
Distributed Systems Engineering

DC++: distributed object-oriented system support
on top of OSF DCE
To cite this article: A B Schill and M U Mock 1993 Distrib. Syst. Engng. 1 112

View the article online for updates and enhancements.

You may also like
Visualization of thermal ablation lesions
using cumulative dynamic contrast
enhancement MRI
Andriy Shmatukha, Benu Sethi,
Mohammed Shurrab et al.

-

A deep matrix factorization framework for
identifying underlying tissue-specific
patterns of DCE-MRI: applications for
molecular subtype classification in breast
cancer
Ming Fan, Wei Yuan, Weifen Liu et al.

-

Respiratory motion correction for
enhanced quantification of hepatic lesions
in simultaneous PET and DCE-MR
imaging
Matteo Ippoliti, Mathias Lukas, Winfried
Brenner et al.

-

This content was downloaded from IP address 18.226.96.61 on 11/05/2024 at 03:58

https://doi.org/10.1088/0967-1846/1/2/006
/article/10.1088/0031-9155/58/10/3321
/article/10.1088/0031-9155/58/10/3321
/article/10.1088/0031-9155/58/10/3321
/article/10.1088/1361-6560/ac3a25
/article/10.1088/1361-6560/ac3a25
/article/10.1088/1361-6560/ac3a25
/article/10.1088/1361-6560/ac3a25
/article/10.1088/1361-6560/ac3a25
/article/10.1088/1361-6560/abf51e
/article/10.1088/1361-6560/abf51e
/article/10.1088/1361-6560/abf51e
/article/10.1088/1361-6560/abf51e

Distrib. Syst. Engng 1(1993)112-125

I DC++: distributed object-oriented
I system support on top of OSF DCE

Alexander B Schillt and Markus U Mockf
Institute of Telematics, University of Karlsruhe, Postfach 3640, D-76021 Karlsruhe,
Federal Republic of Germany

Received 24 March 1993

Abstract. The OSF Distributed Computing Environment (DCE) is becoming an
industry standard for open distributed computing. However, DCE only supports
clienikerver-style applications based on the remote procedure call (RPC)
communication model. This paper describes the design and implementation of an
extended distributed object-oriented environment, DC++, on top of DCE. As
opposed to RPC, it supports a uniform object model, location independent
invocation of fine-grained objects, remote reference parameter passing, dynamic
migration of objects between nodes, and C++ language integration. Moreover, the
implementation is fully integrated with DCE, using DCE UUIDs for object
identification, DCE threads for interobject concurrency, DCE RPC for remote object
invocation, and the DCE Cell Directory Service (CDS) for optional retrieval of
objects by name. An additional stub compiler enables automatic generation of C++-
based object communication interfaces. Low-level parameter encoding is done by
DCE RPC‘s stub generation facility using the C-based DCE interface definition
language (IDL).

The system has been fully implemented and tested by implementing an office
application. Experiences with the existing system and performance results are also
reported in the paper. Furthermore, a former, less transparent implementation of our
group using DCE RPC as a pure transport-level mechanism is compared with the
described approach. Related C++ extensions and standardization efforts are also
COmDared with our work.

1. Introduction

The OSF Distributed Computing Environment (DCE)
[OSF92a-d] is becoming an industry standard for open
distributed computing. It offers W C as its basic
communication mechanism both among its decentralized
system components and within applications. Moreover,
DCE provides a number of supplemental system services
including concurrency support, distributed name
management, security aspects, and distributed file
management. This environment has reached a stable,
product-level stage, is becoming widely available, operates
in heterogeneous systems, and is the base for many higher-
level services such as distributed transaction support. For
these reasons, DCE has been the choice for our research
and development projects, too. However, l i e other authors
[LET91], we have also observed several deficiencies of the
traditional clienthemer-model supported by DCE

Granularity. Clients and servers are heavyweight
instances. Therefore, it is costly to install them dynamically
and it is virtually impossible to relocate them at runtime.

t E-mail address: schiU@ira.u!a.de.
$ E-mail address: mock@ira.uka.de.

Communication. The communication paradigm in
asymmetric: invocations are usually client-to-server round-
trip. Server-to-client invocations require cumbersome
implementation techniques but are desirable within many
applications.

Parameter semantics. W C reference parameters are
dereferenced and their contents are copied by value into the
peer’s address space. This can lead to anomalies in case of
concurrent access to client and server copies. Moreover,
parameter passing by remote reference would also be more
efficient in some cases.

Remote data access. Data structures managed by a server
can only be accessed by invoking the server’s data
management operations. The structure and implementation
code of many applications could be facilitated by enabling
direct access to remote data via accessor methods being
called remotely. Data abstraction will be maintained then
since object access is still via operations only, but no
intermediate server entity is involved any more. Although
the corresponding implementation will generally not yield
significant performance gains, a higher level of
programming abstraction is achieved.

Entity identiry. Data objects do not have a globally
unique identity. Therefore, they cannot be arbitrarily

0967-1846/93/020112+14$07.50G~1993 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

DC++: distributed object-oriented system support on top of OSF DCE

addressed from remote locations, one of the reasons for the
lack of direct remote data access. Client and server entities
only have a global identity by application-specific
composition of low-level address and identifier
information.

For these reasons, we designed and implemented a
distributed object-oriented extension of DCE that addresses
these problems. It supports the following features:

0 Fine-grained distributed objects. The programming
model is based on fine-grained, dynamically created C++
objects located at several distributed network nodes. An
initial remote location can optionally be specified at object
creation time. C++ objects therefore are the basic units of
distribution. However, objects can also contain nested C++
data structms. leading to objects of arbitrary granularity.
0 Systemwide identity. All distributable objects are
internally referenced via systemwide unique identifiers
based on DCEs universal unique identifiers (UUIDs).
0 Location independent invocation. Objects communicate
by method invocations, no matter whether the peer object is
local or remote. The task of locating peer objects is
performed by our system. Remote invocations are
internally mapped onto DCE RPC. This is achieved by an
own stub generation facilit. working together with DCE’s
IDL-based stub compiler.
0 Dynamic object migration. Upon request by the
application, objects can dynamically move between nodes,
e.g. to co-locate communicating objects or to distribute
parallel computations onto different nodes. An important
property of our approach is that moved objects can still be
accessed in a uniform way, and that concurrent migration
and invocation requests are synchronized.
0 Concurrency support. Object invocations at a given node
can be performed concurrently based on multithreaded
RPC servers. Moreover, applications can explicitly create
concurrent computations by using a thread-related ,class
library; this class library of our system is internally mapped
onto DCE threads.
0 Decentralization and dynamics. The implementation is
based on a decentralized architecture. Especially the
algorithm to locate objects is fully decentralized. Moreover,
object creation and deletion is fully dynamic, and the node
structure can also be reconfigured dynamically. Based on
these properties. there are no system-inherent scalability
limitations.
0 Full integration with DCE. One of the most important
and distinguishing properties of our system is its full
inte-gation with DCE mechanisms. It solely uses DCE RPC
for implementing interobject communication, and DCE
threads for concurrency. Moreover, UUIDs serve as object
identifiers, nodes are addressed by DCE binding handles.
and the DCE Cell Directory Service is used for optionally
registering objects by logical names. Based on DCE. the
implementation is highly portable and enables
heterogeneous systems interoperability.

