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Abstract. The OSF Distributed Computing Environment (DCE) is becoming an 
industry standard for open distributed computing. However, DCE only supports 
clienikerver-style applications based on the remote procedure call (RPC) 
communication model. This paper describes the design and implementation of an 
extended distributed object-oriented environment, DC++, on top of DCE. As 
opposed to RPC, it supports a uniform object model, location independent 
invocation of fine-grained objects, remote reference parameter passing, dynamic 
migration of objects between nodes, and C++ language integration. Moreover, the 
implementation is fully integrated with DCE, using DCE UUIDs for object 
identification, DCE threads for interobject concurrency, DCE RPC for remote object 
invocation, and the DCE Cell Directory Service (CDS) for optional retrieval of 
objects by name. An additional stub compiler enables automatic generation of C++- 
based object communication interfaces. Low-level parameter encoding is done by 
DCE RPC‘s stub generation facility using the C-based DCE interface definition 
language (IDL). 

The system has been fully implemented and tested by implementing an office 
application. Experiences with the existing system and performance results are also 
reported in the paper. Furthermore, a former, less transparent implementation of our 
group using DCE RPC as a pure transport-level mechanism is compared with the 
described approach. Related C++ extensions and standardization efforts are also 
COmDared with our work. 

1. Introduction 

The OSF Distributed Computing Environment (DCE) 
[OSF92a-d] is becoming an industry standard for open 
distributed computing. It offers W C  as its basic 
communication mechanism both among its decentralized 
system components and within applications. Moreover, 
DCE provides a number of supplemental system services 
including concurrency support, distributed name 
management, security aspects, and distributed file 
management. This environment has reached a stable, 
product-level stage, is becoming widely available, operates 
in heterogeneous systems, and is the base for many higher- 
level services such as distributed transaction support. For 
these reasons, DCE has been the choice for our research 
and development projects, too. However, l i e  other authors 
[LET91], we have also observed several deficiencies of the 
traditional clienthemer-model supported by DCE 

Granularity. Clients and servers are heavyweight 
instances. Therefore, it is costly to install them dynamically 
and it is virtually impossible to relocate them at runtime. 

t E-mail address: schiU@ira.u!a.de. 
$ E-mail address: mock@ira.uka.de. 

Communication. The communication paradigm in 
asymmetric: invocations are usually client-to-server round- 
trip. Server-to-client invocations require cumbersome 
implementation techniques but are desirable within many 
applications. 

Parameter semantics. W C  reference parameters are 
dereferenced and their contents are copied by value into the 
peer’s address space. This can lead to anomalies in case of 
concurrent access to client and server copies. Moreover, 
parameter passing by remote reference would also be more 
efficient in some cases. 

Remote data access. Data structures managed by a server 
can only be accessed by invoking the server’s data 
management operations. The structure and implementation 
code of many applications could be facilitated by enabling 
direct access to remote data via accessor methods being 
called remotely. Data abstraction will be maintained then 
since object access is still via operations only, but no 
intermediate server entity is involved any more. Although 
the corresponding implementation will generally not yield 
significant performance gains, a higher level of 
programming abstraction is achieved. 

Entity identiry. Data objects do not have a globally 
unique identity. Therefore, they cannot be arbitrarily 
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addressed from remote locations, one of the reasons for the 
lack of direct remote data access. Client and server entities 
only have a global identity by application-specific 
composition of low-level address and identifier 
information. 

For these reasons, we designed and implemented a 
distributed object-oriented extension of DCE that addresses 
these problems. It supports the following features: 

0 Fine-grained distributed objects. The programming 
model is based on fine-grained, dynamically created C++ 
objects located at several distributed network nodes. An 
initial remote location can optionally be specified at object 
creation time. C++ objects therefore are the basic units of 
distribution. However, objects can also contain nested C++ 
data structms. leading to objects of arbitrary granularity. 
0 Systemwide identity. All distributable objects are 
internally referenced via systemwide unique identifiers 
based on DCEs universal unique identifiers (UUIDs). 
0 Location independent invocation. Objects communicate 
by method invocations, no matter whether the peer object is 
local or remote. The task of locating peer objects is 
performed by our system. Remote invocations are 
internally mapped onto DCE RPC. This is achieved by an 
own stub generation facilit. working together with DCE’s 
IDL-based stub compiler. 
0 Dynamic object migration. Upon request by the 
application, objects can dynamically move between nodes, 
e.g. to co-locate communicating objects or to distribute 
parallel computations onto different nodes. An important 
property of our approach is that moved objects can still be 
accessed in a uniform way, and that concurrent migration 
and invocation requests are synchronized. 
0 Concurrency support. Object invocations at a given node 
can be performed concurrently based on multithreaded 
RPC servers. Moreover, applications can explicitly create 
concurrent computations by using a thread-related ,class 
library; this class library of our system is internally mapped 
onto DCE threads. 
0 Decentralization and dynamics. The implementation is 
based on a decentralized architecture. Especially the 
algorithm to locate objects is fully decentralized. Moreover, 
object creation and deletion is fully dynamic, and the node 
structure can also be reconfigured dynamically. Based on 
these properties. there are no system-inherent scalability 
limitations. 
0 Full integration with DCE. One of the most important 
and distinguishing properties of our system is its full 
inte-gation with DCE mechanisms. It solely uses DCE RPC 
for implementing interobject communication, and DCE 
threads for concurrency. Moreover, UUIDs serve as object 
identifiers, nodes are addressed by DCE binding handles. 
and the DCE Cell Directory Service is used for optionally 
registering objects by logical names. Based on DCE. the 
implementation is highly portable and enables 
heterogeneous systems interoperability. 

The approach is based on concepts introduced by earlier 
systems such as Emerald [BHJ87], Amber [CAL89], Arjuna 
[SDP911, and Amadeus [HOC91]. However, as opposed to 

.y 

these systems, it is integrated with DCE mechanisms, an 
issue that guided many detailed design choices. Moreover, 
the approach does not introduce any C++ language 
modifications-therefore, it is a system service on top of 
DCE and C++ and not a new language and system 
environment. This fact may improve external acceptance 
according to the experiences with our project partners. 
Finally. several implementation details of our object 
mobility and addressing support contain new features. 

It should be noted that the paper does not cover aspects 
of object persistence or of object-based distributed 
transactions. Although such features will be of significant 
importance in practice, for example in office applications, 
they have not been within a major focus of our project plan 
yet. Therefore, only very limited facilities for writing 
objects to disk and for importing them back again are 
offered by our prototype up to now. Nevertheless, we 
believe that advanced features can be built directly on top 
of our distributed object management techniques. Such an 
enhanced implementation can also be facilitated by RPC- 
based distributed transaction management products on top 
of DCE such as Encina @ZNC92]. 

