still have not achieved
wide acceptance. Some of the reasons include the
following. Lack of applications: mobile agents have
achieved a reputation of ‘the solution searching for the
problem’. Many mobile agent systems have been developed
but few applications exist.Security: the problems caused
by mobile code are frequently reported. Mobile agents push
the security problems even further.Lack of infrastructure,
adapted for mobile agents, such as name servers, messaging
systems, and management, is still not widely deployed.
Survivability is both a benefit and a challenge for mobile
agents. Mobile agents are inherently survivable, but
this does not come free; they need to be designed and
implemented for survivability. In particular, they should
minimize residual dependences on previously visited nodes,
or servers.

2.2. Component-based computing

Component-based programming, including OpenDoc,
VBX, and ActiveX, has been quite successful in speeding
the development of GUI applications. Java Beans (compo-
nents written in Java), are promising for non-GUI compo-
nent programming. The runtime behaviour of a Java Bean
is defined by an ordinary Java class. The difference be-
tween a bean and other objects is the metadata used for
configuration. It is provided by an associated BeanInfo
class, or it is derived from the runtime class.

Component-based programming enhances object-orien-
ted benefits, such as flexibility, and code re-use with two
new characteristics: independence and configuration.

215

D S Milojičić et al

Independence. The source code defining a component
does not directly reference any other component; instead,
relationships between components are created at runtime.
The relationships may be established by the container
holding the components, or even by the component itself.
This has several benefits:

• a ‘building block’ approach: programs are constructed
from existing components by defining relationships

• each component can be individually tested
• components are more easily re-used; there is a

minimum of interdependency between components
• a program can be restructured for new requirements

without impacting the logic of individual components
• updating a program with the latest version of third-party

components is simplified.

Configuration. A component is constructed by a general
configuration tool. The component participates in its own
configuration. Application programs are assembled from
pre-configured components. The implementation specifics
of a component are separated from other elements of the
program. Separating the configuration of components from
an application program facilitates the use of alternative
implementations and component upgrades are backward
compatible. However, this impacts the development cycle,
as changes made to a component’s source code will often
invalidate its configuration. The edit, compile, and test
of the development cycle now becomes edit, compile,
configure, and test.

3. Java support for mobile agents and
components

Java has features that make it suitable for mobile agents
and components. These are described below.

3.1. Java and mobile agents

Java offers advantages for mobile agents, as well as
some disadvantages. Advantages consist of the support
for mobile code, heterogeneity, language safety, object
serialization [33], reflection, dynamic class loading, and
multi-threading.

Disadvantages consist of inadequate support for
resource management (e.g. memory and disk limits), no
support for preserving the thread execution context, limited
support for versioning, no ownership of objects and fine-
grained protection at the object granularity [25].

3.2. Java and components

Components written in Java are lightweight and little code
is required for conformance to the component model.
Java supports a number of key features of component
programming:

• A component may have several interfaces. Java
provides for the implementation of multiple interfaces,
unrestricted casting, and aninstanceof operator to
determine if a component supports an interface.

home node

remote node
front-end node

agent environment

agentApps

agent repository:
 data, state
 snapshots, logs

Figure 1. MOA architecture: a front-end node supports
starting and controlling agents and other MOA components;
the home node is the node where an agent was originally
started and where an agent-related state is maintained; a
remote note is one of the nodes where an agent currently
executes.

• Several components may be aggregated into a
single component. The JDK 1.1 methodsBeans.
isInstanceOf and Beans.getInstanceOf can be
used in place of theinstanceof operator and casting,
allowing for the future use of aggregation in JDK 1.2.

• The life of a component may span more than one
program. JDK’s provision for serializing components
allows converting an object into a form which can be
written to a disk file or passed across a network.

• A component is configured by modifying its properties
identified by examining the method signatures of the
component, e.g. the class is recognized as having
the property slices, if the methodsgetSlices and
setSlices exist.

• The component’s properties are accessed using the class
Introspector.

4. MOA design and implementation

The MOA architecture is presented in figure 1. Three types
of nodes are involved in a running MOA system: a front-
end node allows users to control and monitor agents; the
home node is used as a repository for the agent’s data;
and a remote node is where an agent typically executes
throughout its lifetime. The MOA system has a Telescript-
like model, supporting the notion of agents, places, and
their resources†. Agents travel and visit places held by
agent environments (AEs). Places accept agents, and store
information. AEs host various objects. A name server
tracks the location of agents and other objects, whereas a
monitor serves to control and monitor objects. These and
other objects in the MOA architecture are described in more
detail in this section.

4.1. Object model

The MOA objects on remote nodes can be classified as
agent- or infrastructure-related (MOA objects are depicted
as rectangles in figure 2). Agent-related objects are
enclosed in an ellipse in figure 2; they have migratory

† Nevertheless, there is sufficient difference to avoid infringing General
Magic’s Telescript patent. For example, the MOA place is not a first-class
object, as described in section 4.1.

216

Mobile Objects and Agents (MOA)

Agent
Environment

Agent
Control

Negotiator

Sandbox

Net

Messenger

Name Server
and Locator

Monitor

user trust domain

MOA trust domain

PlaceAgent

BucketPolicy
(Agent)

Agent
Properties Family LogService

agent-related objects

infrastructure-related
objects

infrastructure

Logger Mover services

communicationPolicy
resource
maintenance

(Host)

Figure 2. MOA objects: these are objects in the user trust
domain and objects in the MOA infrastructure trust domain;
the agent environment object is a container for all MOA
objects.

state. Agent and place belong to the user trust domain (see
section 4.7 for more details related to security), whereas
other components belong to the MOA trust domain.

An agent and place are application-extended classes.
Agent is a first-class MOA object. It is a template class
extended by agent applications. Agents are named (see
section 4.4), and they can communicate (see section 4.3).
An agent canmove to an AE (or a place within it), it
can request tomeetother agents at a certain place or AE,
openChannelto another agent, orsendMessagesto it. An
agent always executes within a place (see below). There is a
one-to-one mapping between an agent and a place within an
agent system. However, an agent can leave places behind
when it moves. Therefore, there is a one-to-many mapping
between an agent and places on different agent systems.

Place is not a first-class MOA object. A place belongs
to an agent, but it continues to exist after an agent has
left the node. The main difference between an agent and
a place is that place is a stationary object, and therefore it
cannotmoveor meet. However, places can communicate
with other places and agents; they can be active, i.e. they
can have threads running. Place also serves the container–
proxy role. They are proxies because they can remain
after an agent leaves and represent it there. They serve
the container role for security and resources of an agent.