The approach is based on concepts introduced by earlier
systems such as Emerald [BHJ87], Amber [CAL89], Arjuna
[SDP911, and Amadeus [HOC91]. However, as opposed to

.y

these systems, it is integrated with DCE mechanisms, an
issue that guided many detailed design choices. Moreover,
the approach does not introduce any C++ language
modifications-therefore, it is a system service on top of
DCE and C++ and not a new language and system
environment. This fact may improve external acceptance
according to the experiences with our project partners.
Finally. several implementation details of our object
mobility and addressing support contain new features.

It should be noted that the paper does not cover aspects
of object persistence or of object-based distributed
transactions. Although such features will be of significant
importance in practice, for example in office applications,
they have not been within a major focus of our project plan
yet. Therefore, only very limited facilities for writing
objects to disk and for importing them back again are
offered by our prototype up to now. Nevertheless, we
believe that advanced features can be built directly on top
of our distributed object management techniques. Such an
enhanced implementation can also be facilitated by RPC-
based distributed transaction management products on top
of DCE such as Encina @ZNC92].

In the following sections, we first give an overview of
the underlying OSF Distributed Computing Environment
and then discuss our system architecture and design
choices. Thereafter, ‘we describe details of our
implementation and discuss experiences and performance
results. We also illustrate the functionality by an example
application. Finally, related approaches. including OMG’s
Object Request Broker, are discussed in more detail and an
outlook to future work is given.

2. Basic concepts and system architecture

2.1. OSF distributed computing environment

Originally, the OSF has issued requests for technology (rft)
for important distributed systems functionality in order to
assemble a practical distributed computing environment.
Hardware and software vendors as well as research
institutes have responded with technical submissions of
operable prototypes. The OSF has selected one or multiple
systems for each required functionality based on technical
criteria and on maturity. Finally, the OSF has integrated all
selected components and has determined standardized C
programming interfaces for them. Finally, the source code
of the resulting DCE has been offered to vendors for
porting it to their platforms [OSF92c-d]. As of 1993, the
OSF DCE is commercially available on several major
systems, including OSF/l, DEC/Ultrix. IBM/AIX. SunOS,
VAX/VMS. and-with limited functionality--on PCDOS,
OS/2, and OS/400; this list is not exhaustive.
Interoperability of DCE applications on these systems is
guaranteed by common programming and communication
interfaces. and by automatic data translation between
heterogeneous data formats.

DCE architecture and services. Figure 1 shows the
overall architecture of the OSF DCE. All DCE components

113

A 6 Schill and M U Mock

Figure 1. DCE architecture.

are based on local operating system services (e.g. Unix)
and transport services (e.g. TCPP). Distributed
applications make explicit use of fundamental DCE
services (in italics in the figure) via C programming
interfaces. The other DCE services are used implicitly via
the fundamental services or via modified operating system
services.

Fundamental DCE services. The Threads Sewice
provides a portable implementation of lightweight
processes (threads) according to the POSIX Standard
1003.4a. Threads enable concurrent processing within a
shared address space, and are especially used by RPC for
implementing asynchronous invocations and multithreaded
servers.

DCE RPC is the major base for heterogeneous systems
communication with DCE. It offers significant
functionality, including the C-based Interface Definition
Language (IDL), explicitly selectable call semantics, nested
parameter stmctures, secure RPC with authentication and
authorization based on the DCE Security Service, global
(up to worldwide) naming of servers based on the X.500
directory service standard, backward calls from servers to
clients, and bulk data transfer based on typed pipes (logical
channels). The overall functionality is quite rich, and DCE
RPC seems to be increasingly accepted as a de facto
standard in practice. Most important, it is operable here and
now. Like all other DCE components, it is based on an
existing implementation that has been submitted after an
OSF request for technology (rft); this implementation has
been part of the Network Computing System (NCS) of
HWApollo and DEC. The OSF adapted the system and
determined a set of interface procedures for RPC usage.
Within the context of ow work, RPC is the most important
component. In the following sections, we will make use of
RPC binding handles that represent addresses of RPC
servers.

The Cell Directoly Service (CDS) supports distributed
name management. It is the base for RPC binding and its
functionality is integrated into the DCE RPC programming
interface via NSI (Name Service Interface). As mentioned
above, it provides a robust and efficient directory service
implementation for DCE cells, i.e. for domains consisting
of logically related network nodes. CDS exploits
replication and caching for achieving this functionality. An

114

advanced CDS programming interface is offered by the
standardizedXlOpen Directory Service Interface.

The Securiiy Service implements authentication,
authorization, and encryption. These mechanisms are tighly
integrated with DCE RPC; f6r example, RPc clients and
servers can be mutually authenticated, servers can perform
ACL-based access control, and all RPC messages can be
encrypted on demand.

Finally, the Distributed Time Service (DTS) implements
distributed clock synchronization, a common problem in
distributed environments. It guarantees that local clocks of
participating nodes are synchronized within a given
interval. Moreover, synchronization with exact extemal
time sources (e.g. with radio clocks) is supported. This
functionality is important for implementing timestamp-
based distributed algorithms; it is directly exploited by
other DCE components, for example by timestamp-based
name update synchronization.

Other DCE services. The Gfobal Directov Service (GDS)
extends CDS by global, cross-cell naming. It is based on
the X.500 directory service standard. Thedore, it enables
interoperability not only with other DCE directory servers
but also with other arbitrary X.500 servers worldwide. As
an alternative, the Internet Dghain Name Service (DNS)
can also be used for cross-cell naming.

The Distributed Fife System (DFS) implements cell-
wide transparent distributed file management. Files can be
stored at different servers and can also be replicated.
Clients, i.e. application programs, can access files by
location-transparent names as in a local Unix file system.
File access quite efficient based on whole-file caching at
the client site. This technique also supports scalability by
ofRoading work from file servers to clients during file
access. Interoperability with the widely used Nehvork File
System is enabled via an NFSIDFS interface. DFS is
augmented with a Disk lm Support component; it provides
boot, swap, and file services for diskless workstations; this
way, they can be integrated into a DCE environment.

Finally, the PC Integration provides access to DCE
services from personal computers. In particular, print
service access, file system access, and RPC communication
is supported by this component.

In summary, DCE provides very rich and integrated
functionality for distributed and cooperative applications.
Moreover, DCE supports heterogeneous systems
interoperability and is offered in product quality. DCE can
simplify distributed programming significantly already
today. However, several extensions of DCE seem to be
desirable in the near future. Extensions towards distribute
object management have been motivated in section 1 and
are the subject of the rest of this paper. Other desirable
extensions are integrated distributed transaction support,
advanced communication protocols such as atomic
broadcast, and integration with other emerging standards.

2.2. DC++ architecture and basic concepts

DC+t uses fundamental DCE services, namely threads,

DC++: distributed object-oriented system support on top of OSF DCE

RPC and CDS. The time service is also operating in our
environment but is only exploited internally, especially by
CDS timestamps for name entries. The other services can
be integrated with our approach in the future. Figure 2
shows the extended architecture of DC++ based on a
simple example configuration.