In the following sections, we first give an overview of 
the underlying OSF Distributed Computing Environment 
and then discuss our system architecture and design 
choices. Thereafter, ‘we describe details of our 
implementation and discuss experiences and performance 
results. We also illustrate the functionality by an example 
application. Finally, related approaches. including OMG’s 
Object Request Broker, are discussed in more detail and an 
outlook to future work is given. 

2. Basic concepts and system architecture 

2.1. OSF distributed computing environment 

Originally, the OSF has issued requests for technology (rft) 
for important distributed systems functionality in order to 
assemble a practical distributed computing environment. 
Hardware and software vendors as well as research 
institutes have responded with technical submissions of 
operable prototypes. The OSF has selected one or multiple 
systems for each required functionality based on technical 
criteria and on maturity. Finally, the OSF has integrated all 
selected components and has determined standardized C 
programming interfaces for them. Finally, the source code 
of the resulting DCE has been offered to vendors for 
porting it to their platforms [OSF92c-d]. As of 1993, the 
OSF DCE is commercially available on several major 
systems, including OSF/l, DEC/Ultrix. IBM/AIX. SunOS, 
VAX/VMS. and-with limited functionality--on PCDOS, 
OS/2, and OS/400; this list is not exhaustive. 
Interoperability of DCE applications on these systems is 
guaranteed by common programming and communication 
interfaces. and by automatic data translation between 
heterogeneous data formats. 

DCE architecture and services. Figure 1 shows the 
overall architecture of the OSF DCE. All DCE components 
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Figure 1. DCE architecture. 

are based on local operating system services (e.g. Unix) 
and transport services (e.g. TCPP). Distributed 
applications make explicit use of fundamental DCE 
services (in italics in the figure) via C programming 
interfaces. The other DCE services are used implicitly via 
the fundamental services or via modified operating system 
services. 

Fundamental DCE services. The Threads Sewice 
provides a portable implementation of lightweight 
processes (threads) according to the POSIX Standard 
1003.4a. Threads enable concurrent processing within a 
shared address space, and are especially used by RPC for 
implementing asynchronous invocations and multithreaded 
servers. 

DCE RPC is the major base for heterogeneous systems 
communication with DCE. It offers significant 
functionality, including the C-based Interface Definition 
Language (IDL), explicitly selectable call semantics, nested 
parameter stmctures, secure RPC with authentication and 
authorization based on the DCE Security Service, global 
(up to worldwide) naming of servers based on the X.500 
directory service standard, backward calls from servers to 
clients, and bulk data transfer based on typed pipes (logical 
channels). The overall functionality is quite rich, and DCE 
RPC seems to be increasingly accepted as a de facto 
standard in practice. Most important, it is operable here and 
now. Like all other DCE components, it is based on an 
existing implementation that has been submitted after an 
OSF request for technology (rft); this implementation has 
been part of the Network Computing System (NCS) of 
HWApollo and DEC. The OSF adapted the system and 
determined a set of interface procedures for RPC usage. 
Within the context of ow work, RPC is the most important 
component. In the following sections, we will make use of 
RPC binding handles that represent addresses of RPC 
servers. 

The Cell Directoly Service (CDS) supports distributed 
name management. It is the base for RPC binding and its 
functionality is integrated into the DCE RPC programming 
interface via NSI (Name Service Interface). As mentioned 
above, it provides a robust and efficient directory service 
implementation for DCE cells, i.e. for domains consisting 
of logically related network nodes. CDS exploits 
replication and caching for achieving this functionality. An 
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advanced CDS programming interface is offered by the 
standardizedXlOpen Directory Service Interface. 

The Securiiy Service implements authentication, 
authorization, and encryption. These mechanisms are tighly 
integrated with DCE RPC; f6r example, RPc clients and 
servers can be mutually authenticated, servers can perform 
ACL-based access control, and all RPC messages can be 
encrypted on demand. 

Finally, the Distributed Time Service (DTS) implements 
distributed clock synchronization, a common problem in 
distributed environments. It guarantees that local clocks of 
participating nodes are synchronized within a given 
interval. Moreover, synchronization with exact extemal 
time sources (e.g. with radio clocks) is supported. This 
functionality is important for implementing timestamp- 
based distributed algorithms; it is directly exploited by 
other DCE components, for example by timestamp-based 
name update synchronization. 

Other DCE services. The Gfobal Directov Service (GDS) 
extends CDS by global, cross-cell naming. It is based on 
the X.500 directory service standard. Thedore, it enables 
interoperability not only with other DCE directory servers 
but also with other arbitrary X.500 servers worldwide. As 
an alternative, the Internet Dghain Name Service (DNS) 
can also be used for cross-cell naming. 

The Distributed Fife System (DFS) implements cell- 
wide transparent distributed file management. Files can be 
stored at different servers and can also be replicated. 
Clients, i.e. application programs, can access files by 
location-transparent names as in a local Unix file system. 
File access quite efficient based on whole-file caching at 
the client site. This technique also supports scalability by 
ofRoading work from file servers to clients during file 
access. Interoperability with the widely used Nehvork File 
System is enabled via an NFSIDFS interface. DFS is 
augmented with a Disk lm Support component; it provides 
boot, swap, and file services for diskless workstations; this 
way, they can be integrated into a DCE environment. 

Finally, the PC Integration provides access to DCE 
services from personal computers. In particular, print 
service access, file system access, and RPC communication 
is supported by this component. 

In summary, DCE provides very rich and integrated 
functionality for distributed and cooperative applications. 
Moreover, DCE supports heterogeneous systems 
interoperability and is offered in product quality. DCE can 
simplify distributed programming significantly already 
today. However, several extensions of DCE seem to be 
desirable in the near future. Extensions towards distribute 
object management have been motivated in section 1 and 
are the subject of the rest of this paper. Other desirable 
extensions are integrated distributed transaction support, 
advanced communication protocols such as atomic 
broadcast, and integration with other emerging standards. 

2.2. DC++ architecture and basic concepts 

DC+t uses fundamental DCE services, namely threads, 
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RPC and CDS. The time service is also operating in our 
environment but is only exploited internally, especially by 
CDS timestamps for name entries. The other services can 
be integrated with our approach in the future. Figure 2 
shows the extended architecture of DC++ based on a 
simple example configuration. 

On each node, a DCE RPC demon is installed and 
serves RF'C invocations. Moreover, threads are used for 
handling concurrent invocation requests and can be 
exploited by the application with object-oriented class 
capsules. Distributed objects are allocated at various nodes 
and have local and remote interobject references. A remote 
reference is implemented by a proxy indirection; a proxy 
contains a location hint for the referenced object and 
transparently forwards invocations based on DCE WC. 
Each node maintains a hash table for mapping the global 
object identifiers within incoming invocations onto actual 
storage addresses of CU objects. 