Agent Control, Agent Properties, Family, LogService
and Bucket are agent-related classes that belong to the
MOA trust domain. Agent control is an internal class
that represents an interface between agent infrastructure
and agent/place. It manages agent infrastructure resources
(communication channels, agent properties, etc). These
objects can be accessed by an agent/place, but they
cannot be changed. AgentProperties contains the properties
that characterize agents and are transferred across the
nodes. Property examples are owner, home AE, and
locatingStrategy. Family is used for monitoring agent
activities. Each agent has its own Family object which it
carries across migrations. LogService manages local logs.

Bucket holds the contents of a JAR file (JAva aRchive).
Each bucket implements a classloader for the dynamic
loading of the jar file. A hashtable contained within a
bucket enables the client of a bucket to efficiently index into
the contents of a jar file. During migration, components
enclosed in an ellipse in figure 2 (except for Place and
Agent Control) are serialized, put into the bucket and sent
to destination node.

Policy and Negotiator objects maintain and manage
information about resources. Policy is a placeholder for
properties describing the policy of an agent arriving at
a node (agentPolicy), and a host receiving the agent
(hostPolicy), such as the agent’s maximum lifetime,
maximum number of channels and maximum threads.
Negotiator performs negotiations between an agent and
the receiving agent environment prior to the agent’s visit.
Agent movement is subject to resource requirements and
security arrangements between the two entities.

Sandbox and Agent Environment provide basic
infrastructure. Sandbox class separates the agent
application from the agent system state. It switches from
the agent system thread to an application thread when there
is a different protection domain; it also serves to switch
from synchronous to asynchronous communication when
going across the network. Resource usage and limits are
tracked on a per sandbox basis. AgentEnvironment is the
container for agents and their related objects at an agent
system. There is one AE per Java Virtual Machine (JVM),
but there can be many per node. Each agent has its home
AE and alternative home AE in case the home is not
accessible.

Net, Messenger and Name server comprise the
MOA communication model. Net provides the basic
communication support for establishing and maintaining
communication channels between components on remote
and local JVMs. Communication channels are established
by specifying the component name, host and port
number. The Messenger layer uses the services of Net to
support one- and two-way messages between components.
Components are addressed using the destination agent
system and the component name. Name server tracks agent
locations. The name server clients can(un)register and
lookup an agent location. Name server clients are user
(monitor) and agents thatlookuplocations of other agents in
order to communicate. Information about the agent location
(or how to find it) is cached at agent systems that the agent
visited or communicated with. Name server also plays the
Locator role.

Mover, Monitor and Logger provide MOA services.
Mover supports agent movement. It negotiates migration,
captures the agent state, and transfers it. Monitor provides
a user interface to control and monitor applications (e.g.
an agent’s movement, communication and resource usage).
Logger logs events in an Agent System to persistent media.

MoaApplet, BatchDriver and User classes support
the interface to the MOA system and its applications.
MoaApplet is an applet-based interface enabling users to
interactively monitor and debug agents, to launch them,
to snapshot the agent’s state, and to query the logged
data. BatchDriver is a script-based user interface to provide

217

D S Milojičić et al

root
|
— Net (Net)

|
— Messenger (Messenger)

|
 — Logger (Logger)
|
 — HostPolicy (Policy)
|
 — Mover (Mover)
|
 — Killer (Killer)
|
 — NameServer (NameServer)
|
 — Monitor (Monitor)
|
 — AcTakedownMgr (AcTakedownMgr)
|
 — AE (Environment)

|
 — sam:457#Third_1 (AC)

|
 — AcChannelMgr (AcChannelMgr)

|
 — AcMsgUser (AcMsgUser)
|
 — Agent (application-specific, derived from Agent)
|
 — Place (application-specific, derived from Place)

 |
 — AgentProperties (AgentProperties)
|
 — LocalPolicy (Policy)
|
 — Family (Family)

Figure 3. Agent system object tree: defines the names of
MOA internal objects. Parentheses contain the class
names from which the objects are derived. Internal object
names are important when communication between various
objects on different MOA systems is established, and for
initialization.

the services of MoaApplet; typically it is used for testing
purposes. User class serves as an interface between the user
applet and the agent. It launches the preconfigured agents,
tracks the agents, and maintains information of interest to
a user.

4.2. Component model

MOA components are configured using the MOAbatch tool
(see section 5). The components configuration defines the
object tree. The MOA system is loaded by first loading
the root component. Each component then successively
loads the component below it in the tree. Components
are locally organized into a labelled tree (see figure 3)
used to dynamically establish the relationship between the
components, in contrast to static binding, typical of OO
programming.

After the components have been loaded, they can
locate other components of the agent system by name in
order to establish dynamic binding. Non-leaf elements
of the object tree subclass theenvironmentChild class
(see figure 4) which provides methods for locating a
tree element given a relative or full pathname. For
example, any component in figure 4 can access the
Mover object by calling the method:getEnvironment().
getInstanceOf("/Mover",Mover.class)

Coupling of components to a certain extent negates
the benefits of component programming, and as such it
has been kept to a minimum. For example, the Net
component is made known to other components, such as
those that subclass NetUser: AC, Messenger and arbitrary
applications using Net.

We have successfully used components for pre-
configuring agent applications, as well as the agent
infrastructure. For agent applications, we can easily pre-
configure an agent’s itinerary, policy, types of logging,
debugging, etc. Agent infrastructure configuration specifies

class sandbox.environment.EnvironmentChild
class moa.ac.AcTakedownMgr
class sandbox.environment.Environment

class moa.ac.AC
class sandbox.environment.Killer
class moa.ac.LogService
class sandbox.message.MessageUser

class moa.nameserver.LocatorUser
class moa.ac.AcMsgUser
class moa.nameserver.NameServer

class moa.nameserver.HNameServer
 class moa.user.User

class moa.logger.Logger
class moa.monitor.Monitor

class moa.mover.Mover
class sandbox.net.Net
class sandbox.net.NetUser

class moa.ac.AcChannelMgr
class sandbox.message.ChannelManager

class sandbox.message.Messenger
 class moa.api.Service

Figure 4. Inheritance tree of EnvironmentChild Class: the
EnvironmentChild class supports accessing other
components within the object tree (see figure 3). For
example, the Mover needs access to NameServer and
Messenger and therefore has to be wired. Inheritance tree
indicates objects accessible by inheritance, for example,
Mover has access to Messenger by being a subclass of
MessageUser, and need not be wired.

which components will be integrated into the tree. For
example, HomeService is not present on all agent systems,
and AE is not needed on the front-end or on the home
node. Debugging can be specified as a part of the agent
system configuration at class granularity. Message timeouts
can be configured on a component basis. For the Net
component we specify its port number; for each agent,
we specify the number of service threads for each agent;
Killer component’s properties include the time when it will
take the MOA system down; for each user, we specify the
password, login id and login time; for each instance of the
MOA system, we specify the host policy for negotiating
with agents.