On each node, a DCE RPC demon is installed and
serves RF'C invocations. Moreover, threads are used for
handling concurrent invocation requests and can be
exploited by the application with object-oriented class
capsules. Distributed objects are allocated at various nodes
and have local and remote interobject references. A remote
reference is implemented by a proxy indirection; a proxy
contains a location hint for the referenced object and
transparently forwards invocations based on DCE WC.
Each node maintains a hash table for mapping the global
object identifiers within incoming invocations onto actual
storage addresses of CU objects.

One or more DCE CDS servers are also part of the
environment. They store proxies for objects that have been
registered by a logical name. This way, peer objects can
acquire a proxy for a remote object by handing its name to
CDS. Possible replication of CDS is made transparent by
DCE.

2.3. Proxy management and object access

A proxy is installed whenever a node l e m s about the
existence of a remote object. This is the case when a
reference to a remote object is passed as a parameter of an
invocation. In addition. when an object moves and has
references to remote objects, proxies must be installed at
the destination node for each reference. Moreover, a
moving object leaves a proxy at its former location. This
results in forwarding chains of proxies that are followed
when an object is invoked. The location information within
the whole chain is updated upon stepwise return of the call.
This way, forwarding chains will usually have a length of
only one hopassuming that invocations are more
frequent than migrations.

The alternative of immediately updating all remote
proxies whenever an object moves would improve

invocation performance of mobile objects and is found in
some disaibuted Smalltalk implementations (see [DECBfj],
for example). However, it bas two major problems: (1)
migrations are more expensive, and the approach is not
scalable since migration costs increase significantly in large
systems; (2) each object would have to maintain backward
references to all proxies; this requires significant storage
space and leads to orphaned references in case of node
failures.

As a trade-off between a pure forward addressing
technique and an immediate proxy update approach, we
integrated an additional technique: objects register their
current location at their 'birthnode', i.e. at the node where
they were created. That is, after having performed a
migation, an RPC is sent to the birthnode containing the
new location. From each proxy, the birthnode's address can
be derived by explicitly registering the node identifier with
each proxy. Therefore, an object can be located by either
following the forwarding chain or by querying the
birthnode. The first option is used in the fault-free case.
However, if a forwarding chain is broken by a failed
intermediate node, the birthnode is queried for an object's
location. In the normal case, forward addressing is more
efficient-it requires one W C if the location information is
up-to-date, while the birthnode option would require at
least two WCs for locating the object at a third-party node.

Example. Figure 3 shows an example of a dynamic object
management scenario with four functional steps. The boxes
represent network nodes, and the arrows between them
show references to a given mobile object, say 0, based on
proxies and birthnode addressing. The figure represents the
status of the references at the end of each step. It is
assumed that 0 was created at NI. It then moved to N2,
N3. N4. and finally N5 in step 1. The biaknode, NI,
maintains a direct reference to the object's location while
the other nodes use proxy-based forwarding addresses. In
step 2. the object has been invoked from a caller at node
N2. It is located by following the proxy chain. Thereafter,
the whole chain is updated and now all proxies contain the
correct location of 0. The object is then moved from N5 to
N2 in step 3. A forwarding address is installed at N5. and

Figure 2. DC++ architecture.

115

A B Schill and M U Mock

Figure 3. Example of the forwarding chain update mechanism.

the birthnode N1 is informed about the new location-
therefore, N1 is able to update its location information as
shown in the figure. Finally, 0 has been invoked from.N4
by locating it via the forwarding address, i.e. via N5. The
resulting proxy update of N4 after the rem of the call is
given in the figure.

As an additional extension, the obligations of an
object’s birthnode can be transferred dynamically and
explicitly to an alternative node; this node is then called
guardian node of an object. For example, when an object
permanently moves into a different network domain or,
more general, into a different organizational area such as a
foreign DCE cell, it might perhaps hardly ever retum to its
birthnode. By transferring responsibility for the object to a
different guardian node, unnecessary dependencies
concerning the former birthnode in a remote cell are
avoided. For example, a network failure between the
corresponding cells will not leave the object unlocatable
any more. Moreover, inefficient wide are network access to
a distant birthnode can be avoided this way.

2.4. Object mobility

Object migrations are requested by the application by
calling an automatically generated method of an object.
Basically, a migration consists of the following intemal
operations (see figure 4 for an example of moving an object
01 from node 1 to node 2). (1) First, the object to be
moved is locked by a semaphore. This is required for

p,,,de 1 (7) dclcLc

Figure 4. Object migration.

116

synchronization with ongoing invocation requests. (2) Then
the object is replaced by a proxy at the source node and
unlocked; however, the object data is still kept for failure
recovery. (3) Next, an RPC installation operation is
invoked remotely at the destination node, passing the
object’s data as an RPC parameter. All object data
structures are defined in IDL so that marshalling and
unmarshalling can be done completely by DCE RPC. (4)
The destination node installs the object and inserts its
identifier into its hash table. If thm has been a proxy
before, it is replaced by the object. (5) Upon receiving the
reply of the remote installation WC, (6) the source node of
the migration informs the birthnode about the new location.
(7) Finally, the original object data is deleted at the source
node. As a prerequisite, we assume that the moving
object’s class is available at the destination node based on
class replication.

This approach has some interesting characteristics:
although migrations and invocations are synchronized by
semaphores, locks are not held at the source node until the
migration has fully completed. This is not necessary as the
s o m e node can immediately forward invocations when the
proxy has been installed. The birthnode is informed only
when a migration is completed so that it does not receive
incorrect information if a migration fails. If an object
should be located via the birthnode in the meantime, the
operation would still work the birthnode would direct the
invocation to the former location of the object which then
already has a proxy pointing to the new destination.

Migration requests can also go to remote objects. In this
case, the request is forwarded like a usual method
invocation until it reaches the destination node. Then the
mipt ion is performed as discussed above.

Instead of specifying an absolute destination, a relative
migration method is also supported. It takes a peer object as
a relative destination specification, locates the given object
as discussed above, and then performs the regular
migration to the found location.

Migration with heterogeneous class structures. A special
problem is object mobility in applications with
heterogeneous class srmctures, i.e. in environments where
implementations of a given class differ at various nodes or

DC++: distributed objed-oriented system support on top of OSF DCE

where specific classes are not available at all nodes. This is
also an important issue in practice as ir is not possible to
replicate all classes everywhere for large applications.

Our current prototype allows a first, simple solution to
this problem: classes need not be totally replicated
throughout the system, but object mobility is affected by
such limited class replication. In particular, an object can
only be moved to a location where its class and all classes
required by associated object references are present. Based
on a careful application design, functional domains with
selected subsets of classes can be configured, whereby
different subsets may share a small number of common
classes in order to interact As argued later, dynamic class
installation at new locations would improve this approach
with enhanced flexibility. However, as it requires dynamic
code installation and imposes specific problems at the
operating system level, we did not provide such a feature
yet.