One or more DCE CDS servers are also part of the 
environment. They store proxies for objects that have been 
registered by a logical name. This way, peer objects can 
acquire a proxy for a remote object by handing its name to 
CDS. Possible replication of CDS is made transparent by 
DCE. 

2.3. Proxy management and object access 

A proxy is installed whenever a node l e m s  about the 
existence of a remote object. This is the case when a 
reference to a remote object is passed as a parameter of an 
invocation. In addition. when an object moves and has 
references to remote objects, proxies must be installed at 
the destination node for each reference. Moreover, a 
moving object leaves a proxy at its former location. This 
results in forwarding chains of proxies that are followed 
when an object is invoked. The location information within 
the whole chain is updated upon stepwise return of the call. 
This way, forwarding chains will usually have a length of 
only one hopassuming that invocations are more 
frequent than migrations. 

The alternative of immediately updating all remote 
proxies whenever an object moves would improve 

invocation performance of mobile objects and is found in 
some disaibuted Smalltalk implementations (see [DECBfj], 
for example). However, it bas two major problems: (1) 
migrations are more expensive, and the approach is not 
scalable since migration costs increase significantly in large 
systems; (2) each object would have to maintain backward 
references to all proxies; this requires significant storage 
space and leads to orphaned references in case of node 
failures. 

As a trade-off between a pure forward addressing 
technique and an immediate proxy update approach, we 
integrated an additional technique: objects register their 
current location at their 'birthnode', i.e. at the node where 
they were created. That is, after having performed a 
migation, an RPC is sent to the birthnode containing the 
new location. From each proxy, the birthnode's address can 
be derived by explicitly registering the node identifier with 
each proxy. Therefore, an object can be located by either 
following the forwarding chain or by querying the 
birthnode. The first option is used in the fault-free case. 
However, if a forwarding chain is broken by a failed 
intermediate node, the birthnode is queried for an object's 
location. In the normal case, forward addressing is more 
efficient-it requires one W C  if the location information is 
up-to-date, while the birthnode option would require at 
least two WCs for locating the object at a third-party node. 

Example. Figure 3 shows an example of a dynamic object 
management scenario with four functional steps. The boxes 
represent network nodes, and the arrows between them 
show references to a given mobile object, say 0, based on 
proxies and birthnode addressing. The figure represents the 
status of the references at the end of each step. It is 
assumed that 0 was created at NI. It then moved to N2, 
N3. N4. and finally N5 in step 1. The biaknode, NI,  
maintains a direct reference to the object's location while 
the other nodes use proxy-based forwarding addresses. In 
step 2. the object has been invoked from a caller at node 
N2. It is located by following the proxy chain. Thereafter, 
the whole chain is updated and now all proxies contain the 
correct location of 0. The object is then moved from N5 to 
N2 in step 3. A forwarding address is installed at N5. and 

Figure 2. DC++ architecture. 
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Figure 3. Example of the forwarding chain update mechanism. 

the birthnode N1 is informed about the new location- 
therefore, N1 is able to update its location information as 
shown in the figure. Finally, 0 has been invoked from.N4 
by locating it via the forwarding address, i.e. via N5. The 
resulting proxy update of N4 after the rem of the call is 
given in the figure. 

As an additional extension, the obligations of an 
object’s birthnode can be transferred dynamically and 
explicitly to an alternative node; this node is then called 
guardian node of an object. For example, when an object 
permanently moves into a different network domain or, 
more general, into a different organizational area such as a 
foreign DCE cell, it might perhaps hardly ever retum to its 
birthnode. By transferring responsibility for the object to a 
different guardian node, unnecessary dependencies 
concerning the former birthnode in a remote cell are 
avoided. For example, a network failure between the 
corresponding cells will not leave the object unlocatable 
any more. Moreover, inefficient wide are network access to 
a distant birthnode can be avoided this way. 

2.4. Object mobility 

Object migrations are requested by the application by 
calling an automatically generated method of an object. 
Basically, a migration consists of the following intemal 
operations (see figure 4 for an example of moving an object 
01 from node 1 to node 2). (1) First, the object to be 
moved is locked by a semaphore. This is required for 

p,,,de 1 (7) dclcLc 

Figure 4. Object migration. 
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synchronization with ongoing invocation requests. (2) Then 
the object is replaced by a proxy at the source node and 
unlocked; however, the object data is still kept for failure 
recovery. (3) Next, an RPC installation operation is 
invoked remotely at the destination node, passing the 
object’s data as an RPC parameter. All object data 
structures are defined in IDL so that marshalling and 
unmarshalling can be done completely by DCE RPC. (4) 
The destination node installs the object and inserts its 
identifier into its hash table. If thm has been a proxy 
before, it is replaced by the object. (5) Upon receiving the 
reply of the remote installation WC,  (6) the source node of 
the migration informs the birthnode about the new location. 
(7) Finally, the original object data is deleted at the source 
node. As a prerequisite, we assume that the moving 
object’s class is available at the destination node based on 
class replication. 

This approach has some interesting characteristics: 
although migrations and invocations are synchronized by 
semaphores, locks are not held at the source node until the 
migration has fully completed. This is not necessary as the 
s o m e  node can immediately forward invocations when the 
proxy has been installed. The birthnode is informed only 
when a migration is completed so that it does not receive 
incorrect information if a migration fails. If an object 
should be located via the birthnode in the meantime, the 
operation would still work the birthnode would direct the 
invocation to the former location of the object which then 
already has a proxy pointing to the new destination. 

Migration requests can also go to remote objects. In this 
case, the request is forwarded like a usual method 
invocation until it reaches the destination node. Then the 
mipt ion is performed as discussed above. 

Instead of specifying an absolute destination, a relative 
migration method is also supported. It takes a peer object as 
a relative destination specification, locates the given object 
as discussed above, and then performs the regular 
migration to the found location. 

Migration with heterogeneous class structures. A special 
problem is object mobility in applications with 
heterogeneous class srmctures, i.e. in environments where 
implementations of a given class differ at various nodes or 
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where specific classes are not available at all nodes. This is 
also an important issue in practice as ir is not possible to 
replicate all classes everywhere for large applications. 

Our current prototype allows a first, simple solution to 
this problem: classes need not be totally replicated 
throughout the system, but object mobility is affected by 
such limited class replication. In particular, an object can 
only be moved to a location where its class and all classes 
required by associated object references are present. Based 
on a careful application design, functional domains with 
selected subsets of classes can be configured, whereby 
different subsets may share a small number of common 
classes in order to interact As argued later, dynamic class 
installation at new locations would improve this approach 
with enhanced flexibility. However, as it requires dynamic 
code installation and imposes specific problems at the 
operating system level, we did not provide such a feature 
yet. 