Components can also be organized using subcompo-
nents. For example, AC is an aggregate which includes
AcChannelMgr and AcMsgUser. Only AC is configured
into the whole MOA system. This way configuration is
simplified using a hierarchical structure. The components
of a remote MOA system and their properties are presented
in figure 5.

4.3. Communication

The MOA communication is built on top of JVM sockets.
It provides a higher level of abstraction, such as the
channels and messaging between MOA objects (agents,
places and servers). The communication channels support
object streams. Messaging provides for passing objects of
arbitrary type specific to the application.

The Net package supports opening of channels with
automated retry. The destination MOA system can
optionally reject a request for the channel subject to
resource limitations. This can happen at the agent
infrastructure, as well as at the application level. When
opening a channel to an agent, only the agent name needs

218

Mobile Objects and Agents (MOA)

Debug (List of components being debugged)
AE (agent application components)
Messenger (netBean,timeout)
Monitor (messengerBean,timeout)
Mover (messengerBean,timeout)
Net (retryDelays(Increment,max,init),runSrv,host,port,exitSrvOnError)
HomeService (nameSrvBean,messengerBean)
Logger (fileSuffix,logPath,retentionPeriod,messengerBean,timeOut)
NameServer (nameSrvBean,messengerBean)
Users (userPath,nameSrvBean,passwd,messengerBean,HSretryDelay)
UE (listOfUserBeans)
HostPolicy (maxLifeTime,timeRemain,maxChnl,remainPlaces,maxThrd)
Killer (killerTimeout)
Root (AE,debugger,net,messenger,logger,hostPolicy,mover,nameSrv,

ACChannelManager (timeout, netBean)
AcMsgUser (nameSrvBean,messengerBean,timeout)
AC (AcChannelMgr,AcMsgUser)

UE,homeServer,monitor,ACTakeDownMgr,killer)

Figure 5. MOA components: described with the list of
properties (configuration of the remote MOA system).

to be specified. The agent system resolves the actual agent
location with the help of Locator objects in a distributed
manner.

The Message package is able to pass application-
specific objects by delaying deserialization until the
name space of destination is identified. Messages can
be synchronous (RPC-like), or asynchronous (one-way
messages). Messaging is built on top of the Net package,
using a common pool of channels dedicated to message
passing. The destination of messages can either be a
specific location (destination name, host and port), or a
logical name (e.g. agent name) in the case where the
destination is a migratable object. This is reflected in the
implementation, where a layered approach is applied by
building the Locator on top of the Message layer which
builds on top of the Net (see figure 6). The Locator
handles transparent routing of messages when a location
is not specified. It enables the agents to transparently
communicate and collaborate with each other by using the
name of the agent. The Locator relies on the locating
strategies described in section 4.4 to find the agent’s
location.

In the case of two-way messages, responses are routed
back to the originating thread, which is suspended pending
either a response or a timeout. A response can arrive from
a node other than the original destination, if the destination
agent moved.

While moving from one node to another, the agent does
not notice that its channels have been closed and re-opened
on the remote node. When the transfer is initiated, the
channel migration process is performed first. During this

Net
(AcChannelMgr, ChannelMgr)

Messenger
(LocatorUser, Monitor, Mover, Logger)

Locator
(AcMsgUser, NameServer, User)

Figure 6. Stacked communications layers: Net supports
stream based communication, Messenger supports
messaging and Locator introduces transparent locating of
migratory objects.

AEname (ae): h:p
AgentName (a): aehome#f_l.g
PlaceName: aowner%aeresiding
ServerName: h:p

h - host name
p - port number
f - family name
l -launch number
g - generation number

Figure 7. MOA named objects: Agent Environment, Agent,
Place and Server.

process, the agent informs its collaborating partners of its
intent. From this point onwards, the data received on the
channels are not passed to the application, but are stored in
a Vector of unread Objects. Upon learning about the move,
the agent channel manager on the other end of the channel
replies with an acknowledgment and closes the channel
socket without informing the application. For the migrating
agent, when the acknowledgment is received on a channel,
the Reader thread for the channel is stopped, and the socket
is closed. The agent transports itself to a new location after
the migration process is completed for all open channels.

During channel migration, though the socket is
closed, the information regarding the other communicating
agents/places is still maintained. When the agent moves,
it carries along the information about the channels, and
uses it to re-open channels at the new location. Prior to
re-opening channels it first sends all the unread objects to
the application. Re-opening of channels can be done either
eagerly or lazily, depending on the type of the application.
If there are many seldom-used channels, they are re-opened
lazily. If there are a few channels likely to be used after
migration, then they are re-opened eagerly.

Communication and resource management are deeply
involved in the design decisions in MOA. This is reflected
in many MOA layers and components. For example,
communication is involved in the communication stack
(Net, Message, NameServer and Locator), but also in the
sandbox, AC, and agent/place interfaces. The case is
similar for resource management. The AC and sandbox
components were shaped to enable resource tracking. It
would have been hard to add this support as an afterthought.
Our earlier experience with Mach task migration [27]
indicates that, to a certain extent, it is possible to
add resource management or to make communication
modifications as an afterthought. However, any significant
support needs to be well elaborated in advance.

4.4. Naming and locating

The following objects are named in an MOA system: AE,
agent, place and servers. The name syntax is presented in
figure 7. An AE is named after the node and port on which
they perform communication. A server name has similar
syntax.

Agents are named after the AE where they were created
if they are first generation. If cloned, agents are named after
the AE of their first ancestor extended with the generation
number (see figure 8), irrespective of the AE where they
were actually cloned. In other words, each agent bears the
sign of the original site responsible for initiating the agent
family. This is used as an ultimate source of information
on the current agent location: as a last resort, the home
AE can be queried for current location information. The

219

D S Milojičić et al

agent agent-1

agent.1 agent.2

agent.2.1

the first family the second family

first generation

second generation

the first agent

cloned agents

Figure 8. Naming of agents: agent names are organized
around agent families and generations. Cloned agents
always carry the name of their ancestor as a part of their
name.

place name consists of the name of an agent it belongs to,
extended with the AE name where place currently resides.

The agent location may be needed by its owner
explicitly in order to track the agent location, or implicitly
in order to be able to control it (kill, suspend, resume,
etc). It is also needed by agents in order to be able to
communicate to (open channels) or synchronize (propose
meeting) with other agents.

Locating agents is performed through name servers.
Application requests to name servers (lookup, register,
unregister) are issued through the agent environment which
performs security and consistency verifications. When
migrating the agent, the Mover object makes a local request
to the Name Server. When opening channels or sending
messages, NetUser and Messenger interact with the Name
Server. Name servers on multiple nodes then cooperate to
satisfy these requests.