The coexistence, of different implementations of a
given class is difficult to support in the context of C++ due
to the limited separation of class definition and
implementation. Based on language modifications and
significant compiler extensions, such functionality could
be provided, but was not part of our work up to now. We
plan to focus on this problem within future research efforts
in a wider context, considering distributed versions of
object classes. Such versions may evolve dynamically
based on the lifecycle of objects. An overall solution will
be required to convert mobile objects between versions of
limited compatibility, to control distribution of versions.
and to manage version updates in the context of existing
object instances.

2.5. Class structure

The described functionality is offered by a set of classes
shown in figure 5 together with the most important
relationships with application and system components. The
Object-Reference implements all required data and basic
functionality for remote object access and object migration.
For each application class with distributed instances, an
auxiliary wrapper class is required. This class
(4Vrupper-Clas- in the figure) is derived from
Object-Reference. It mainly implements the proxies with
code to distinguish between local and remote invocations.
However, an instance of a wrapper class is also present for
each local object as an extemal capsule. The wrapper class

offers the required code to migrate objects with
application-specific data structures, too. In the case of
remote invocations and migrations. it makes direct use of
DCE RF'C as indicated in the figure. Most importantly, this
class can be generated automatically based on an interface
description as described below.

The actual implementation of each application class,
denoted 4pplication_Cluss> in the figure, is identical with
a regular class implementation as found in a corresponding
non-distributed application. Each auxiliary object of a
wrapper class has a local reference to the associated object
of the application class. As the application classes shall
remain unaffected by the aspect that they will be
distributed, they are not derived from a common
superclass. Instead. all required distribution functionality is
provided by the wrapper classes.

Network nodes are also represented by objects, for
exampre to specify destination locations of migrations. The
derived class Node offers the corresponding functionality.
In particular, each object of class node contains the
required address information as a DCE RPC binding
handle. An application only uses objects of class Node and
of wrapper classes directly. Several other auxiliary classes
are part of the system, namely classes for threads,
semaphores, hash tables. and directory service name
,entries.

The concrete structure, use, and automatic generation of
these classes are described below.

3. Implementation

The implementation was done on a network of
DECStations 5000 and 5240 under Ultrix 4.2, using AT&T
C++ 2.1 and DEC's C++ compiler, named cxx. Our DCE
prototype has been provided by DEC (version 1.0). Basic
transport-level communication is performed by TCP/IP,
UDPnP or DECnet on an Ethernet. The actual
communication protocol can be selected at RPC
initialization time. For implementing the stub generation.
the Unix tools awk and sed have been used; the reasons for
this choice were mainly pragmatic as we did not have the
resources for implementing a complete compiler from
scratch. The non-standard language extensions on which
the interface definition and stub generation is based are also
a consequence of this choice. For a product-level solution,
the direct use of C++-style interface definitions would of

Figure 5. Class/module structure.

117

A B Schill and M U Mock

course be recommended. Actually, this also represents a
future direction of our work. However, with our simplified
approach, C t t parsing would not have been possible.

The following subsections describe our
implementation. We first discuss the system classes
provided by our approach and then show how auxiliary
application classes are generated. Then, performance and
experiences are discussed, after presenting an example
application.

3.1. System classes

Object-Reference. Much of the functionality of^ our
approach is given by class Object-Reference. It has the
following (simplified) smc'ture:

upon return of a remote invocation. The relative migration
method is application-independent as it only calls the
absolute migration method after having located the object.
However, the absolute migration method that performs the
physical migration must be provided by the application-
specific subclass and is therefore virtual. The method to
locate an object is implemented differently by application
objects and nodes and is therefore also virtual.

Node. An object of class Node is created locally for each
node that is known by a given peer node, including itself. It
provides the required information to invoke an W C at a
suspected object location. This includes a unique identifier
for the node, and a corresponding RPC binding
handle.class Node : public Object-Reference {

class Object-Reference { private:
private: uuid-t loc-id; I/ id from binding handle

wid-t object-id; /I object UUID rpc-binding-handle-t binding-handle; I/ DCE
char *object-name; 11 object name . binding handle
Node 'suspected-loc; I/ suspected (NOT public: Node (char'); 11 nodes defined by application

necessarily current) location -Node 0; I/ destructor
Node 'creating-node; /I creating node of Location* locate 0: I/ return susDected loc

object

objects and nodes

migrated objects and location hint evaluation
-Object-Reference 0; /I destructor

pthread-mutex-t mutex; I/ semaphore

Object-Reference (RPC-ObiRef'); /I used for

void lock(); I/ locksemaphore
void unlock(); 11 unlock semaphore
wid-t get-oid 0; I/ return id
char* get-name 0; /I return name
Node* get-cre-loc 0; /I return birthnode
Node* get-sus-loc 0; 11 return location hint
void update (Location *loc); 11 update location

wblic: Object-Reference (char*); /I used for application

hint

int migrate (Object-Reference'); /I relative"
migration

virtual int migrate (Node'); 11 absolute
migration

virtual Location' locate 0; /I locate objects
1;

Objects of this class contain a DCE UUID to identify them
(object-id). It is generated by the constructor using a DCE
system function. They also have an optional name
(object-name) that is registered with CDS. The location
hint of proxies and the birthnode of the corresponding
object are stored in separate instance variables,
suspected-loc and creating-node, respectively. In
principle, it would be. possible to derive the birthnode from
the object Urm, (the node address would be part of the
UUID to make it globally unique); however, this did not
work with the given DCE implementation. The semaphore
for synchronizing invocations and migrations is also p"T of
Object-Reference.

Most of the methods are pretty straightforward. It may
be worthwhile to note that the second contructor is used to
install proxies when a new object reference is passed to a
given node. The required address information is provided
via a parameter of type RPC-Obj-Ref that contains the
internal RPC address information for an object's location.
The update method is called when a proxy chain is updated

118

., .
' from base

void Shutdown 0: lIstoD RPC listener
uuid-t get-id 0; //get nodeid
rpc-binding-handle-t get-bh (); I/ get binding

handle
1;

The constructor of this class creates a representative for
foreign nodes if a node name is given. In this case, a CDS
inquiry is performed for importing the required binding
handle and identifier information (ushg the CDS interface
operations rpc_ns_bindingimportbegin , . . ._ next , . .
done). Otherwise, the representative for the local node is
generated. In this case, the constructor exports the local
binding information to CDS (using rpc-ns-binding-export)
so that other nodes can import it. The locate method just
returns the suspected location of the superclass component
as nodes never move. In addition to basic access operations
for instance variables for internal use, a method to shut
down the RPC server of a node is provided. It is useful for
remote housekeeping within an application. It is
implemented by calling a remote DCE RPC management
function at the actual location. Note that all other methods
can be implemented locally-except the interaction with
CDS within the constructors. The implementation of the
other application classes, namely of the threads and hash
tables are relatively straightforward and they are therefore
not described in closer detail.