The coexistence, of different implementations of a 
given class is difficult to support in the context of C++ due 
to the limited separation of class definition and 
implementation. Based on language modifications and 
significant compiler extensions, such functionality could 
be provided, but was not part of our work up to now. We 
plan to focus on this problem within future research efforts 
in a wider context, considering distributed versions of 
object classes. Such versions may evolve dynamically 
based on the lifecycle of objects. An overall solution will 
be required to convert mobile objects between versions of 
limited compatibility, to control distribution of versions. 
and to manage version updates in the context of existing 
object instances. 

2.5. Class structure 

The described functionality is offered by a set of classes 
shown in figure 5 together with the most important 
relationships with application and system components. The 
Object-Reference implements all required data and basic 
functionality for remote object access and object migration. 
For each application class with distributed instances, an 
auxiliary wrapper class is required. This class 
(4Vrupper-Clas- in the figure) is derived from 
Object-Reference. It mainly implements the proxies with 
code to distinguish between local and remote invocations. 
However, an instance of a wrapper class is also present for 
each local object as an extemal capsule. The wrapper class 

offers the required code to migrate objects with 
application-specific data structures, too. In the case of 
remote invocations and migrations. it makes direct use of 
DCE RF'C as indicated in the figure. Most importantly, this 
class can be generated automatically based on an interface 
description as described below. 

The actual implementation of each application class, 
denoted 4pplication_Cluss> in the figure, is identical with 
a regular class implementation as found in a corresponding 
non-distributed application. Each auxiliary object of a 
wrapper class has a local reference to the associated object 
of the application class. As the application classes shall 
remain unaffected by the aspect that they will be 
distributed, they are not derived from a common 
superclass. Instead. all required distribution functionality is 
provided by the wrapper classes. 

Network nodes are also represented by objects, for 
exampre to specify destination locations of migrations. The 
derived class Node offers the corresponding functionality. 
In particular, each object of class node contains the 
required address information as a DCE RPC binding 
handle. An application only uses objects of class Node and 
of wrapper classes directly. Several other auxiliary classes 
are part of the system, namely classes for threads, 
semaphores, hash tables. and directory service name 
,entries. 

The concrete structure, use, and automatic generation of 
these classes are described below. 

3. Implementation 

The implementation was done on a network of 
DECStations 5000 and 5240 under Ultrix 4.2, using AT&T 
C++ 2.1 and DEC's C++ compiler, named cxx. Our DCE 
prototype has been provided by DEC (version 1.0). Basic 
transport-level communication is performed by TCP/IP, 
UDPnP or DECnet on an Ethernet. The actual 
communication protocol can be selected at RPC 
initialization time. For implementing the stub generation. 
the Unix tools awk and sed have been used; the reasons for 
this choice were mainly pragmatic as we did not have the 
resources for implementing a complete compiler from 
scratch. The non-standard language extensions on which 
the interface definition and stub generation is based are also 
a consequence of this choice. For a product-level solution, 
the direct use of C++-style interface definitions would of 

Figure 5. Class/module structure. 
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course be recommended. Actually, this also represents a 
future direction of our work. However, with our simplified 
approach, C t t  parsing would not have been possible. 

The following subsections describe our 
implementation. We first discuss the system classes 
provided by our approach and then show how auxiliary 
application classes are generated. Then, performance and 
experiences are discussed, after presenting an example 
application. 

3.1. System classes 

Object-Reference. Much of the functionality  of^ our 
approach is given by class Object-Reference. It has the 
following (simplified) smc'ture: 

upon return of a remote invocation. The relative migration 
method is application-independent as it only calls the 
absolute migration method after having located the object. 
However, the absolute migration method that performs the 
physical migration must be provided by the application- 
specific subclass and is therefore virtual. The method to 
locate an object is implemented differently by application 
objects and nodes and is therefore also virtual. 

Node. An object of class Node is created locally for each 
node that is known by a given peer node, including itself. It 
provides the required information to invoke an W C  at a 
suspected object location. This includes a unique identifier 
for the node, and a corresponding RPC binding 
handle.class Node : public Object-Reference { 

class Object-Reference { private: 
private: uuid-t loc-id; I/ id from binding handle 

wid-t object-id; /I object UUID rpc-binding-handle-t binding-handle; I/ DCE 
char *object-name; 11 object name . binding handle 
Node 'suspected-loc; I/ suspected (NOT public: Node (char'); 11 nodes defined by application 

necessarily current) location -Node 0; I/ destructor 
Node 'creating-node; /I creating node of Location* locate 0: I/ return susDected loc 

object 

objects and nodes 

migrated objects and location hint evaluation 
-Object-Reference 0; /I destructor 

pthread-mutex-t mutex; I/ semaphore 

Object-Reference (RPC-ObiRef'); /I used for 

void lock(); I/ locksemaphore 
void unlock(); 11 unlock semaphore 
wid-t get-oid 0; I/ return id 
char* get-name 0; /I return name 
Node* get-cre-loc 0; /I return birthnode 
Node* get-sus-loc 0; 11 return location hint 
void update (Location *loc); 11 update location 

wblic: Object-Reference (char*); /I used for application 

hint 

int migrate (Object-Reference'); /I relative" 
migration 

virtual int migrate (Node'); 11 absolute 
migration 

virtual Location' locate 0; /I locate objects 
1; 

Objects of this class contain a DCE UUID to identify them 
(object-id). It is generated by the constructor using a DCE 
system function. They also have an optional name 
(object-name) that is registered with CDS. The location 
hint of proxies and the birthnode of the corresponding 
object are stored in separate instance variables, 
suspected-loc and creating-node, respectively. In 
principle, it would be. possible to derive the birthnode from 
the object Urm, (the node address would be part of the 
UUID to make it globally unique); however, this did not 
work with the given DCE implementation. The semaphore 
for synchronizing invocations and migrations is also p"T of 
Object-Reference. 