The location object contains either the current location
of an agent, or sufficient information to obtain it. In
particular, it contains some or all of the following: the
name of the residing agent system (if known), the type of
the strategy to locate the agent (discussed below), the list
of the nodes where the agent may reside (itinerary), the
lifetime of this location object. Even though the lifetime of
an agent is limited by its owner, because of the delays in
transferring the agent over the network, it is not possible
to assure its accuracy.

The location object is cached at each node the agent
visited, or where there was a channel opened with the
agent. When searching for an agent, the location object
is first looked up at a local name server. If not found, it
is looked up at name servers higher in the hierarchy, if
any exist (name servers may be organized in a tree-like
hierarchy). If the agent is still not found, then the agent’s
home node is approached. The home AE is the ultimate
source of information of agent location. The location of
the home AE is implicitly known from the agent’s name.

When locating agents, different location schemes are
used, similarly to those used in distributed operating
systems, such as Charlotte [4], V kernel [38], Sprite [12]
and Mach [27]. The MOA system supports: (a) updating
the home after an agent moves, (b) registering at a pre-
defined name server, (c) searching based on predefined
itinerary and (d) forwarding based on the trails left after
migration (see figure 9). The locating scheme is selected
subject to:

• destinations (a local or a faraway region; limited set of
destination hosts or unknown)

node 1 node 2 node 3 node n

agent agent agent agent

home

(a) updating at home node

node 1 node 2 node 3 node n

agent agent agent agent

server

(b) registering

home

node 1 node 2 node 3 node n

agent agent agent agent

? ? ? ?

(c) searching

home

node 1 node 2 node 3 node n

agent agent agent agent

(d) forwarding

home

Figure 9. Locating schemes: (a) updating: an agent
updates its location with the home node name server; (b)
registering: agent registers at a pre-defined name server;
(c) searching: based on available itinerary, the sites are
searched for agent’s location; (d) forwarding: based on
trails agent left behind.

• security aspects (if the agent crosses the security
domain)

• type of migration (burst versus sporadic; frequent
versus rare; random versus cyclic).

For example, updating the home node is suitable for an
agent that moves within a local region. It is not suitable for
agents that visit distant nodes. Registering is suitable for an
agent that migrates within a faraway region; in the case of
a large number of nodes, registering nodes are organized in
a hierarchical manner; it is not suitable for a large number
of migrations. The searching scheme is suitable for agents
that visit a small number of known hosts; it is not suitable
for destinations not known in advance and for large number
of nodes visited. Forwarding is suitable for a small number
of migrations; it is not appropriate for long chains.

220

Mobile Objects and Agents (MOA)

AgentProperties (owner,familyName,home/alternateHomeAE,lifeTime)
Agentpolicy (maxLifeTime,timeRemaining,maxChannel,

Family (typesOfLog,tracing,watches,limits)
Agent (applicationSpecific)
Place (applicationSpecific)

remainingPlaces,maxThreads)

Figure 10. MOA agent applications component model : in
parentheses we present configurable properties.

In many cases, the required accuracy of agent location
is application-specific. Even if the agent is successfully
located, it might migrate further away by the time
the location is reported back to the requesting node
and communication or delivery of a control message is
attempted. This is especially critical in cases of control
messages such asmeet, suspendor kill . One way to
eliminate this is to perform optimizations, such as to
batch a locating request with the control message. This
eliminates the delay between the time the agent is located
and the control message is delivered to the visited agent
system. This may not be sufficient for highly dynamic
agent applications or heavy loaded nodes in the case
of forwarding locating strategy. Instead, the updating
and/or registering strategy needs to be used, combined
with trapping the agent when registering/updating its
location. In this way, agent movement is delayed until
communication/control messages are delivered.

4.5. Mobility

When an agent migrates, its state is extracted from the
source agent system and transferred to its destination where
it is restored into a new instance of an agent object. During
transfer, only site-independent information is transferred.
In the case of communication channels, this information
consists of the agent names with which the migrating agent
had opened channels as well as their current location. The
state relevant to each particular node is transient, i.e. it is
discarded. For example, the sockets maintained in the agent
control object are closed and then re-opened in the remote
agent control object. Figure 10 describes the transferred
agent state. The state extraction starts at the application
level, where the application state is serialized (non-transient
data), then the state of the agent control is serialized (agent
resources, such as agent limits and logging data). This
state is then transferred to the remote node through the
cooperation of Mover objects in the source and destination
agent system. The Mover objects involve negotiation based
on the agentPolicy and the destination node hostPolicy.

Mobility is based on messaging, where the message
object is the bucket containing the agent and related
resources. When an agent arrives at a node, the Mover
creates a new instance of the AC object (unless there
already is one for that agent—the agent is returning to a
place it left). All other agent-related objects are instantiated
from the serialized versions in the bucket. Objects are
loaded using the class loader associated with the bucket.

We do not provide for sharing of objects remotely,
i.e., as an agent migrates to another node, it should not
maintain any references to an object on the source node.
Our experience is that distributed shared state is very hard

to support at the system level [6]; it is more appropriate to
rely on distributed shared memory packages for such needs.

4.6. Resource management

One of the initial goals of the MOA project was to support
extensive resource control of various MOA resources. The
following limits are enforced on MOA resources:

• agent: lifetime, places, hops, open channels, clones
• place: lifetime, nested places, open channels, agents
• agent environment: agents, places, channels.

These limits are verified upon each MOA function
that can impact the values, such as moving, or opening
a channel. Should the limits be exceeded, the function is
interrupted and the appropriate exception is thrown to the
component that invoked the function.

Prior to being accepted at a node, the agent negotiates
which and how many MOA resources it can utilize at the
visited MOA system.This is achieved by calculating local
policy from the agent policy and host policy. The local
agent policy is enforced during its lifetime at the visited
MOA system.

We did not address resource management not supported
by the JVM, such as the size of VM, the amount of
processing, and communication. Whereas it would be
possible to enforce some of them by making modifications
to the JVM, we refrained from any deviation fromde facto
standard solutions. Imposing resource limits has impacted
on the design and implementation of the MOA system.

4.7. Security

The first MOA release is fully compatible with the JDK
1.1 security manager; however, no security manager has
actually been implemented. Many security features were
left open for the next release, such as the work on
authentication, and authorization of agents. We have
actually implemented only the following features.

Thread switching was employed to allow conformance
with the Java security model. Services are provided by
threads containing only trusted classes. When an MOA
system thread has to switch the trust boundaries (e.g. in
the case of an incoming message, or opening a channel),
the request is passed to an MOA system queue serviced
by a pool of application threads allocated for that specific
trust domain. A thread from the pool processes requests by
calling application-specific methods. The request resumes
either upon receipt of the response, or upon the timeout,
whichever happens first. In this way, the application
is prevented from stalling the MOA system by thread
exhaustion, or by impacting performance through over-
using system threads. In addition, resource usage is tracked
on a per sandbox basis.

