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Abstract 

Chord length distributions (CLDs) and lineal path functions (LPFs) have been successfully utilized in 

prior literature as measures of the size and shape distributions of the important microscale constituents in 

the material system. Typically, these functions are parameterized only by line lengths, and thus calculated 

and derived independent of the angular orientation of the chord or line segment. We describe in this paper 

computationally efficient methods for estimating chord length distributions and lineal path functions for 

2-D (two dimensional) and 3-D microstructure images defined on any number of arbitrary chord 

orientations. These so called fully angularly resolved distributions can be computed for over 1000 

orientations on large microstructure images (500
3
 voxels) in minutes on modest hardware. We present 

these methods as new tools for characterizing microstructures in a statistically meaningful way.
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1. Introduction 

In recent years, the field of materials science and engineering has significantly advanced our 

understanding of how materials processing parameters influence the complex, hierarchical, internal 

structure (hereafter simply referred to as the microstructure) of advanced engineering materials, which in 

turn dominates the macroscale properties and performance exhibited by the material. This improved 

understanding has led to impressive advances in the development of highly sophisticated, physics-based 

or microstructure-sensitive, material models which are being integrated into commercial design and 

simulation software. Concurrently, major advances in 3-D (three dimensional) and 4-D (3-D and time 

resolved) materials characterization have set the stage for the affordable and accelerated deployment of 

new/improved materials for engineering technologies through the continued adoption of Integrated 

Computational Materials Engineering (ICME)[1–8], as envisioned by the materials genome initiative 

(MGI). 

The ICME strategy of replacing combinatoric experimentation with simulation, is dependent on 

verification and validation of not only the mathematical models used in the simulation but also of the 

simulation inputs as well. One of the key challenges of computational design is the validation of 

mesoscale materials/microstructure simulation volume elements, either representative volumes [1-12] or 

statistical volume elements [11, 12] as inputs to property models or digitally generated microstructures 

resulting from thermo-mechanical processing. Many advanced microstructural metrics have been 

proposed in literature to describe the shape and spatial distribution of microstructural features, including 

the n-point spatial correlations [13-20], shape moment invariants [21], topological descriptors including 

homology [22-24], entropic descriptors [25, 26], etc. However, for many applications, the cost of 

calculating and interpreting these descriptors is not appropriate. Instead, simple stereological estimators 

such as intercept lengths are mostly employed due to their a) easy interpretation, b) straightforward 

manual calculation using widely available microscopy software tools such as ImageJ [27], and c) strong 

connection to properties relevant to design (for example, grain shape and size distributions in 

polycrystalline metals are known to strongly influence their mechanical strength [28-32], while pore size 
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and shape distributions are known to have a dominant effect on the mechanical and transport properties in 

porous solids [13, 33]). Typically, only mean or average feature sizes are calculated by application of the 

broadly adopted ASTM E-112 “Standard Test Methods for Determining Average Grain Size” protocols 

[34], which involve counting intercepts of randomly oriented lines on two-dimensional sections or 

counting numbers of grains per area. The obvious weakness of such approaches is that they are not 

applicable to structures that have large structural anisotropies or where the size distribution of features 

includes distinct populations of several large and small features. The limited number of features counted 

also means that rare features corresponding to the extreme tails of the size distributions are unlikely to be 

counted. The manual or semi-automated nature of the analysis can also be problematic in that great care 

must be taken to ensure that the results are independent of who is performing the analysis, as large 

variances can result. For example, ASTM E-112 gives reproducibility at ±0.5 G which corresponds to 

≈ ±9�� uncertainty in the average diameter for material with 45�� average grain diameter.  

In this work, we demonstrate a computationally efficient scheme to compute anisotropic 

microstructure chord length distributions, which capture the complete size distribution of microstructure 

features in two- or three-dimensional material datasets. This approach retains the main benefits of the 

average intercept techniques in that the results are quick to compute, and simple to interpret and visualize, 

while providing significantly more detailed information beyond the average feature size.  

Chord length distributions (CLDs) [35-43] have been successfully utilized in prior literature as 

rigorous measures of the size and shape distributions of the important microscale constituents in the 

material system. A chord is defined as any line segment in the microstructure whose interior points are all 

occupied by the specific local state of interest (e.g., a pore or a distinct phase) and the end points abut 

against other local states. In other words, chords cannot be extended in either direction and still remain 

completely in the local state region of interest.  Formally, the CLD, 
���, denotes the probability density 

associated with finding a chord  (including a specified magnitude and a specified direction) within the 
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local state � in a given microstructure dataset. When the chords are identified by both their length and 

direction, the resulting distributions are termed as angularly resolved CLDs in this work. 