Most of the methods are pretty straightforward. It may 
be worthwhile to note that the second contructor is used to 
install proxies when a new object reference is passed to a 
given node. The required address information is provided 
via a parameter of type RPC-Obj-Ref that contains the 
internal RPC address information for an object's location. 
The update method is called when a proxy chain is updated 
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., . 
' from base 

void Shutdown 0: lIstoD RPC listener 
uuid-t get-id 0; //get nodeid 
rpc-binding-handle-t get-bh (); I/ get binding 

handle 
1; 

The constructor of this class creates a representative for 
foreign nodes if a node name is given. In this case, a CDS 
inquiry is performed for importing the required binding 
handle and identifier information (ushg the CDS interface 
operations rpc_ns_bindingimportbegin , . . ._ next , . .  
done). Otherwise, the representative for the local node is 
generated. In this case, the constructor exports the local 
binding information to CDS (using rpc-ns-binding-export) 
so that other nodes can import it. The locate method just 
returns the suspected location of the superclass component 
as nodes never move. In addition to basic access operations 
for instance variables for internal use, a method to shut 
down the RPC server of a node is provided. It is useful for 
remote housekeeping within an application. It is 
implemented by calling a remote DCE RPC management 
function at the actual location. Note that all other methods 
can be implemented locally-except the interaction with 
CDS within the constructors. The implementation of the 
other application classes, namely of the threads and hash 
tables are relatively straightforward and they are therefore 
not described in closer detail. 

3.2. Application classes 

Class structure. The actual implementation of the 'real' 
application classes is similar to ordinary C t t .  However, 
the auxiliary application classes, i.e. the capsule classes 
around the real classes, are generated automatically. They 
basically have the following class structure (of the wrapper 
class gen&) for an application class <A>: 

class gen<A> : public Object-Reference 
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private: gen<A> @char*); I/ internal constructor for proxies 

object 

within manager after migration 

hint evaluation 

public: <A> *obj>tr; I/ pointer to application 

gen<A> (<A>-data*, RPC-Obj-Ref); /I used 

gen<A> (RPC-ObiRef'); 11 used within location 

-gen<A> (); /I destructor 
int migrate (Node'); I/ absolute migration 
static gen<A>* get-ref-by-name (char*); I/ get 

I/ for all application-specific constructors: 
gencA> :: gen<A> (. . .It>, Object-Reference *or 

I/ for all application-specific methods: 
cresult-type> gen<A>::<method-name> (. . . , 

reference to existing object 

= here, char' name = ""); I/ regular application-specific 
constructor 

Object-Reference *or = NULL, RPC-call-data *cd = NULL); 

Each object has an internal pointer to the actual object data 
of class & (obj>tr). This pointer is dereferenced for all 
local invocations, passing them to the real object. Two 
internal constructors are used for installing objects after a 
migration and for generating proxies, respectively. 
<A>-data* is a pointer to the data structure of the 
application class, however given in C instead of C++ for 
conformance with DCEs IDL. The implementation of the 
migrate method also accesses this data structure definition 
in order to perform the remote object installation by an 
WC. 

Moreover, a method is offered to retrieve an object 
reference by name. This is possible for all objects that have 
been registered with CDS when they were created. The 
method performs a remote rpc-ns-binding-import at a 
CDS server in order to retrieve the required binding 
information for the object. However, this operation is rather 
heavyweight due to relatively limited CDS performance. 
Therefore. it should only be used for selected objects that 
are part of the coarse-grained configuration of an 
application. References to other objects are learned by 
remote nodes via parameter passing by object reference. 

Each application-specific constructor is extended by an 
optional initial location parameter, defaulted to the local 
node. This way, object creation at a remote node can be 
performed. A second optional parameter is used for 
specifying an object name to be exported to CDS, matching 
the import operation discussed before. 

All application-specific methods also get additional 
parameters. The first one specifies an optional location 
where an invocation shall be performed. Usually, it is not 
used as we pursue the goal of location independent 
invocation. In this case. the object is located at its current 
location and the call is performed there. Otherwise, the 
object is actually moved to the given location before 
invoking it. This option is useful for distributing parallel 
computations to different nodes, for example. The second 
additional parameter is important for updating proxy 
chains. When an RF'C returns. it carries the actual location 
of the invoked object and is evaluated by each 
intermediate node until the call is returned to the calling 
object. 

Automatic generation. Obviously, the template feature of 

C++ is not sufficient for generating the described code 
automatically. Therefore, we had to implement our own 
stub generation facility. 

However,. we did not have the resources to write a full 
parser and backend for general C++ or C. Therefore, our 
idea was to specify an interface definition notation similar 
to IDL, however, with some limitations in order to make it 
easily parseable (see below). Based on this notation, we 
implemented a simple parser using the Unix tool awk. This 
process generates sed command files that replace the 
required variables within predefined class templates as 
shown above. For example, the application class name, but 
also the application-specific parameters are replaced this 
way. Moreover, for all required method implementations, 
similar template's are provided. 

Implementation templates. As an example for the method 
implementation templates; here is the template code for an 
ar,bitrary application method invocation (<A> is the 
application class, gen<A> the wrapper class, <M> is the 
method name, and <p> are the parameters): 

Ill/////l/llllll/Ill/lllll method of class gen<A> 
Il//l/l/l//lll/l/lIl/ ll method call within application 
void gen<A> :: <M> (<P> Object-Reference *or, 

RPC-call-data *cd) [ 
error-status-t st; I/ status 

string str-Ioc; I/ location as string 
Location 'sus-loc, 'loc-from-cre; I/ 

suspected location, location received from creating node 
int mig-result; /I status of migration 
idl-boolean called-from-manager; I/ whether 

called from internal RPC manager (within proxy chain) 
if (or) mig-result = this->Migrate (or); I/ check if 

object is to migrate first 
if (cd) called-from-manager = Otrue; I/ keep 

caller in mind else called-from-manager =false; 

lock (); I/ lock call semaphore 
if (objgtr) [ /I object is local 

>get-sb 0); I/ tell manager who I am 

~ objjtr-><M> (<P>); /I perform local 
invocation 

if (called-from-manager) { 
strcpy ((char*)cd->node, (char*)my-loc- 

I 

unlock (); /I free semaphore 
else ( 
sus-loc = get-sus-loc(); I/ remote call fi get 

I 
SUSDeCted location 

unlock (); ll free semaphore 
CREATE HINT DATA I/ macro to oack location - - 

hint data 

application so create data block 
if (!called-from-manager) [ I/ being called from 

cd = (RPC-call-data*)(new RPC-data (this)); 
1 

gen&>-<M> (sus-IocEget-bh (), cd, <P> &st); 
if (st != rpc-s-ok I] *(cd->status) != OK) { /I check 

if (get-cre-loc() == my-loc 1 1  
errors 

get:cre-loc() == sus-loc) [ 

node" << endl; 
c e r r  << "no sense to ask creating 

exit (1); 
] /I try creating node: 
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get-loc-by-id (get-cre-loc OEget-bh 0, 
‘Icd->oidL 

cd<ms>status, str-loc, &st); 
if (st I= rpc-s-ok 11 ‘(cdEstatus) I= OK) 

exit (1); 
loc-from-cre = 

if (loc-from-cre == sus-loc) { 11 see if 
Location::get-loc-by-string (str-loc); 

there’s a chance left 
cerr << “creating node has no better 

info” << endl; 
exit (1); 

