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Abstract
The Continuum Dislocation Dynamics (CDD) theory and the Discrete 
Dislocation Dynamics (DDD) method are compared based on concise 
mathematical formulations of the coarse graining of discrete data. A numerical 
tool for converting from a discrete to a continuum representation of a given 
dislocation configuration is developed, which allows to directly compare 
both simulation approaches based on continuum quantities (e.g. scalar 
density, geometrically necessary densities, mean curvature). Investigating 
the evolution of selected dislocation configurations within analytically given 
velocity fields for both DDD and CDD reveals that CDD contains a surprising 
number of important microstructural details.

Keywords: dislocation dynamics, continuum theory of dislocations, 
microstructure, coarse graining
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(Some figures may appear in colour only in the online journal)

1. Introduction

Predicting and understanding the collective evolution of dislocation ensembles together 
with the resulting mechanical properties of crystalline materials is a long-standing goal of 
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microstructure-based plasticity. From a computational perspective, reducing dislocation 
mechanics to a system of partial differential equations  amenable to solution by standard 
continuum computational methods would be highly desirable. However, the nature of those 
curved, line-like defects makes the development of a continuum theory of dislocations an 
extremely difficult challenge [1], which today is still not fully mastered. One way of enriching 
macroscopic continuum descriptions with additional details of smaller length scales (e.g. with 
details of dislocations) are concurrent as well as hierarchical multi-scale approaches for bridg-
ing the atomistic to the continuum domains [2–4]. These methods aim at establishing a direct 
link between atomistic details of dislocations and macroscopic mechanical properties of mate-
rials. The level of detail in these approaches is very high, and length scales can be reached that 
are not accessible to one-scale methods as e.g. atomistic simulations. Multi-scale approaches, 
however, are still computationally very expensive and the information transfer between meth-
ods is numerically challenging. An alternative description of dislocation ensembles is utilized 
in mesoscopic methods such as the discrete dislocation dynamics method (DDD) [5–15].  
In DDD the atomic scale is not resolved, and instead dislocations are represented as discrete, 
linear defects interacting according to the elastic theory of dislocations [16–20]. Because 
each dislocation is resolved individually, DDD is able to accurately describe the motion and 
interaction of dislocations in a very detailed manner. However, the computational cost of 
DDD scales with the number of dislocations considered and is therefore computationally 
expensive when it comes to large numbers of interacting dislocations (large referring e.g. to 
a density of ⩾1013m−2 in a volume of ⩾(10 μm)3). To overcome these limitations, one might 
seek continuous density-based descriptions as alternative to the representation of dislocations 
as discrete objects. Reducing dislocation microstructure to distinct ‘types’ of e.g. geometri-
cally necessary and statistically stored dislocations (GNDs and SSDs) allows strain gradi-
ent based continuum methods [21–23] to become independent of the number of interacting 
dislocations. These approaches result in a substantial gain in terms of tractable length and 
time scales which makes them interesting for engineering applications. The main drawback 
is that only few, strongly averaged aspects of systems of dislocations are preserved, and e.g. 
fluxes of dislocations cannot be accounted for at all. Recently emerging continuum models of 
dislocation dynamics (CDD) bridge the gap between these last two approaches by combining 
the efficiency of a continuum theory with the physically sound basis of a dislocation based 
description: ‘Kröner–Nye tensor’-related models [24–26] are based on fluxes of GNDs, and 
continuum screw-edge representations are a relatively coarse but efficient way of representing 
dislocation loops [27–29], while models that consider densities of curved lines contain con-
siderably more information [30–35] and recently even have been coupled to gradient plasticity 
models [36]. Among others, applications with high densities and/or high accumulated plastic 
strains particularly benefit from continuum dislocation dynamics models (e.g. [37–41]).