Another important microstructure metric that is closely related to the chord length distribution is the 

lineal path function (LPF) [13, 44].  Formally, the LPF, ����, denotes the probability that a line segment 

 (including a specified magnitude and a specified direction) thrown randomly into a given microstructure 

dataset lies entirely within local state �. In this definition, the line segment does not have to be a chord 

with end points at the interfaces as defined earlier. As before, when the line segments are identified by 

both their length and direction, the resulting function is termed as the angularly resolved LPF in this 

work. 

Prior work [37] has established a relationship between the CLD and the LPF. This relationship can be 

expressed as  

 

 
��� = ��
��	

������
��� ,									 �� = � �
�����	

�

�
 

(1) 

 

where � is the magnitude of , ��	is the volume fraction of local state �, and �� is the mean chord length 

along the direction of . Both the CLD and the LPF are commonly estimated by sampling, and accurate 

estimation requires identifying a very large number of chords in the microstructure or throwing a very 

large number of line segments into the microstructure. Because of the high computational cost involved in 

these estimations, most prior applications [13, 35-43, 45, 46] have been largely limited to isotropic 

structures, where the CLD and the LPF were assumed to be independent of the direction of the chord or 

the line segment, respectively.  

It should also be noted that CLDs and LPFs have been utilized successfully in reconstructions of 

microstructures [47]. More germane to the present discussion, Talukdar et al. [48] utilize angularly 

resolved CLDs in their microstructure reconstructions. However, they employ only four selected 

directions in a two-dimensional (2-D) microstructure dataset in computing the angularly resolved CLDs. 
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This is presumably because of the prohibitively high computational cost involved in the currently used 

methods for estimating these distributions. In fact, Talukdar et al. [48] utilize a sampling approach for the 

calculation of the CLDs by translating a line successively to every pixel in the image. This approach has 

the unique advantage that it does sample all chords present in the given dataset. Singh et al. [44] use a 

similar approach for computing the lineal path function for high resolution 2D micrographs. They 

compute angularly resolved lineal path functions in three directions; zero degrees, ninety degrees, and 

forty-five degrees. However, certain optimizations are needed to make the approach computationally 

practical for use in large 2-D and 3-D microstructure datasets, while including a larger number of 

directions.  

The main purpose of this paper is to explore an efficient algorithm for computation of angularly 

resolved CLDs and LPFs. The approach shown in this paper is referred as the Scan Line Method, and is 

an extension of the simple idea of translating a line successively to every pixel in the dataset (utilized 

earlier by Talukdar et al. [48] and Singh et al. [44]). We present in this paper several new ideas for 

optimization of the computations involved in the Scan Line Method for estimating angularly resolved 

CLDs in large 2-D and 3-D microstructure datasets.  Furthermore, we present numerical procedures for 

extracting LPFs from the computed CLDs in this approach. The protocols developed in this work are 

demonstrated on selected example 2-D and 3-D microstructure datasets. We show clearly that angularly 

resolved CLDs and LPFs can be computed efficiently for large 3D microstructures for large numbers of 

directions. 

2. Computational Procedures 

A line scan approach, such as the one employed by Talukdar et al. [48], might prove to be 

computationally efficient if implemented in a highly optimized environment. As an illustrative example, 

consider a 2-D binary image represented as a square matrix �. Furthermore, let us restrict our initial 

attention to only the chords in this image that have an orientation of 0°, i.e., those that are completely 

horizontal. We can precisely identify and compute the distribution of lengths of these chords by simply 

scanning through the rows of the matrix �  (assuming these correspond to pixels in the horizontal 
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direction), and keeping track of the starts and ends of chords as we encounter them. For instance, we can 

scan along each pixel in a row of the image and record when we encounter a phase value of interest. After 

this, we will continue scanning forward until we encounter a pixel with a value of another phase. At this 

point, we will have identified a chord of a certain length and it can be recorded for calculation of a 

distribution. This approach works just as well for vertical chords as we can simply look at the columns of 

the image. One final note is that we must discard chords that originate or touch the boundary of the image 

because we cannot be sure these are in fact chords. This is because pixel\voxels at the edge of our image 

may not be interface pixels\voxels. The criteria of non-edge chords not being counted can be removed 

when one wishes to calculate lineal path functions from chord length distributions because lineal path 

functions do not require that line segments span interfaces like chords. 