1 
lock (); 
update (loc-from-cre); 11 update info 
unlock 0; 

gen<A>-<M> (loc-from-creEget-bh (), 

if (st != rpc-s-ok 11 *(cdEstatus) I= OK) 
cd, <P> &st); //last chance 

exit (1); 
I 
update (cd); 11 update with node where call 

REALLY was made 
DELETE-HINT-DATA I/ delete data from remote 

Pll l  
if (!called-from-manager) { 

11 being called from application 
11 so delete data block previously created 
delete ((RPC-data*)(cd)); 
1 
I 

I I 
The actual implementation performs some parameter 
modifications of & before filling the template variables 
withiin the body of the method, for example to manage 
proxy installation for object reference parameters. The 
method itself first checks whether the object should be 
migrated in order to perform the call at a specific location. 
Then it is checked whether the call is from an RPC 
manager, i.e. a recursive call within the processing of a 
proxy chain. Otherwise, the call comes directly from the 
application. There are slight differences in handling the 
address information in both cases. 

Now the method can check if the call is local; in this 
case, the local representation of the class is invoked by the 
corresponding local method. Otherwise, an RPC is 
performed at the suspected location The RPC invokes a C 
function with the same name as the method. At the 
destination node, this function eventually invokes the given 
method recursively. If it was the first invocation (directly 
from the application), the internal RPC call data must be 
initialized, too. If the remote invocation fails (indicated by a 
bad retum status), the guardian node (which may be the 
birthnode that is also called creating node) is queried for the 
object’s location. An altemative invocation attempt only 
makes sense if the returned location information is different 
from the existing hint and from the local node. Finally, after 
the call has returned, the proxy information is updated. 

Similar templates have been implemented for methods 
that return a r result type, for consmctors, and for all 
auxiliary methods related to migration. 

3.3. Example application 

As a testbed for our system we implemented a small 
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application, modelling an office scenario, see figure 6. 
A ‘head hunter’ creates a number of customers and for 

each customer a form is created that has to be filled out. 
After initializing and filling in some basic data such as the 
customer name the head hunter is done. The form filler 
periodically checks the forms’ state and as soon as they are 
available for further processing it requests them being 
migrated to its own node and fills in more data. Likewise 
the ‘rate computer’ periodically checks whether the form 
filler is done, as soon as the form is in state ‘form-filled-in’ 
it requests a migration to its own node. Then it computes 
the rates for the customers (we model insurance policies 
being filled out). Finally the filled-in policies are migrated 
to the ‘policy sender’ upon request by the policy sender. 
Various migrations are involved in this scenario. Moreover, 
the form filler, rate computer and policy sender access the 
forms remotely to find out in which state they are. 
Therefore the application also makes use of remote method 
invocations. 

To illustrate the development of an application with 
DCt+ we will now go through the steps necessary for 
developing an application. As a running example we will 
use that office scenario example application. 

To develop an application one has to go through the 
following steps: 

write the application classes 
write a corresponding IDL-description 
write a corresponding DC++ description 

After those steps, the migration code is generated by 
running the DC++ stub generator and the IDLcompiler. 
Finally, the C++ compiler and linker are used to create the 
application code. 

For illustration we will show an excerpt of the class 
headers of the application classes. The insurance form 
class, called OrigInsurance-Form looks as follows: 

class Origlnsurance-Form { wid-t customer-id; 
State-Of-Form status; 
idl-long-int ratejer-month; 
idl-long-int age; 
idl-long-int volume; 

public: Origlnsurance-Form () { status = NOTHING-DONE 
1 

-0riglnsurance-Form () (1 
idl-long-int get-rate () [ return 

void fill-in (idl-long-int, Customer.); 
void compute-rate (); 
void sendgolicy (Customer*); 
Stateof-Form get-status () { return 

rateger-month; ] 

status; } 
1; 

An excerpt of the corresponding IDL description file 
follows: 

void Origlnsurance-Form-Migrate ( [in] handle-t bh, 
[in] wid-t oid, 
[out,rei] error-status-t ‘status, 
[instring] char ‘loc 

[in,out] RPC-call-data *data, 

); 
void OriglnsuranceForm-fill-in ( [in] handle-t bh, 
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Figure 6. Example application 

[in] long v, I* desired insurance volume *I 
[in] RPC-Obj-Ref r I* reference to customer *I 

); 

In OrigInsurance-Form-Migrate the application pro- 
grammer must describe the object's data to enable 
parameter marshalling for migration. Apart from that. 
each method of the class has to be represented in the IDL 
interface description. shown here only for the method 
'fill-in'. 

The corresponding section in the DC++ description file 
has the following outlook 

Orig lnsurance-Form:lnsurance-Form 

idl-long-int :get-rate : 
void :fill-in :idl-long-int 
vol,Customer* cust 
void :compute-rate : 
void :sendgolicy :Customer* cust 
State-Of-Form :get-status : 

From that description a new class will be generated?: 

ClaSS Insurance-Form : public Object-Reference { 
llllllllllllll parameter INdependent members llllllllllllllll 

private: Insurance-Form (char*); 
public: Origlnsurance-Form 'objgtr; 

Insurance-Form (Origlnsurance-Form-data', 

Insurance-Form (RPC-ObiRef*); 
-Insurance-Form (); 
static Insurance-Form* get-ref-by-name 

:Origlnsurance- 
Form-data 

RPC-Obj-Ref'); 

lchnr*I: 
I ,  

static Insurance-Form' loc-hint-eval 

int migrate (Location*); 
(RPC-Obj-Ref); 

llllllll~llll parameter dependent members 

Insurance-Form (Object-Reference *or=here, 
llllllllllllllll 

char* name=""): 
idl-long-int get-rate (Object-Reference 

void fill-in (idl-long-int vo1,Customer' cust, 
*or=NULL, RPC-call-data *cd=NULL); 

ObjectLReference 'or=NULL, RPCLcallLdata 
*GI=NULL); 

void compute-rate (Object-Reference 

void sendgolicy (Customer* cust, 

State-Of-Form get-status (Object-Reference 

'or=NULL, RPC-call-data 'cd=NULL); 

Object-Reference *or=NULL, RPC-call-data 

*or=NULL, RPC-call-data 'cd=NULL); 

*cd=NULL); 

1; 
T In this case named Insurance-Form, The names of the generated classes 
can be customized in the description file. 