Each agent has its own name space as defined by
the bucket in which it is transported. A name space
consists primarily of bytecodes and serialized objects. One
complication arises when an agent returns to a place that
it had left. In this case, the name space is a combination
of the original bytecodes and the returning objects. This is
achieved by nesting the returning bucket (with the meaning

221

D S Milojičić et al

of classloader in this context) within the bucket of the
remaining place.

We are using the standard JAR file format for passing
agents. This format has provision for digital signatures,
allowing for authentication. However, we have not
addressed authentication at the moment. It is left as an
open issue, even though we have considered its deployment
during design and implementation. For example, the
agent’s authenticity will be maintained as a part of the
agent’s name object.

4.8. User interface

MOA’s user interface provides users with various types of
interactive monitoring and debugging services. An applet-
based and a script-based user interface are provided. The
script-based interface is primarily used for testing purposes
whereas the applet-based interface is used by the user to
interact with the MOA system.

The user interface is a component in the front-end of the
MOA system. It supports interaction with both the home
and remote MOA system. A user can log into the MOA
system from any remote location. The login information
is verified at the home agent system and a list of all the
agents (pre-configured applications available for launching
and already launched applications) is returned to the user
as a result of a successful login. The user can select any
pre-configured application agent and launch it to a remote
or local destination.

Users can launch a pre-configured agent, send a
command to suspend or kill a selected agent and monitor
agent-related activities. An agent can be queried by
specifying its start time, duration (to determine which log
records to access) and a query pattern. The home of an
agent maintains a cyclic array of agent snapshots (captures
of agent’s state at different times). The user can fetch a
snapshot and use it to start a new application agent. The
interface accepts various types of messages pertaining to an
agent’s movement, notices, system statistics and log items.
All these messages are displayable.

4.9. MOA tools

We also developed tools for manipulation of Java
Beans. Even though many new tools are becoming
available commercially, or will be developed soon, we
needed some functionality that was not available at the
time of development. In particular we developed the
MoaBatch program for instantiating Beans and MOAJar
for manipulating JAR files.

MoaBatch is a simple script program (726 lines
of code) which lets you instantiate beans (saving
them to disk as serialized objects) and edit the
properties. It cannot use property editors which do
not support text. MoaBatch works with all of the
property editors provided with the SDK except for
the font editor. MoaBatch fully supports indexed
properties. Source and executables are available from
http://www.camb.opengroup.org/∼laforge/java/moabatch/ .
Some of the commands that MoaBatch supports for
manipulation of beans are included below:

• Instantiate X—create a bean X.ser.
• Properties X—list the properties of bean X.
• Limit N—limit display of elements of an indexed

property.
• Set X Y Z—set property Y of bean X to Z.
• SetAt X Y I Z—set property Y at I of bean X to Z.

MOAJar is a GUI utility for editing JAR files layered
on top of an API for manipulating the JAR file contents
and manifest. MOAJar supports:

• Add, remove, extract, or rename a file in the JAR.
• Edit the name/value attributes in the JAR manifest.
• Serialize an object from a class in JAR or on

CLASSPATH.
• Edit the properties of a serialized object in the JAR.

4.10. Interoperability

During the development of MOA, we participated in
the OMG Mobile Agent Systems Interoperability Facility
(MASIF) standard [31]. MASIF is an attempt by
General Magic, IBM, Crystaliz, GMD and the Open
Group to establish a standard for mobile agents using
CORBA. It standardizes agent control, location, and
migration. It does not address communication among
the agents. This participation was intertwined with the
development of MOA. For example, our experience with
MOA has impacted some of the choices in MASIF, and
conversely, some of the MASIF specification choices have
impacted MOA. In particular, our experience with location
contributed to the standard. MASIF impacted our selection
of interfaces for the name server, as well as for the naming
in future versions of MOA. OMG MASIF is important for
enlarging the base of agent systems that can accept visiting
agents.

5. MOA current status and performance

MOA has been delivered to SECOM, utilizing funding
provided by MITI. The project started in the summer of
1996. On average the project had four people working
full time. Approximately six staff years were invested in
the effort. The MOA system is at the advanced research
prototype stage. It has been tested for a number of
scenarios, and we are currently conducting robustness and
performance tests. MOA has been adopted as a base
technology for a follow-up project ANIMA [3] in The Open
Group Grenoble Research Institute. Three other sites have
been using MOA: SECOM, University of Denver (further
development of the Rent-a-Soft application), and INRIA
(for security work).

MOA was developed on Windows NT, PC-based
machines. We were mainly using the bare JDK for
development, although throughout various phases of the
project and for various purposes, developers have also been
using other tools, such as Symantec Cafe, J++ and Java
Studio. The main reason for using the JDK was due to
the relatively slow response of the industry to Java Beans
development.

222

Mobile Objects and Agents (MOA)

Symantec
BlockBuster

software
producer

software
renter

software renter
department

renting
company

renting company
department

Symantec Symantec

BlockBuster
Symantec

BlockBuster
BlockBuster@Cambridge

opengroup

Symantec

BlockBuster
BlockBuster@Cambridge

opengroup@Grenoble

BlockBuster@Cambridge

opengroup

Figure 11. Rent-A-Soft : each level (producer, renter, renting company, and their departments) encapsulates its data and
supporting code for maintaining the renting process, upgrades, inventory, etc.

At the time of writing this paper, the MOA system
consists of approximately 30 000 lines of code (including
comments), organized in 21 packages, 200 classes, and 10
interfaces. This does not include test programs, developed
as unit tests for most packages, and 25 test scenarios
exercising various aspects of the MOA system. The tests,
including the configuration files, represent an additional
11 500 lines of code. The footprint (accumulative size of
classes) of the whole MOA system, along with the test
programs, is approximately 730 KB.

We have only now started working on performance
and robustness. We eliminated a few obvious performance
bottlenecks and are improving it further. Because of
this, and because all measurements were made using
interpreted Java (JIT for 1.2 will be available only for
the final release on NT), results should be taken with a
grain of salt. Measurements were conducted between two
100 MHz pentium PCs connected in a separate LAN (10 Mb
ethernet), running NT 4.0 and JVM 1.2. All measurements
are an average of five runs, which in turn consist of 1000
RPCs or of 100 moves, subject to measurement.

An RPC with a null message between two agents
running on two different nodes takes approximately 25 ms.
Note that even though the context of the message is null,
the message itself is not null, since it contains destination
and source fields. Serializing this object incurs additional
costs. Out of 25 ms, approximately 3 ms is part of the MOA
code before the message is passed to the JVM stream, and
it takes 3 ms from the time it is read from the JVM stream
until it is delivered to the receiving agent. This is when the
agent and MOA system are collocated in the same sandbox.
If they reside in different sandboxes, it takes 47 ms (the
corresponding times on the write and read path are 11 ms
and 6 ms). For comparison, the null RPC using RMI [44]
on the same platform was measured at 5 ms.