3.2. Application classes

Class structure. The actual implementation of the 'real'
application classes is similar to ordinary C t t . However,
the auxiliary application classes, i.e. the capsule classes
around the real classes, are generated automatically. They
basically have the following class structure (of the wrapper
class gen&) for an application class <A>:

class gen<A> : public Object-Reference

DCtt: distributed object-oriented system support on top of OSF DCE

private: gen<A> @char*); I/ internal constructor for proxies

object

within manager after migration

hint evaluation

public: <A> *obj>tr; I/ pointer to application

gen<A> (<A>-data*, RPC-Obj-Ref); /I used

gen<A> (RPC-ObiRef'); 11 used within location

-gen<A> (); /I destructor
int migrate (Node'); I/ absolute migration
static gen<A>* get-ref-by-name (char*); I/ get

I/ for all application-specific constructors:
gencA> :: gen<A> (. . .It>, Object-Reference *or

I/ for all application-specific methods:
cresult-type> gen<A>::<method-name> (. . . ,

reference to existing object

= here, char' name = ""); I/ regular application-specific
constructor

Object-Reference *or = NULL, RPC-call-data *cd = NULL);

Each object has an internal pointer to the actual object data
of class & (obj>tr). This pointer is dereferenced for all
local invocations, passing them to the real object. Two
internal constructors are used for installing objects after a
migration and for generating proxies, respectively.
<A>-data* is a pointer to the data structure of the
application class, however given in C instead of C++ for
conformance with DCEs IDL. The implementation of the
migrate method also accesses this data structure definition
in order to perform the remote object installation by an
WC.

Moreover, a method is offered to retrieve an object
reference by name. This is possible for all objects that have
been registered with CDS when they were created. The
method performs a remote rpc-ns-binding-import at a
CDS server in order to retrieve the required binding
information for the object. However, this operation is rather
heavyweight due to relatively limited CDS performance.
Therefore. it should only be used for selected objects that
are part of the coarse-grained configuration of an
application. References to other objects are learned by
remote nodes via parameter passing by object reference.

Each application-specific constructor is extended by an
optional initial location parameter, defaulted to the local
node. This way, object creation at a remote node can be
performed. A second optional parameter is used for
specifying an object name to be exported to CDS, matching
the import operation discussed before.

All application-specific methods also get additional
parameters. The first one specifies an optional location
where an invocation shall be performed. Usually, it is not
used as we pursue the goal of location independent
invocation. In this case. the object is located at its current
location and the call is performed there. Otherwise, the
object is actually moved to the given location before
invoking it. This option is useful for distributing parallel
computations to different nodes, for example. The second
additional parameter is important for updating proxy
chains. When an RF'C returns. it carries the actual location
of the invoked object and is evaluated by each
intermediate node until the call is returned to the calling
object.

Automatic generation. Obviously, the template feature of

C++ is not sufficient for generating the described code
automatically. Therefore, we had to implement our own
stub generation facility.

However,. we did not have the resources to write a full
parser and backend for general C++ or C. Therefore, our
idea was to specify an interface definition notation similar
to IDL, however, with some limitations in order to make it
easily parseable (see below). Based on this notation, we
implemented a simple parser using the Unix tool awk. This
process generates sed command files that replace the
required variables within predefined class templates as
shown above. For example, the application class name, but
also the application-specific parameters are replaced this
way. Moreover, for all required method implementations,
similar template's are provided.

Implementation templates. As an example for the method
implementation templates; here is the template code for an
ar,bitrary application method invocation (<A> is the
application class, gen<A> the wrapper class, <M> is the
method name, and <p> are the parameters):

Ill/////l/llllll/Ill/lllll method of class gen<A>
Il//l/l/l//lll/l/lIl/ ll method call within application
void gen<A> :: <M> (<P> Object-Reference *or,

RPC-call-data *cd) [
error-status-t st; I/ status

string str-Ioc; I/ location as string
Location 'sus-loc, 'loc-from-cre; I/

suspected location, location received from creating node
int mig-result; /I status of migration
idl-boolean called-from-manager; I/ whether

called from internal RPC manager (within proxy chain)
if (or) mig-result = this->Migrate (or); I/ check if

object is to migrate first
if (cd) called-from-manager = Otrue; I/ keep

caller in mind else called-from-manager =false;

lock (); I/ lock call semaphore
if (objgtr) [/I object is local

>get-sb 0); I/ tell manager who I am

~ objjtr-><M> (<P>); /I perform local
invocation

if (called-from-manager) {
strcpy ((char*)cd->node, (char*)my-loc-

I

unlock (); /I free semaphore
else (
sus-loc = get-sus-loc(); I/ remote call fi get

I
SUSDeCted location

unlock (); ll free semaphore
CREATE HINT DATA I/ macro to oack location - -

hint data

application so create data block
if (!called-from-manager) [I/ being called from

cd = (RPC-call-data*)(new RPC-data (this));
1

gen&>-<M> (sus-IocEget-bh (), cd, <P> &st);
if (st != rpc-s-ok I] *(cd->status) != OK) { /I check

if (get-cre-loc() == my-loc 1 1
errors

get:cre-loc() == sus-loc) [

node" << endl;
c e r r << "no sense to ask creating

exit (1);
] /I try creating node:

119

A B Sdill and M U Mock

get-loc-by-id (get-cre-loc OEget-bh 0,
‘Icd->oidL

cd<ms>status, str-loc, &st);
if (st I= rpc-s-ok 11 ‘(cdEstatus) I= OK)

exit (1);
loc-from-cre =

if (loc-from-cre == sus-loc) { 11 see if
Location::get-loc-by-string (str-loc);

there’s a chance left
cerr << “creating node has no better

info” << endl;
exit (1);

1
lock ();
update (loc-from-cre); 11 update info
unlock 0;

gen<A>-<M> (loc-from-creEget-bh (),

if (st != rpc-s-ok 11 *(cdEstatus) I= OK)
cd, <P> &st); //last chance

exit (1);
I
update (cd); 11 update with node where call

REALLY was made
DELETE-HINT-DATA I/ delete data from remote

Pll l
if (!called-from-manager) {

11 being called from application
11 so delete data block previously created
delete ((RPC-data*)(cd));
1
I

I I
The actual implementation performs some parameter
modifications of & before filling the template variables
withiin the body of the method, for example to manage
proxy installation for object reference parameters. The
method itself first checks whether the object should be
migrated in order to perform the call at a specific location.
Then it is checked whether the call is from an RPC
manager, i.e. a recursive call within the processing of a
proxy chain. Otherwise, the call comes directly from the
application. There are slight differences in handling the
address information in both cases.

Now the method can check if the call is local; in this
case, the local representation of the class is invoked by the
corresponding local method. Otherwise, an RPC is
performed at the suspected location The RPC invokes a C
function with the same name as the method. At the
destination node, this function eventually invokes the given
method recursively. If it was the first invocation (directly
from the application), the internal RPC call data must be
initialized, too. If the remote invocation fails (indicated by a
bad retum status), the guardian node (which may be the
birthnode that is also called creating node) is queried for the
object’s location. An altemative invocation attempt only
makes sense if the returned location information is different
from the existing hint and from the local node. Finally, after
the call has returned, the proxy information is updated.

Similar templates have been implemented for methods
that return a r result type, for consmctors, and for all
auxiliary methods related to migration.