Looking at the method fili-in in the generated class, one 
might note that it now has two more parameters. or of type 
Object-Reference and cd of type RPC:call-data. Or holds 
the reference to the RPC server to be contacted whereas cd 
is used to identify the object to be called. The data structure 
RPC-call-data looks like this: 

typedef struct [ uuid-t *oid; error-status-t 'status; string 
node; } RPC-call-data; 

Oid is used to identify the object to be called, status is used 
to return an error status and node holds the string binding 
of the node where the method was actually executed. When 
the RF'C call returns, this information is used to update the 
location hints of the nodes that were part of the fomardmg 
chain. Since cd is only passed as a pointer, the 
RPC-call-data data structure can be easily changed 
without affecting the rest of the implementation. It is 
possible, for instance, to add a timestamp in order to make 
updates of location hints only when the reNmed location 
hint is not older than one that has been previously obtained. 

As opposed to a conventional WC-based 
implementation of the example. the outlined solution 
provides a number of benefits. First, the office procedure 
can be represented by a first class object itself. This allows 
for locating the object, for performing remote StaNS 
queries, and for explicitly controlling execution by remote 
management commands. With a conventional client/server 
implementation, additional and complex functionality 
would have to be realized on top of RF'C. Moreover, 
attached data objects can also move between processing 
sites on demand; they are also modelled as mobile objects. 
Alternatively, they can be accessed remotely, for example 
if migration of a large object is prohibitively expensive. 
Finally, the tight integration with C++ facilitated the 
overall implementation of the scenario from the software 
engineering point of view. 

3.4. Performance and experiences 

In this section we want to look at the performance of the 
system. Moreover, we will discuss the general experiences 
gained by designing and implementing DC++. 

Performance. To gather performance data of our DC* 
system we chose to time migration withii our sample 
application. For that purpose we used different amounts of 
data within the form that is filled out and migrated in the 
application; the results are shown in figure 7. First, we 
timed the migration of the form containing only system 
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time Ims] Empty 100 bytes 
Millimum i 6 16 

M:Lximom 176 254 
Medi;in 31 51 

1000 bytes 10000 bytes 
16 59 

176 513 
15 82 

relevant data that is inherited by each appliation class such 
as the object's ID. Then we increased the additional user 
data from 100 bytes to 1000 bytes and finally 10000 bytes. 
All reported times we in milliseconds and shortest, longest 
and median time to complete the migration are shown. The 
measurements were made on lightly loaded DEC 5000 
stations connected by an Ethernet. The communication 
protocol chosen to be used for RPC was UDP. 

The figures show that the overhead incurred by DC+t 
is neghgible. In previous measurements in the same 
environment we had measured about 6 ms for a raw empty 
RPC call. Moreover, the figures show that the migration 
time is not very sensitive to the amount of data being 
transfered. This, however, must be attributed to the tested 
data sizes-wbich all fit into a UDP packet-and the type 
of data used (arrays) which allows the IDL-compiler an 
efficient and fast encoding and decoding. A median time of 
35 ms for the migration of an object containing about 1000 
bytes makes DC++ suited for use in real applications. 

Experiences. Based on our implementation and on the 
example application, we gathered a number of important 
experiences: 

0 Object model. The object model seems to be more suited 
for distributed programming than the traditional 
client/server approach. Within our application (and within 
former projects), we observed that a uniform object model 
facilitates application design. Location independent 
invocation based on globally unique object identifiers 
makes distribution transparent to a large degree-except 
the problem of failure handling, of course. Remote object 
reference passing contributes to this fact as it is a natural 
passing mechanism in local applications, too. 
0 Object mobility. Mobility is a beneficial feature of 
distributed object-oriented approaches. It allows for 
modelling physical data transfer (such as document 
shipping) at a very high level of abstraction. Moreover, it 
provides explicit control of distribution when an 
application requires it (e.g. to co-locate communicating 
objects). 
0 Use of RPC. In spite of our criticism of RPC, this 
mechanism has proven to be a workable base for 
implementing such a distributed object management 
facility. Based on the one-to-one mapping of method 
invocations onto application-specific RPCs, most of the 
parameter marshalling problems were just passed down to 
the RPC level; this facilitated our implementation 
significantly. Moreover, the recursive implementation of 
the algorithm to locate objects based on RF'C has proven 
quite elegant and easy to test and maintain. It would be 
more efficient to send results back to the caller via a direct 
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message from the callee, but this slight disadvantage is 
outweighed by the chance of updating all intermediate 
location information. 

Use of standards. The use of DCE as an industry 
standard also had many advantages. As opposed to ad hoc 
mechanisms, the environment was rather stable. Moreover, 
we did not have to deal with heterogeneity problems; they 
are hidden by the RPC protocol. Finally, the high 
portability of applications based on a standardized platform 
is an important advantage in open systems. 

Use of system services. The use of system services as 
offered by DCE made a rapid implementation possible. In 
particular, we exploited CDS for node and object 
management and threads for concurrency support-in 
addition to RPC, of course. 

Interface definition. Our interface definition and stub 
generation approach is only an intermediate solution. Its 
capabilities regarding the language syntax are limited. 
Moreover, a partially redundant specification must be 
given. Therefore, a major goal of our future work is a full 
C++-based interface definition and stub generation 
facility. The templates defined for our stub compiler can 
be reused for such a solution: An eventual goal might of 
course be the integration of all mechanisms into DCE 
itself. 

3.5. Limitations 

Although we think that our current system is already usable 
for application development, it still has its shortcomings. 

Most notably there are currently two description files 
the user has to write: the IDL-description to be used by 
the IDL-compiler and the DC++ description file that is 
used to generate support code for migration and remote 
access. However, this is not a design limitation, since it is 
possible to generate the DC++ description file from an 
augmented IDL-description. Work is in progress to 
enhance the IDL-description (by defining so-called ACF- 
attributes) to allow the description of C++ class 
interfaces. From such a description the DC++ description 
file could be generated automatically, maybe even by the 
IDL-compiler itself. This would render the need for 
writing a second (redundant) description unnecessary, 
which-apart from being a nuisanc-also introduces the 
possibility of errors. 

Another limitation of the system related to the IDL 
description restricts the range of data types that can be used 
in migratable objects. Since the IDL-description must 
conform with the corresponding C++ classes it it currently 
impossible to support class hierarchies with virtual data 
member functions. 

As noted above, only object instances are mobile; 
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object classes, especially their implementation part, cannot 
be transferred between nodes in our prototype. Such 
functionality would require dynamic code linking into the 
destination’s address space. Moreover, it would of course 
be limited to relatively homogeneous, binary-compatible 
systems. 