A scanning algorithm for orthogonal lines is extremely efficient both computationally and in terms of 

memory. It will require on the order of ���� number of operations, where � is the number of pixels in the 

image. The memory requirements are even better as it requires only keeping track of a distribution of 

chord lengths, where the zero chord length and the longest possible chord lengths define the range. So we 

have a memory requirement upper bound of ����  because the computation can be done in place. 

However, we must be able to adapt this algorithm for chords that are not perfectly aligned along the 

reference axes of our image. Fortunately, the field of computer graphics has already developed a fast and 

simple algorithm for determining arbitrarily oriented scan lines through an image. This novel idea is 

described below. 

Bresenham’s line drawing algorithm [49] is efficient algorithm for drawing an approximation of a 

line between two points in an n-dimensional image. Given the start and endpoint of the line in the image, 

Bresenham’s algorithm determines the pixels lying on the line between these two points using only 

integer addition, subtraction, and bit shifting. Using only integer arithmetic is not only faster, but more 

accurate because it avoids the common drawbacks of accumulated floating point error. With Bresenham’s 

algorithm, we can determine the pixels that correspond to a scan line through the image of any 
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orientation. Once we have determined the pixels for a given scan line, we can then simply translate this 

line such that it sweeps through the entire image (see Figure 1).  

 

Figure 1: This figure details how chords are identified for a particular orientation. In all images the 

red phase is the phase of interest. The green coloured pixel marks the active pixel in the algorithm, 

blue marks pixels that have be processed, and gold marks pixels along a chord. In (a) we show how 

for a given orientation we try every scanline within the image dimensions. Some are not shown 

here for the sake of brevity. For each scanline, we begin (b) by starting at one edge of the image and 

marching along the rasterized approximation of an oriented line until (c) we encounter the phase of 

interest. We then continue moving along the scanline until (d) we encounter a pixel that is not the 

phase of interest. At this point we have identified a chord as long as the start pixel and end pixel are 

not touching the edge of the image. In (e) we continue processing the remaining portion of the 

scanline.    
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Using translated Bresenham lines we can scan through an image in any arbitrary direction and 

identify all chords in the local state regions of interest. This scan converted image will allow us to 

calculate the distribution of chord lengths in that direction using a process that is almost identical to the 

case of vertical or horizontal chords described earlier. The main difference is that we will have to account 

for the conversion between number of pixels along a Bresenham line and the length of the line. The 

length of a chord can be approximated by calculating the Euclidean distance between the chords start and 

end pixels.  

This scan line approach is roughly equivalent to the rotation of a discretized image. Computationally, 

the rotation of an image is worse than the scan line method described above since it requires a copy of the 

image to be made. However, because 2D image rotation is such a common image operation in computer 

graphics, a tremendous amount of work has been done to develop optimized routines for this purpose. We 

have thus implemented two algorithms for 2D images, one uses the above described scanline approach 

and the other using simple image rotation with bilinear interpolation. Bilinear interpolation is probably 

the most common interpolation method used for image registration to a new coordinate system. Given a 

point to register, it finds the four nearest pixels and computes weighted average of their values [50]. Our 

results in this paper for 2-D images are shown and compared for both methods. However, such a simple 

approach of rotating the image was not effective for 3D images for two principal reasons. First, there are 

no real efficient implementations of 3D image rotation algorithms known to the authors. Memory 

requirements of copying a large 3D image could be prohibitive; therefore, an in-place algorithm like the 

scan line method is more attractive in the authors’ opinion. 

The same scanline algorithm outlined above for 2-D images can be extended to 3-D images as well. 

We have developed a parallelized implementation of this algorithm that computes a full angularly 

resolved CLD. Performance of this algorithm running on an 8 core 2.4 GHz Intel Xeon machine for a 

500
3 
voxel dataset with azimuthal and polar angular resolution of 5

o
 was approximately 20 minutes. This 

algorithm may be significantly improved if it was developed for modern graphics processing units 
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(GPUs) because of its massively parallel nature. That is, each computation for a specific scan line 

orientation is completely independent of the others.  