We have measured the move time of a simple agent to
be 1177 ms. It takes 88 ms to serialize the agent and its
properties, and 783 ms to deserialize it. Transfer of the
JAR file over the network takes approximately 98 ms. For
comparison, it takes 45 ms to transfer the same JAR file
using RMI. The higher costs bring in return more flexibility,
such as forwarding of messages. Nevertheless, we hope that
using JIT and further improving MOA communication will
significantly improve the performance.

6. Applications

‘Rent-A-Soft’ is a demo program, presented at Uniforum.
The idea is to use agents to help out with distributing

and renting software packages. This is applicable for
relatively expensive packages, or for cheaper software
(such as games) assuming large quantities. A chain of
participants is envisioned, such as producer, wholesale
renter, renting departments, the company which rents
and its own departments which sub-rent and occasionally
exchange software. By encapsulating information about
the renting source, duration and usage of the package, an
otherwise complex inventory tracking process is replaced.
Each encapsulated layer can associate an agent responsible
for specific activities, such as revoking the rent, statistics
maintenance, etc. Communication in the presence of
mobility can be used to revoke the rent within the same
security domains. For example, the company which
rents may revoke certain copies of the package within its
own departments, it can install new versions of software,
and dynamically monitor software use. The Rent-A-Soft
application is presented in figure 11.

Mobile agents for radio communication. The Grenoble
facility of the Open Group Research Institute is planning
to use the MOA project for a police force application
over radio connections [3]. This is a type of application
suited for mobile agents. Radio communication has slow
and unreliable links, allowing mobile agents to exploit
the locality of reference. Another important feature
that prevents alternative solutions based on the client–
server model to be used as effectively as possible is the
unpredictable availability of connections. It can easily
happen that connections with the centralized server are
broken (e.g. when a police car enters a tunnel). In such a
case, mobile agents can still continue to be functional, e.g.
by cooperating with, or visiting other available locations
(e.g. another police car that is also in the tunnel).

Mobile agents for security. Even though mobile agents
are considered to suffer from (still) inadequate security,
they can help to solve some security problems. In certain
cases it is not permitted to give access to the actual
data stored in a security domain, whereas it is permitted
to provide some attributes of the data or some other
information about the data. For example, Swiss banks do
not allow WWW access to its old accounts since World War
II, but they allow anyone checking if the user (or someone
from his family, based on the last name) had an account
opened. This type of application is a relatively simple
query. Imagine a more complex application, where queries
need to do complex, arbitrary searches across the whole

223

D S Milojičić et al

security domain. Such an application can be easily achieved
using mobile agents. A mobile agent would be allowed to
enter the security domain. While in the security domain, it
can do activities within certain limitations. Before leaving
the security domain, agent data could be inspected to see
what data it takes out; alternatively only certain data could
be allowed to leave. There is an opportunity for establishing
covert channels, but depending on how secret the data are
and how much information is allowed to leave, this solution
could be acceptable in a range of applications. The Open
Group RI has an ongoing proposal for the use of mobile
agents for improving security.

In all three applications, communication, resource
management and interoperability requirements are very
important. Our belief is that MOA satisfies these
requirements well. For example, communication channels
can be temporarily suspended or disabled during the
application lifetime, and mobile applications need to
reconnect from various sites, requiring the MOA migratable
channel support. For all applications, and especially
for security, resource management plays one of the
most important roles. Being able to track and limit
resources is invaluable for Web server applications. Finally,
interoperability is one of the key requirements for many
applications nowadays, particularly for mobile agents.

7. Lessons learned

In this section we summarize lessons learned while
developing MOA.

Operating system support versus middleware. Many
operating systems techniques can be applied in the
development of middleware systems. We have drawn
on substantial experience in the area of operating
systems, such as communication channels and messaging
protocols; locating and naming of mobile agents; resource
management; negotiation policies, synchronization among
agents, etc. Applying these techniques at the middleware
level is much easier, and more robust, than at the operating
system level.

Transparency in communication (maintaining channels
across migration) was more complex to support than we
originally thought. We were aware that this is a hard goal
to achieve, but we hoped that relaxing assumptions would
make it simpler to implement.

Resource management was straightforward to design
and implement. We believe that the use of MOA will
demonstrate the ultimate benefits of resource management.
We strongly recommend that resource management be
initially planned for the development of agent systems. We
shall heavily rely on it for some of the future work related
to policies for management of agent-based systems.

Component-based computing has somewhat slowed us
down during the development. Compliance with the
component model does not come free. There are costs
both in terms of development effort, as well as runtime.
The learning curve was high to get accustomed to Java
Beans: we had to provide additional methods to inspect/
set properties; we had to take care that all classes were
serializable; we had to create jar files for both the agent
application and agent system; it is necessary to link (or
wire) components once they are loaded. Nevertheless, we
feel that the benefits have at least returned the investment
so far, and that the benefits will significantly outweigh the
investment once we start using, and especially configuring,
the MOA system and MOA applications.

Immediate benefits of complying with the component
model were stronger enforcement of component boundaries
than is the case with object boundaries. The components
are loaded instead of constructed and component boundaries
enforced careful design of what is serialized, particularly
useful for application development.

In the future, we expect even higher benefits from
the component model, allowing for inspection of visiting
agents, reconfiguring agent applications, and agent systems.
Evolution of the MOA system will be easier, since changes
will be isolated to single components.

Interoperability. It is too early to elaborate on the
benefits of participating in the OMG MASIF proposal. It
was a useful experience to collaborate with implementors
of other mobile agent systems. We were solving similar
problems, sometimes finding different solutions. Because
of the different underlying infrastructure, the current
compliance is still a future goal, because we need to
first come up with a reference implementation. At the
moment, we have taken care that nothing stands in the
way of the MOA design to prevent us from switching to a
different communication infrastructure. The primary lesson
we learned is that many concepts and implementations
of different mobile agent infrastructures are similar, and
that the first draft of the OMG standard should be
straightforward to implement.

8. Related work

There are three classes of work related to MOA. The first
class consists of process migration, the second of distributed
systems on the Web and the third of mobile agents.

Charlotte process migration [4] dealt with the
interprocess communication among the migrating processes
and introduced forwarding as a locating scheme. Process
migration in the Sprite operating system supported the
notion of a home node [12]. In the V Kernel
process migration [38], migrating processes are located
by searching them. Emerald supports fine grain object
mobility on a small-scale network, addressing mobility
at the language level [23]. In Mach task migration,
transparency of communication and resource maintenance
is achieved at the microkernel level [27]. A comprehensive
survey of process migration is provided by Milojičić et al

224

Mobile Objects and Agents (MOA)

[26]. A theoretical description of mobility in the form of
Actors is presented in [1].