Finally, although IDL allows complex data types such 
as linked lists it is currently impossible to migrate them. 
The reason is that the RPC runtime system allocates some 
parameters of a W C  on the server’s stack and deallocates 
them once the call has completed. This is desired behaviour 
for RPC and for a remote method invocation as well, 
however, when sending object data to another node to 
install the object there, i.e. when a migration is being 
performed, the data on the (RPC) server’s side must persist. 
For simple flat data types DC++ can simply do the 
allocation itself, when more complex (user-defined) data 
structures are involved, though, it would be necessary to 
have access to the IDL-description to take appropriate 
action. A possible solution would be to allow an attribute 
for an RPC call specifying that parameter data have to 
persist after the call completes thus enabling migration. 
How to do this exactly is another topic being investigated. 

Many of these problems can of course also be attributed 
to the very nature of distributed systems-basically, it is 
hard to implement functionality found in local systems via 
the network transparently. Our own experiences have 
shown that important basic functionality-such as location 
independent object invocation-zm be achieved based on a 
significant implementation effort. On the other hand, we 
also believe that it does not make sense to provide virtually 
all ‘local’ functionality remotely at any price in terms of 
implementation effort. 

4. Related approaches 

Several other distributed object-oriented prototype systems 
have been implemented a survey is given in [CHC91]. For 
example, distributed C++ extensions have been 
implemented by the Amber system [CAL89]. the Amodeus 
system [HOC911 within the European ESPRIT project 
COMANDOS, the Arjuna system [SDP91], Electra 
[MAF92], Peace [SCP92], and Panda [ABB93]. A similar 
approach has been the base of the ANSA project [ANS89], 
leading to the ANSAware system. 

Amadeus offers a general distributed C++ 
implementation but required many compiler modifications 
as reported by the authors. The Amber system integrates 
local multiprocessor parallelism with distributed 
programming. These facilities are achieved by the use of a 
dedicated kemel named Topaz. The Arjuna approach 
focuses on distributed transaction support for objects but 
does not provide object mobility. Electra offers remote 
method invocation by defining its own interface description 
language (Snoopy). For migation, however; the user has to 
write dump and undump methods to pack the object’s data. 
The Peace system is based on the specialized operating 
system kemel with the same name. It is among the most 

far-reaching approaches with full stub compiler support, 
mobility, and altemative implementations on a 
multiprocessor and on a distributed system. The Panda 
system implements distributed object management based 
on distributed shared memory at the object level; remote 
objects are fetched for invocations based on a kernel-level 
access fault. This makes sophisticated performance 
possible but requires kemel modifications. 

Implementations of distributed object-oriented systems 
based on different or new languages are Emerald [BW87], 
Disrribured Smalltalk [BEN87], and LII [BLA90]. They 
have introduced the major concepts and have shown that 
they can be implemented efficiently. However, due to the 
specialized languages, these and other systems have been 
limited to a dedicated domain of users. 

Finally, we would also like to note the stankdization 
effort of the Object Management Group (OMG) [OMG92], 
especially concerning the Common Object Request Broker 
(CORBA) [OMG91]. This ambitious work aims at 
providing a global distributeUpersistent object management 
framework, including DCE technology, language bindings, 
but also services from other areas like databases. CORBA 
itself enables remote object invocations, offering a C++ 
language binding. However, it does not support object 
mobility. The other parts of OMG’s proposed architecture 
are still within early stages of design or development. 

Our work has emerged in parallel with some of these 
projects but focuses on rather different goals, namely on 
the ease of system implementation at the user level, on the 
use of existing, unmodified compiler and communication 
facilities, and-more recently-on the integration with 
standards. The resulting integration with DCE at the 
implementation level mainly distinguishes our approach 
from other systems. This integration provides benefits for 
the application programmer: heterogeneity of network 
nodes and protocols is handled transparently, applications 
are highly portable, and the underlying environment is 
rather stable. Moreover, many benefits for our 
implementation work resulted, too. Most importantly, we 
did not have to write low-level communicatio code, e.g. to 
access sockets; this task had tumed out to be quite time- 
consuming within our former implementation. Another 
benefit was the existence of supplemental services such as 
tbreads and CDS. This way, concurrency support and 
object name management required just a few lines of code 
rather than a full thread package or directory server 
implementation. The achieved performance is fully 
acceptable within our cooperation project with DEC. It can 
definitely be improved by some implementation 
optimizations, but it will not reach the limits of microkemel 
implementations like Amoeba [TKR91], of course. This is 
the price to pay for the use of standards-but within our 
context of work, it seems to be worth paying it. 

5. Conclusion 

This paper described the design and implementation of a 
distributed object-oriented extension of the OSF 
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Distributed Computing Environment. The major features of 
the approach. location independent object invocation and 
object mobility, have proven very useful for application 
development. Moreover, the use of DCE as a standard has 
provided significant implementation benefits. 

"he described implementation grew out of experiences 
with an earlier system that attempted to provide the same 
functionality. However, we implemented this former 
prototype directly on top of T C P p  [SCM93] without DCE 
support. Our experiences compared to DC++ can be 
summarized as follows: first, it was much harder to provide 
basic system functionality for naming, object addressing and 
multithreading. With DC++, it became obvious that 
standardized system support for such problems-such as 
provided by the DCE services-is a crucial prerequisite for a 
rapid yet stable implementation. Secondly, remote method 
invocations could not he offered in a lransparent way as 
supported by DC+the application programmer had to 
provide code for encodmg and decoding the parameters. 
With DC++, much of this task can be left to the IDL 
compiler and stub generator. Moreover, interobject 
communication was only possible in homogeneous systems 
due to data representation mismatch problems. With DC++, 
DCE performs transparent data transformations based on its 
'receiver makes right' scheme [OSF92c]. Finally, our former 
implementation did not achieve a satisfying performance due 
to the use of an intermediate 'message distributor' process 
per physical node. With DCE RF'C, interprocess 
communication is direct as soon as a full binding handle for 
a peer server is available. This contributes to the acceptable 
performance numbers outlined above. 

Future work will address an even tighter integration 
with DCE. especially concerning the interface definition 
language. Jointly with a development group withim DEC, 
our project group wiU work on object-oriented, Ctt-based 
extensions of the interface specification and stub generation 
facilities. Another goal is the integration of a visual 
distributed application builder (VDAB), a graphical editor 
tool that has already been developed within our group. Its 
output will be adapted in order to match the formats of the 
interface definition correctly. Finally, object-oriented 
extension of other DCE components will be an issue for the 
more distant future. For example, the security service can 
be used for protecting objects. However, the granularity of 
the object model may be too fine in order to perform access 
checks efficiently. Therefore, new concepts will be required 
for protecting clusters of objects as a unit, for example. 
Distributed transactions as offered by new DCEbased 
products should also be integrated with the model of 
distributed object-oriented proessing. 

Our prototype will also be used by other projects in our 
distributed systems depamnent, for example as a base for 
extendmg other object-oriented languages towards 
distribution. 
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