3.3. Example application

As a testbed for our system we implemented a small

120

application, modelling an office scenario, see figure 6.
A ‘head hunter’ creates a number of customers and for

each customer a form is created that has to be filled out.
After initializing and filling in some basic data such as the
customer name the head hunter is done. The form filler
periodically checks the forms’ state and as soon as they are
available for further processing it requests them being
migrated to its own node and fills in more data. Likewise
the ‘rate computer’ periodically checks whether the form
filler is done, as soon as the form is in state ‘form-filled-in’
it requests a migration to its own node. Then it computes
the rates for the customers (we model insurance policies
being filled out). Finally the filled-in policies are migrated
to the ‘policy sender’ upon request by the policy sender.
Various migrations are involved in this scenario. Moreover,
the form filler, rate computer and policy sender access the
forms remotely to find out in which state they are.
Therefore the application also makes use of remote method
invocations.

To illustrate the development of an application with
DCt+ we will now go through the steps necessary for
developing an application. As a running example we will
use that office scenario example application.

To develop an application one has to go through the
following steps:

write the application classes
write a corresponding IDL-description
write a corresponding DC++ description

After those steps, the migration code is generated by
running the DC++ stub generator and the IDLcompiler.
Finally, the C++ compiler and linker are used to create the
application code.

For illustration we will show an excerpt of the class
headers of the application classes. The insurance form
class, called OrigInsurance-Form looks as follows:

class Origlnsurance-Form { wid-t customer-id;
State-Of-Form status;
idl-long-int ratejer-month;
idl-long-int age;
idl-long-int volume;

public: Origlnsurance-Form () { status = NOTHING-DONE
1

-0riglnsurance-Form () (1
idl-long-int get-rate () [return

void fill-in (idl-long-int, Customer.);
void compute-rate ();
void sendgolicy (Customer*);
Stateof-Form get-status () { return

rateger-month;]

status; }
1;

An excerpt of the corresponding IDL description file
follows:

void Origlnsurance-Form-Migrate ([in] handle-t bh,
[in] wid-t oid,
[out,rei] error-status-t ‘status,
[instring] char ‘loc

[in,out] RPC-call-data *data,

);
void OriglnsuranceForm-fill-in ([in] handle-t bh,

DC++: distributed object-oriented system support on top of OSF DCE

'hcad huntu" 'lam mer' 'palicy scndu"

Figure 6. Example application

[in] long v, I* desired insurance volume *I
[in] RPC-Obj-Ref r I* reference to customer *I

);

In OrigInsurance-Form-Migrate the application pro-
grammer must describe the object's data to enable
parameter marshalling for migration. Apart from that.
each method of the class has to be represented in the IDL
interface description. shown here only for the method
'fill-in'.

The corresponding section in the DC++ description file
has the following outlook

Orig lnsurance-Form:lnsurance-Form

idl-long-int :get-rate :
void :fill-in :idl-long-int
vol,Customer* cust
void :compute-rate :
void :sendgolicy :Customer* cust
State-Of-Form :get-status :

From that description a new class will be generated?:

ClaSS Insurance-Form : public Object-Reference {
llllllllllllll parameter INdependent members llllllllllllllll

private: Insurance-Form (char*);
public: Origlnsurance-Form 'objgtr;

Insurance-Form (Origlnsurance-Form-data',

Insurance-Form (RPC-ObiRef*);
-Insurance-Form ();
static Insurance-Form* get-ref-by-name

:Origlnsurance-
Form-data

RPC-Obj-Ref');

lchnr*I:
I ,

static Insurance-Form' loc-hint-eval

int migrate (Location*);
(RPC-Obj-Ref);

llllllll~llll parameter dependent members

Insurance-Form (Object-Reference *or=here,
llllllllllllllll

char* name=""):
idl-long-int get-rate (Object-Reference

void fill-in (idl-long-int vo1,Customer' cust,
*or=NULL, RPC-call-data *cd=NULL);

ObjectLReference 'or=NULL, RPCLcallLdata
*GI=NULL);

void compute-rate (Object-Reference

void sendgolicy (Customer* cust,

State-Of-Form get-status (Object-Reference

'or=NULL, RPC-call-data 'cd=NULL);

Object-Reference *or=NULL, RPC-call-data

*or=NULL, RPC-call-data 'cd=NULL);

*cd=NULL);

1;
T In this case named Insurance-Form, The names of the generated classes
can be customized in the description file.

Looking at the method fili-in in the generated class, one
might note that it now has two more parameters. or of type
Object-Reference and cd of type RPC:call-data. Or holds
the reference to the RPC server to be contacted whereas cd
is used to identify the object to be called. The data structure
RPC-call-data looks like this:

typedef struct [uuid-t *oid; error-status-t 'status; string
node; } RPC-call-data;

Oid is used to identify the object to be called, status is used
to return an error status and node holds the string binding
of the node where the method was actually executed. When
the RF'C call returns, this information is used to update the
location hints of the nodes that were part of the fomardmg
chain. Since cd is only passed as a pointer, the
RPC-call-data data structure can be easily changed
without affecting the rest of the implementation. It is
possible, for instance, to add a timestamp in order to make
updates of location hints only when the reNmed location
hint is not older than one that has been previously obtained.

As opposed to a conventional WC-based
implementation of the example. the outlined solution
provides a number of benefits. First, the office procedure
can be represented by a first class object itself. This allows
for locating the object, for performing remote StaNS
queries, and for explicitly controlling execution by remote
management commands. With a conventional client/server
implementation, additional and complex functionality
would have to be realized on top of RF'C. Moreover,
attached data objects can also move between processing
sites on demand; they are also modelled as mobile objects.
Alternatively, they can be accessed remotely, for example
if migration of a large object is prohibitively expensive.
Finally, the tight integration with C++ facilitated the
overall implementation of the scenario from the software
engineering point of view.

3.4. Performance and experiences

In this section we want to look at the performance of the
system. Moreover, we will discuss the general experiences
gained by designing and implementing DC++.

Performance. To gather performance data of our DC*
system we chose to time migration withii our sample
application. For that purpose we used different amounts of
data within the form that is filled out and migrated in the
application; the results are shown in figure 7. First, we
timed the migration of the form containing only system

121

A B Schill and M U Mock

time Ims] Empty 100 bytes
Millimum i 6 16

M:Lximom 176 254
Medi;in 31 51

1000 bytes 10000 bytes
16 59

176 513
15 82

relevant data that is inherited by each appliation class such
as the object's ID. Then we increased the additional user
data from 100 bytes to 1000 bytes and finally 10000 bytes.
All reported times we in milliseconds and shortest, longest
and median time to complete the migration are shown. The
measurements were made on lightly loaded DEC 5000
stations connected by an Ethernet. The communication
protocol chosen to be used for RPC was UDP.

The figures show that the overhead incurred by DC+t
is neghgible. In previous measurements in the same
environment we had measured about 6 ms for a raw empty
RPC call. Moreover, the figures show that the migration
time is not very sensitive to the amount of data being
transfered. This, however, must be attributed to the tested
data sizes-wbich all fit into a UDP packet-and the type
of data used (arrays) which allows the IDL-compiler an
efficient and fast encoding and decoding. A median time of
35 ms for the migration of an object containing about 1000
bytes makes DC++ suited for use in real applications.