Two distributed object-based systems on the Web
explore similar issues as MOA does. Legion is an object-
based, meta-systems software project, developed at the
University of Virginia [16] that provides a single, coherent
virtual machine and that addresses issues of scalability,
fault tolerance, site autonomicity, and security. Globe is an
object-based wide-area distributed system constructed as a
middleware layer on top of existing networks and operating
systems [21]. It is based on the concept of a distributed
shared object whose state can be physically distributed and
that encapsulates implementation aspects (communication,
replication, and migration).

Telescript was the first commercial implementation
of the mobile agent concept [42]. Recently, it was
discontinued and re-implemented in Java, under the name
Odyssey. AgentTcl is a mobile agent system implemented
in the Tcl language [24]. It has two components: a
special Tcl interpreter that executes the Tcl agents, and
a server that runs on each machine to which agents can
be sent. It uses the SafeTcl model for security. Aglets
is one of the first mobile agent systems written in Java
[1]. It supports rich communication semantics (location
independency, synchronous, asynchronous and multicast).
The Mole project at the University of Stuttgart was one of
the first academic efforts in mobile agents in Java [5]. It
collaborates with a few industrial partners, such as Siemens
and Tandem. Concordia supports agent persistence and
recovery [10]. Collaborative work is based on an event
manager and two forms of asynchronous distributed events:
selected and group-oriented. Ara is a Java-based agent
system that applied some changes to the JVM in exchange
for increased functionality, such as maintaining thread
execution context and imposing limits on memory usage
[32]. Tacoma and its descendent T2 address fault tolerance
and security issues [22]. Voyager is a Java-based system
for developing distributed applications using mobile objects
and agents. It includes an ORB with support for migration,
services for persistence, scalable group communication, and
basic directory services.

Of the mobile systems presented, the most elaborate
schemes for maintaining communication channels across
migration were implemented in process migration. This
was achieved at the cost of complexity introduced in the
operating system [12, 27, 28, 29]. Voyager also supports
communication with a migrated agent, but it relies only
on the forwarding strategy. Even though this strategy may
appear superior to others (see section 4.4), it is really the
combination of different strategies that offers most benefits
to an application writer.

Almost all the systems described provide some support
for resource management. None of them, to our knowledge,
has made elaborate use of resource information to pursue
negotiation and control.

None of the systems that we described is compliant
with the component model. MOA was developed later than
most of the agent systems, allowing it to overlap in a timely
fashion with the development of Java Beans. Voyager is
integrated with the Java Beans event model, but the Voyager
system is not built from components.

Of the agent systems we described, Aglets is the only
other agent system that plans to pursue a MASIF reference
implementation. MOA and Aglets are currently similar
with regards to MASIF compliance, i.e. both are Java-
rather than CORBA-oriented. It will be necessary to adapt
security and communication models to adjust to MASIF
requirements.

There has been an abundance of relevant security-
related research. Seminal papers are provided by Farmer,
et al [13, 14]. Haertig and Reuther address the use of
encapsulation of mobile objects for security [19]. Hohl
investigates how to protect mobile agents from malicious
hosts [20]. Nagaratnam and Lea explore roles and secure
delegation that could be used for mobile objects [30]. Vigna
provides a collection of papers on mobile agent security
[39].

In summary, the MOA system is different from other
agent systems in the following unique aspects. The MOA
system and applications are Java Beans compliant. An
MOA place can be retained after an agent leaves. Agent
naming supports families and generations of agents that
can be managed. Agents are tracked using four, per agent,
configurable locating schemes. Communication channels
are migratable.

9. Conclusion and future work

In this paper, we described the design and implementation
of the MOA project. In particular we presented the
MOA object and component models and described its
components, such as communication, naming and locating,
mobility, and resource management. We also discussed
some lessons learned during its development and presented
some preliminary performance measurements.

MOA contributions consist of: supporting agent
collaboration by maintaining communication channels
across migration; providing basic support for denial of
service attacks by extensive resource management and
negotiation policies; compliance with the Java Beans
component model, leading to better configurability; and
complying with the OMG MASIF standard.

There are many mobile agent systems available
nowadays, both from academia and from industry. Even
though MOA represents yet another new mobile object
system among many research vehicles today, we believe
that we have distinguished it sufficiently to justify its
development. In particular, we believe that it was easier
to achieve compliance with the component model while
designing the system; similar reasoning applies to managing
resources, and to maintaining communication channels.

The lessons we learned range from resemblance
of middleware solutions to experience with operating
systems. Our experience with the component model
distinguishes between costs and benefits of complying with
the component model. We strongly believe the latter will
outweigh the former already for moderate requirements
for configurability. We introduced a lot of complexity
by maintaining communication transparency. Resource
maintenance proved to be very useful with expectations
for significant benefits in the future. Finally, the OMG

225

D S Milojičić et al

MASIF standard impacted the design decisions of MOA.
We expect to learn more about MASIF as we pursue the
reference implementations.

Future work consists of four areas. First, we plan
to extensively improve security. In particular, we plan
to include authentication, authorization, integrity checking,
and the trust model of MOA. The second area consists
of applications, which we plan to support a few of.
The third area addresses improvements to the current
implementation, in particular related to performance and
robustness. Finally, we plan to demonstrate interoperability
in practice, by interoperating with another OMG MASIF
reference platform, such as Aglets.

Acknowledgments

We are grateful to Shai Guday and Holger Peine for
reviewing this paper. They significantly improved its
presentation and content. Rosemary Hudson and Jackie
Clark undertook the impossible task of inserting all missing
articles and to eliminate the superfluous ones that an author,
a non-native English speaker, introduced. We are also
indebted to the anonymous reviewers and to our editor Joe
Sventek for numerous suggestions that raised the value of
our manuscript to the required level of an archival journal.