It is relative easy to compute the lineal path function directly from a chord length distribution. Such 

an algorithm is described by Singh et al. [44] and simply requires counting all the line segments that 

could possibly fall along each chord. That is, if we have a chord of length 10 pixels\voxels. Then we can 

fit one line of length 10, two of length 9, three of length 8, and so on. The only thing left after 

enumerating all such line segments is to normalize by the total number of possible line segments for each 

length which is a function of the image dimensions and line length. One important note, as mentioned 

before, is that chords that touch the boundary of the image should be added when constructing lineal path 

functions from chord length distributions.  

3. Results 

To demonstrate our algorithms we have selected a set of example microstructures (both 2-D and 3-D 

samples).  

3.1 Two-Phase 2-D Microstructure 
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Figure 2: A simple image of identical circles of diameter of approximately 32 pixels placed in a 

uniformly random manner. Volume fraction of the circular phase is 18.2%. The image dimensions 

are 2048x2048. 

As a first demonstration, we consider a simple 2-D digital microstructure (shown in Figure 2) with a 

uniformly random distribution of circles each with a diameter of approximately 32 pixels. Volume 

fraction of the circular phase is 18.2 percent. The diameter is approximate because of the nature of 

representing a circle on a raster. The main advantage of selecting such a simple example microstructure is 

that we have a closed form analytical solution for both the CLD and LPF. For many simple convex 

shapes/bodies, closed form expressions for the non-angularly resolved CLD have been derived and 

studied [37, 51-53]. For a simple circle, we have the following expression [51] for the non-angularly 

resolved CLD: 

 

 

��� = �

4 ! � " #�2%
� 

(2) 
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where   is the radius of the circle, which is 16 pixels for our test image described above. A comparison of 

the integrated values recovered using our algorithm (rotated 2D images) with the closed form expression 

(2) is presented in Figure 3. We can see that the calculation is accurate aside from the noise present due 

to the discretized nature of the rasterized circle. That is, our digitized image of a circle is only an 

approximation to a true circle made from a discrete set of Bresenham lines. Therefore, certain chords are 

overrepresented and others are underrepresented. Nowhere is this more obvious than in the regime of very 

short chords (around 1 to 3 pixels). Several authors [42, 51] discuss this problem and its causes 

extensively, and describe a few very simple mitigation strategies. These simple strategies generally 

involve discarding certain chords by defining a minimum acceptable chord length criterion. The strictest 

of these criteria is that in order for a chord to be counted it must at least traverse a distance of one voxel 

unit size in all dimensions. That is, we only accept chords that traverse at least a single resolution distance 

in both x and y for 2D and x, y, and z for 3D. We have not implemented this criterion in the calculations 

shown in Figure 3, so that we can illustrate the inherent inaccuracies of approximating chords and shapes 

on a raster. In Figure 4, we show a comparison between results computed using the scanline method and 

the image rotation methods described above which show general agreement. We would like to note that 

the rotation method seemed to result in a slightly less noisy result when compared to the scan line 

approach. We conjecture that this is a result of the bilinear interpolation and thresholding of the image 

when it is rotated. Our hypothesis would be that scan line method captures the discretized nature of the 

circle at different angles more accurately, while the image rotation method has a tendency to average out 

these differences at each orientation. Further work is needed to verify this hypothesis. 
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Figure 3: Comparison of closed form and calculated results for non-angularly resolved chord length 

distribution  for a simple two dimensional circle with an approximate diameter of 32 pixels. 

 

Figure 4:  Comparison between chord length distributions computed using both a scanline and 

image rotation method. Aside from some small deviations due to the differences between 

Bresenham line discretization and image rotation interpolation, the methods mostly agree.  
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If we do not integrate over the angular dependence of the chord length distribution, we arrive at the 

results shown in Figure 5. This figure depicts the chord length distribution for each angle sampled, where 

each exhibits inherent noise as shown in Figure 3. However, based on how the circle is rasterized, certain 

chord orientations will exhibit more noise than others. To alleviate this noise, we have performed a five 

point/pixel moving window average on each distribution (for each sampled angle). These results show, as 

we expect, that there is no angular dependence on the chord length distribution for a circle. The 

computation of the angularly resolved full distribution for a 500x500 pixel image took less than a second 

on a 2.00 GHz Pentium 4 PC.  
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Figure 5: Full angularly resolved chord length distribution for the image in Figure 2. The polar axis 

on the figure represents the angular orientation of the chord. The radial axis represents the length 

of the chord. Each individual distribution (chord angle) has been smoothed with a 5 point/pixel 

moving window average to eliminate noise resulting from discretization of the circle.  