Experiences. Based on our implementation and on the
example application, we gathered a number of important
experiences:

0 Object model. The object model seems to be more suited
for distributed programming than the traditional
client/server approach. Within our application (and within
former projects), we observed that a uniform object model
facilitates application design. Location independent
invocation based on globally unique object identifiers
makes distribution transparent to a large degree-except
the problem of failure handling, of course. Remote object
reference passing contributes to this fact as it is a natural
passing mechanism in local applications, too.
0 Object mobility. Mobility is a beneficial feature of
distributed object-oriented approaches. It allows for
modelling physical data transfer (such as document
shipping) at a very high level of abstraction. Moreover, it
provides explicit control of distribution when an
application requires it (e.g. to co-locate communicating
objects).
0 Use of RPC. In spite of our criticism of RPC, this
mechanism has proven to be a workable base for
implementing such a distributed object management
facility. Based on the one-to-one mapping of method
invocations onto application-specific RPCs, most of the
parameter marshalling problems were just passed down to
the RPC level; this facilitated our implementation
significantly. Moreover, the recursive implementation of
the algorithm to locate objects based on RF'C has proven
quite elegant and easy to test and maintain. It would be
more efficient to send results back to the caller via a direct

122

message from the callee, but this slight disadvantage is
outweighed by the chance of updating all intermediate
location information.

Use of standards. The use of DCE as an industry
standard also had many advantages. As opposed to ad hoc
mechanisms, the environment was rather stable. Moreover,
we did not have to deal with heterogeneity problems; they
are hidden by the RPC protocol. Finally, the high
portability of applications based on a standardized platform
is an important advantage in open systems.

Use of system services. The use of system services as
offered by DCE made a rapid implementation possible. In
particular, we exploited CDS for node and object
management and threads for concurrency support-in
addition to RPC, of course.

Interface definition. Our interface definition and stub
generation approach is only an intermediate solution. Its
capabilities regarding the language syntax are limited.
Moreover, a partially redundant specification must be
given. Therefore, a major goal of our future work is a full
C++-based interface definition and stub generation
facility. The templates defined for our stub compiler can
be reused for such a solution: An eventual goal might of
course be the integration of all mechanisms into DCE
itself.

3.5. Limitations

Although we think that our current system is already usable
for application development, it still has its shortcomings.

Most notably there are currently two description files
the user has to write: the IDL-description to be used by
the IDL-compiler and the DC++ description file that is
used to generate support code for migration and remote
access. However, this is not a design limitation, since it is
possible to generate the DC++ description file from an
augmented IDL-description. Work is in progress to
enhance the IDL-description (by defining so-called ACF-
attributes) to allow the description of C++ class
interfaces. From such a description the DC++ description
file could be generated automatically, maybe even by the
IDL-compiler itself. This would render the need for
writing a second (redundant) description unnecessary,
which-apart from being a nuisanc-also introduces the
possibility of errors.

Another limitation of the system related to the IDL
description restricts the range of data types that can be used
in migratable objects. Since the IDL-description must
conform with the corresponding C++ classes it it currently
impossible to support class hierarchies with virtual data
member functions.

As noted above, only object instances are mobile;

DC++: distributed object-oriented system support on top of OSF DCE

object classes, especially their implementation part, cannot
be transferred between nodes in our prototype. Such
functionality would require dynamic code linking into the
destination’s address space. Moreover, it would of course
be limited to relatively homogeneous, binary-compatible
systems.

Finally, although IDL allows complex data types such
as linked lists it is currently impossible to migrate them.
The reason is that the RPC runtime system allocates some
parameters of a W C on the server’s stack and deallocates
them once the call has completed. This is desired behaviour
for RPC and for a remote method invocation as well,
however, when sending object data to another node to
install the object there, i.e. when a migration is being
performed, the data on the (RPC) server’s side must persist.
For simple flat data types DC++ can simply do the
allocation itself, when more complex (user-defined) data
structures are involved, though, it would be necessary to
have access to the IDL-description to take appropriate
action. A possible solution would be to allow an attribute
for an RPC call specifying that parameter data have to
persist after the call completes thus enabling migration.
How to do this exactly is another topic being investigated.

Many of these problems can of course also be attributed
to the very nature of distributed systems-basically, it is
hard to implement functionality found in local systems via
the network transparently. Our own experiences have
shown that important basic functionality-such as location
independent object invocation-zm be achieved based on a
significant implementation effort. On the other hand, we
also believe that it does not make sense to provide virtually
all ‘local’ functionality remotely at any price in terms of
implementation effort.

4. Related approaches

Several other distributed object-oriented prototype systems
have been implemented a survey is given in [CHC91]. For
example, distributed C++ extensions have been
implemented by the Amber system [CAL89]. the Amodeus
system [HOC911 within the European ESPRIT project
COMANDOS, the Arjuna system [SDP91], Electra
[MAF92], Peace [SCP92], and Panda [ABB93]. A similar
approach has been the base of the ANSA project [ANS89],
leading to the ANSAware system.

Amadeus offers a general distributed C++
implementation but required many compiler modifications
as reported by the authors. The Amber system integrates
local multiprocessor parallelism with distributed
programming. These facilities are achieved by the use of a
dedicated kemel named Topaz. The Arjuna approach
focuses on distributed transaction support for objects but
does not provide object mobility. Electra offers remote
method invocation by defining its own interface description
language (Snoopy). For migation, however; the user has to
write dump and undump methods to pack the object’s data.
The Peace system is based on the specialized operating
system kemel with the same name. It is among the most

far-reaching approaches with full stub compiler support,
mobility, and altemative implementations on a
multiprocessor and on a distributed system. The Panda
system implements distributed object management based
on distributed shared memory at the object level; remote
objects are fetched for invocations based on a kernel-level
access fault. This makes sophisticated performance
possible but requires kemel modifications.

Implementations of distributed object-oriented systems
based on different or new languages are Emerald [BW87],
Disrribured Smalltalk [BEN87], and LII [BLA90]. They
have introduced the major concepts and have shown that
they can be implemented efficiently. However, due to the
specialized languages, these and other systems have been
limited to a dedicated domain of users.

Finally, we would also like to note the stankdization
effort of the Object Management Group (OMG) [OMG92],
especially concerning the Common Object Request Broker
(CORBA) [OMG91]. This ambitious work aims at
providing a global distributeUpersistent object management
framework, including DCE technology, language bindings,
but also services from other areas like databases. CORBA
itself enables remote object invocations, offering a C++
language binding. However, it does not support object
mobility. The other parts of OMG’s proposed architecture
are still within early stages of design or development.