Availability

The MOA project is available for scientific and research
purposes under a Collaborative Research Agreement
from The Open Group. The URL of the project is:
http://www.camb.opengroup.org/RI/Techno/OS/moa.html

References

[1] Agha G 1987A Model of Concurrent Computation in
Distributed Systems(Cambridge, MA: MIT Press)

[2] Amaral P, Jacqemot C, Jensen P, Lea R and Mirowski A
1992 Transparent object migration in COOL-2Proc.
ECOOP (June 1992)

[3] ANIMA Project webpage
http://www.gr.opengroup.org/anima

[4] Artsy Y and Finkel R 1989 Designing a process migration
facility: the Charlotte experienceIEEE Comput.47–56

[5] Baumann J, Hohl F, Rothermel K and Straßer M 1998
Mole concepts of a mobile agent systemWWW Journal,
Special Issue on Applications and Techniques of Web
Agentsvol 1 (Bussum, The Netherlands: Baltzer Science
Publishers) pp 123–7

[6] Black D, Miloji čić D, Langerman A, Dominijanni M, Dean
R and Sears S 1998 Distributed memory management
Softw. Pract. Exp.28 1011–31

[7] Bradshaw J 1996Software Agents(Cambridge, MA: MIT)
[8] Chess D, Grossof B, Harrison C, Levine D, Parris C and

Tsudik G 1995 Itinerant agents for mobile computing
IEEE Personal Commun. MagazineOctober

[9] Cockayne W and Zyda M 1997Mobile Agents:
Explanations and Examples(Manning)

[10] Concordia 1997 Concordia: an infrastructure for
collaborating mobile agentsProc. Workshop Mobile
Agents MA’97 (Berlin, April 7–8) LNCS 1219(Berlin:
Springer)

[11] DARPA Broad Agency Announcement 98-01Agent-Based
Systemswebpage
http://ballston.prc.com/baa9801/abspipv1.htm

[12] Douglis F and Ousterhout J 1991 Transparent process
migration: design alternatives and the sprite
implementationSoftw. Pract. Exp.21 757–85

[13] Farmer W M, Guttman J D and Swarup V 1996 Security
for mobile agents: authentication and state appraisal
Proc. 4th European Symp. Research in Computer
Security (Springer Lecture Notes in Computer Science
vol 1146)pp 118–30

[14] Farmer W M, Guttman J D and Swarup V 1996 Security
for mobile agents: issues and requirementsProc. Conf.
National Information Systems Securitypp 591–7

[15] Ford W and Baum M 1997Secure Electronic Commerce
(Englewood Cliffs, NJ: Prentice Hall)

[16] Grimshaw Aet al 1997 The legion vision of a worldwide
virtual computerCommun. ACM40 39–45

[17] Goldszmidt G and Yemini Y 1995 Distributed management
by delegating mobile agentsProc. 15th ICDCS
(Vancouver, June 1995)(IEEE)

[18] Guideware Corporation webpage
http://www.guideware.com

[19] Haertig H and Reuther L 1997 Encapsulating mobile
objectsProc. 17th Int. Conf. Distributed Computing
Systems(IEEE) pp 355–62

[20] Hohl F 1998 A model of attacks of malicious hosts against
mobile agentsProc. 4th Workshop on Mobile Objects
Systems, INRIA Technical Report(INRIA) pp 105–20

[21] Homburg P, van Steen M and Tanenbaum A 1986 An
architecture for a wide area distributed systemProc. 7th
SIGOPS European Workshop (Connemara, Ireland,
September 1986)pp 75–82

[22] Johansen D, van Renesse R and Schneider F 1995
Operating system support for mobile agentsProc. 5th.
IEEE HOTOS Workshop (Orcas Island, USA, 4–5 May,
1995)

[23] Jul E, Levy H, Hutchinson N and Black A 1988
Fine-grained mobility in the emerald systemACM Trans.
Comput. Syst.6 109–33

[24] Kotz D et al 1997 Mobile agents for mobile Internet
computingIEEE Internet Comput.1 58–67

[25] Lange D and Oshima M 1998Java Agent API:
Programming and Deploying Aglets with Java(Reading,
MA: Addison Wesley)
(Aglets webpage http://www.ibm.co.jp/trl/projects/aglets)

[26] Miloji čić D, Douglis F, Paindaveine Y, Wheeler R and
Zhou S 1997 Process migration surveyThe Open Group
Research Institute, Collected Papersvol 5

[27] Miloji čić D, Zint W, Dangel A and Giese P 1993 Task
Migration on the top of the mach microkernelProc. 3rd
USENIX Mach Symp. (Santa Fe, New Mexico) (April,
1993)pp 273–90

[28] Miloji čić D, Douglis F and Wheeler R 1998
Mobility—Process, Computers and Agents(Reading,
MA: Addison-Wesley) to be published

[29] Miloji čić D, Douglis F, Wheeler R and Baker M 1998
Mobility—Processes, Computers and Agents(New York:
ACM) at press

[30] Nagaratnam N and Lea D 1998 Secure delegation for
distributed object environmentsProc. 4th USENIX Conf.
Object-Oriented Technologies and Systemspp 101–116

[31] OMG Mobile Agent Systems Interoperability Facilities
Specification (MASIF) 1997 OMG TC Document
ORBOS/97-10-05
(webpage http://www.opengroup.org/dejan/maf/draft10)

[32] Peine H and Stolpmann T 1997 The architecture of the Ara
platform for mobile agentsProc. 1st Int. Workshop on
Mobile Agents MA’97 (Berlin, April 7–8)(Berlin:
Springer) http://www.uni-kl.de/AG-Nehmer/Ara

[33] Riggs Ret al 1996 Pickling state in the Java systemProc.
USENIX 1996 Conf. Object-Oriented Technologies
pp 241–50

[34] Ranganathan M, Acharya A, Sharma S and Saltz J 1997
Network-aware mobile programsProc. Conf. Annual

226

Mobile Objects and Agents (MOA)

Usenix (Anaheim, CA, January 6–10)
[35] Shapiro M, Gautron P and Mosseri L 1989 Persistence and

migration for C++ objectsProc. ECOOP 1989:
European Conf. Object-Oriented Programming (1989)

[36] Shoch J and Hupp J 1982 The worms programs—early
experience with distributed computingCommun. ACM
25 172–80

[37] Steensgaard B and Jul E 1995 Object and native code
thread mobility 1995Proc. 15th Symp. Operating
Systems Principlespp 68–78

[38] Theimer M, Lantz K and Cheriton D 1985 Preemptable
remote execution facilities for the V SystemProc. 10th
ACM SOSPpp 2–12

[39] Vigna G (ed) 1998Mobile Agents Security. Lecture Notes
in Computer Science(Berlin: Springer) to appear

[40] Vitek J and Tschudin C 1997Mobile Objects Systems:
Towards the Programmable Internet(Berlin: Springer)

[41] Voyager Technical Overview ObjectSpace webpage
http://www.objectspace.com/voyager

[42] White JTelescript Technology: Mobile AgentsGeneral
Magic White Paper webpage
http://www.genmagic.com/Telescript/Whitepapers/wp4/
whitepaper-4.html

[43] White Jet al 1997 System and method for distributed
computation based upon the movement, execution and
interaction of processes in a networkUS Patent
Specification5603031

[44] Wollrath A et al 1996 A distributed object model for the
Java systemProc. Conf. USENIX Object-Oriented
Technologiespp 219–31

227