 
To confirm our calculation of LPFs from our chord length distribution, similar to [44], we used the 

following expression for the LPF of the matrix phase for a set of uniformly distributed equal size circles; 

 

 �&'()�*�z� = �&'()�*,-
�./-012345678
9:0123456  

(3) 
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The �&'()�* is the volume fraction of the matrix phase, 81.8 percent in our case. The radius   of our 

circles is 16 pixels as described in Figure 2. The comparison of the calculated and analytical LPF is 

shown in Figure 6. The results show excellent agreement between the two functions.    

 

Figure 6:  Shows a comparison between the analytical and calculated LPFs for the matrix phase in 

the case of randomly distributed circles of r 32 pixels.  The calculated LPF derived from our chord 

length distribution of the matrix phase of the image presented in Figure 2 show excellent 

agreement. 

To demonstrate the capability of the angularly resolved chord length distributions in capturing the 

anisotropic details of the microstructure, we have selected another simple synthetic 2D microstructure as 

a case study. In this example, the image comprised of uniform randomly placed ellipses with major axis 

of 95 pixels and minor axis of 63 pixels. The ellipses are all oriented with the major axis being vertical. 

This microstructure is shown in Figure 7, and its corresponding angularly resolved chord length 

distribution is shown in Figure 8. As seen from these figures, the proposed protocols do provide the 

expected results. This specific example, however, does not have a closed-form analytical solution (the 

solutions available in literature [54] are for the case where the chords are not angularly resolved). 
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Figure 7: image of uniform randomly placed ellipses with major axis of 95 pixels and minor axis of 63 

pixels. The ellipses are all oriented with major axis at 90 degrees from the horizontal. 
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Figure 8: The angularly resolved chord length distribution of the image shown in figure 7. The 95 pixel 

major axis of the ellipse is highlighted by the peak of the chord length distribution at the 90 degree 

orientation.  

  
3.2 Porous 3-D Microstructure  

To illustrate the capabilities of the extended approach described in this paper for 3-D microstructures, 

we have selected a digitally simulated 3D porous microstructure. This high resolution sample consists of 

500x500x500 cubic voxels. It has been segmented into two distinct phases: pore and matrix. To quantify 

the shape of the porous structure, we ran our chord length algorithm on the pore phase of this dataset. We 

used scanlines at azimuthal and polar angular increments of every 5 degrees. 
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Figure 9: Top left shows a synthetic digitally created 3-D microstructure. The pore network has 

been colored to show connected pores with distinguishing colors. In the bottom left, the mean pore 

chord length in all directions has been plotted on the surface of a sphere. Polar and azimuthal 

angles correspond to orientations of the chord within the sample. To the right, we show selected 

chord length distributions for two chord orientations. The angularly resolved chord length 

distributions show clearly the anisotropic nature of the porous structure. 
    

Analysis of these results shows a difference of approximately 11 voxels between the maximum and 

minimum mean chord lengths for sampled directions. These anisotropic features of the pores in this 

sample are illustrated in Figure 9. It is important to remember that for each chosen orientation of scanlines 

through the sample we calculate a full chord length distribution. It is difficult to render all of this 

information into a single figure so we have elected to show an illustrative subset of these distributions. 

Typical calculations of a non-angularly resolved chord length distribution would obviously not capture 

these features. Calculation of these distributions on the entire 500x500x500 voxel dataset was performed 

using a dual core Intel® i7-2460M CPU at 2.8 GHz in roughly 20 minutes.   
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4. Summary 

Despite the known complex anisotropic nature of materials, non-angularly resolved implementations 

of the chord length distribution and lineal path function are frequent in the literature. We have described 

an efficient algorithm for the calculation of the angularly resolved chord length distributions in both 2D 

and 3D digital images. To the author’s knowledge, this work presents the first calculations of these 

angularly resolved distributions for high resolution 3D datasets in thousands of directions at once. 

Moreover, we believe the algorithm presented can be extended to leverage general purpose computing on 

graphics processing units (GPGPU) to reach an additional order of magnitude or more performance 

increase. These results should provide researchers wishing to quantify the structure of materials with a 

new and more efficient tool to do so.       
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