Our work has emerged in parallel with some of these
projects but focuses on rather different goals, namely on
the ease of system implementation at the user level, on the
use of existing, unmodified compiler and communication
facilities, and-more recently-on the integration with
standards. The resulting integration with DCE at the
implementation level mainly distinguishes our approach
from other systems. This integration provides benefits for
the application programmer: heterogeneity of network
nodes and protocols is handled transparently, applications
are highly portable, and the underlying environment is
rather stable. Moreover, many benefits for our
implementation work resulted, too. Most importantly, we
did not have to write low-level communicatio code, e.g. to
access sockets; this task had tumed out to be quite time-
consuming within our former implementation. Another
benefit was the existence of supplemental services such as
tbreads and CDS. This way, concurrency support and
object name management required just a few lines of code
rather than a full thread package or directory server
implementation. The achieved performance is fully
acceptable within our cooperation project with DEC. It can
definitely be improved by some implementation
optimizations, but it will not reach the limits of microkemel
implementations like Amoeba [TKR91], of course. This is
the price to pay for the use of standards-but within our
context of work, it seems to be worth paying it.

5. Conclusion

This paper described the design and implementation of a
distributed object-oriented extension of the OSF

123

A B Schill and M U Mock

Distributed Computing Environment. The major features of
the approach. location independent object invocation and
object mobility, have proven very useful for application
development. Moreover, the use of DCE as a standard has
provided significant implementation benefits.

"he described implementation grew out of experiences
with an earlier system that attempted to provide the same
functionality. However, we implemented this former
prototype directly on top of T C P p [SCM93] without DCE
support. Our experiences compared to DC++ can be
summarized as follows: first, it was much harder to provide
basic system functionality for naming, object addressing and
multithreading. With DC++, it became obvious that
standardized system support for such problems-such as
provided by the DCE services-is a crucial prerequisite for a
rapid yet stable implementation. Secondly, remote method
invocations could not he offered in a lransparent way as
supported by DC+the application programmer had to
provide code for encodmg and decoding the parameters.
With DC++, much of this task can be left to the IDL
compiler and stub generator. Moreover, interobject
communication was only possible in homogeneous systems
due to data representation mismatch problems. With DC++,
DCE performs transparent data transformations based on its
'receiver makes right' scheme [OSF92c]. Finally, our former
implementation did not achieve a satisfying performance due
to the use of an intermediate 'message distributor' process
per physical node. With DCE RF'C, interprocess
communication is direct as soon as a full binding handle for
a peer server is available. This contributes to the acceptable
performance numbers outlined above.

Future work will address an even tighter integration
with DCE. especially concerning the interface definition
language. Jointly with a development group withim DEC,
our project group wiU work on object-oriented, Ctt-based
extensions of the interface specification and stub generation
facilities. Another goal is the integration of a visual
distributed application builder (VDAB), a graphical editor
tool that has already been developed within our group. Its
output will be adapted in order to match the formats of the
interface definition correctly. Finally, object-oriented
extension of other DCE components will be an issue for the
more distant future. For example, the security service can
be used for protecting objects. However, the granularity of
the object model may be too fine in order to perform access
checks efficiently. Therefore, new concepts will be required
for protecting clusters of objects as a unit, for example.
Distributed transactions as offered by new DCEbased
products should also be integrated with the model of
distributed object-oriented proessing.

Our prototype will also be used by other projects in our
distributed systems depamnent, for example as a base for
extendmg other object-oriented languages towards
distribution.

Acknowledgments

We would like to thank Markus Person who implemented

124

the described concepts within his diploma thesis. We
would also like to thank our project partner, Digital
Equipment Corporation with its Campusbased Engineering
Center in Karlsruhe for the granted funding for this
project.

References

[ABB93] Assenmacher H. Breitbach T, Buhler P, Hlbsch V and
Schwarz R 1993 Panda-Supporting Distributed
Programming in C++; Internal Report University of
Kaiserslautem

[ANS89] Advanced Network Systems Architecture (ANSA)
1989 ANSA Reference Manual APM Ltd, 24 Hills Road,
Cambridge CB2 IJP, UK

(BEN871 Bennett I K 1987 The Design and Implementation of
Distributed Smalltalk ACM OOP$LA Conf..'(Orlando, FL)
pp 318-330

[BHJ87] Black A, Hutchinson N, Jul E, Levy H and Carter L
1987 Distribution and Abstract Types in Emerald IEEE
Trans. Sofhvare Eng. 13 65-75

Independent Invocation IEEE Trans. Parallel and
Distributed Systems 1 107-19

PAL891 Chase 3 S, Amndor F G, Lazowska E D, Levy H M
and Littlefield R J 1989 The Amber System: Parallel
Programming on a Network of Muniprocessors 12th ACM
Symp. on Operating Systems Principles (Litclfield Park.
AZ) (New York ACM) pp 147-58

LCHC911 Chin R S and Chanson S T 1991 Distributed Object-
Based Programming Systems ACM Comput. Surv. 23
91-124

[DEC86] Decouchant D 1986 Design of a Distributed Object
Manager for the Smalltalk-80 System ACM OOPSLA Conf.
(Portland, OR) pp 444-52

[ENC92] Encina Transaction Processing System 1992 Transarc
Corp., Pittsburgh, PA

[HOC911 Hom C and Cahill V 1991 Supporting Distributed
Amlications in the Amadeus Environment Commt.

cBLA901 Black A and Artsy Y 1990 Implementing Location

C&". 14 358-365
(LET911 Levv H M and Temoero E D 1991 Modules. Obiects

and Distributed Programming: Issues in RPC and'ReAote
Object Invocation Sofix are-Practice and Experience 21
77-90

Orientcd Programming IF1 TR 92.23 Institute for
Informatics, University of Zurich.

[O.MG91] Object Management Group 1991 The Common
Object Request Broker: Archirrcrure aiid Specrficarion.

[OMG92] Object Management Group 1992 Objrcr Servires
Architecture

[OSF92a] Open Software Foundation 1992 lnrroducrion to OSF
DCE (Cambridge, M& Open Software Foundation)

[OSF92b] Open Software Foundation 1992 DCE Users Guide
and Reference (Cambridge, MA: Open Softuxe
Foundation)

[OSF92cl Open Software Foundation 1992 DCE Applicarion
Dearlopmenr Guide (Cmbridge. 11A: Open Software

[hlAF92] hlaffeis S 1992 The Electra Approach to Object

Foundation)
[OSF92d] Open Software Foundation 1992 DCE Application

Development Reference (Cambridge, MA: Open Software
Foundation)

[PER931 Person M 1993 Verteilte Objekwerwaltung auf der
Basis von DCE Diplomarbeit Fakulta<um>r fur Informarik
der Universitut Karlsruhe (in German)

Implementation of Distributed C++ EURO-Arch '93 Conf.
ISCM931 Schill A and Mock M 1993 Design and

(Munich) (Berlin: Springer)
ISCP921 Schroder-Preikschat W 1992 P E A C L T h e

DC++: distributed object-oriented system support on top of OSF DCE

Ovcrvieu ofthe Arjuna Distributed Prosramming System
IEb'E Sofnvare 8 66-73 .

Evoiuiion of a Parallel Operating System; RcpoIrs of GMD
.Vo 646

[TKR91] Tanenbaum A S , Kaashock hl F, von Renrsse R and
BII H E Thc .Amoeba Distributed Operaring Svsrem-.A
Snws Reporr Cotnpdr. Coninrun. 14 3 1 - 6 3 5 [SDP91] Shrivastava S K. Dimn G N and Perringron G D An

125