Because in a CDD-type continuum framework details of individual dislocations are 
accounted for in an average sense, one may question the physical validity and the predictive 
capability of such an approach. In principle it should be possible to benchmark CDD theories 
through comparison with averaged data extracted from DDD simulations. Up to date, contri-
butions into this direction have been presented by A. El-Azab and co-workers [42, 43], who 
investigated ensemble averages and statistical properties of dislocation microstructure e.g. in 
terms of dislocation density and orientation distributions. The objective of the present work 
is to compare CDD and DDD directly by analyzing dislocation microstructures that develop 
in time from equivalent initial conditions. Although such a detailed comparison is essential to 
validate assumptions used to derive the particular CDD formulation, no previous attempts into 
this direction exist (to the best of the authors’ knowledge). One of the reasons for the lack of 
such direct comparisons may reside in the formulation of a CDD theory itself. In order to be 
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comparable to DDD simulations in an average sense a CDD framework must fulfill a number 
of criteria: (i) its density measures must be derived by well defined statistical averaging steps 
from systems of discrete dislocations (i.e. in a bottom-up approach); (ii) its evolution equa-
tions should map an initial set of density measures onto a set of temporally evolved densities; 
(iii) it must be kinematically and (iv) dynamically consistent.

 • Kinematic consistency describes the ability to evolve dislocations as curved and connected 
lines with the concomitant line length change during motion in a given velocity field.

 • Dynamic consistency, on the other hand, describes the ability to predict the actual evolu-
tion of a dislocation system under externally applied mechanical load as well as mutual 
interactions between dislocations.

It is generally not recognized in the literature that kinematic consistency is a necessary pre-
requisite for dynamic consistency and that it considers only geometrical aspects of averaged 
systems of dislocations. While the problem of dynamic consistency is to date still far from 
being solved, the recently developed (so-called ‘simplified’ or ‘integrated’) CDD theory by 
T. Hochrainer and co-workers [34, 35, 44, 45] was rigorously derived to solve the problem of 
kinematic consistency and has already demonstrated its applicability in a number of problems 
[34, 35], including dislocation patterning [41]. The goal of this work is to establish a method-
ology for a direct and detailed kinematic comparison between DDD and CDD models and to 
demonstrate the accuracy of CDD through a number of benchmark problems.

The outline of this paper is as follows: in section 2 we give a brief overview of the general 
concept for validating continuum dislocation microstructure with discrete data used in this 
paper. In section 3 we introduce the mathematical foundations for the geometrical representa-
tion of curved dislocations lines and for obtaining averaged continuum quantities in an analyt-
ical as well as in a numerical way. We then briefly introduce the evolution equations for CDD 
and how CDD data can be numerically obtained from DDD in section 4. Section 5 investigates 
numerically the quality of the continuum model during time evolution of DDD and CDD 
microstructures for three different benchmark systems. Finally, in section 6 we demonstrate 
how the DDD model can be used for ‘data mining’ in order to estimate the quality of one of 
the assumptions on which the CDD version used in this paper is based.

2. Outline of the CDD–DDD validation approach

The fundamental idea for validating the microstructure evolution within CDD is sketched in 
figure 1. Consider an ensemble of dislocation loops with the same Burgers vector b, occupying 
a domain of size ▵× ×L L zx y  (figure 1(a)), where the slip system normal points in z direction. 
Each dislocation is located on a different slip plane and moves—driven by an external stress 
field—by glide only; no annihilation, cross slip etc are considered. Averaging over the height 
of a sub-volume ▵z we obtain figure 1(b), which serves as initial dislocation microstructure 
for our investigations. In the following sections a systematic method for extracting average 
fields (e.g. dislocation densities, Nye tensor, curvature, etc) from systems of discrete loops is 
developed. This discrete-to-continuum conversion method (D2C) is applied to the DDD initial 
configuration (figure 1(b)), from which we obtain average fields (figure 1(c)). Those serve 
as initial values for the CDD model. CDD initial structure (figure 1(c)) is evolved by time 
integration of the CDD evolution equations, while the initial configuration of discrete loops is 
independently evolved in time by the DDD equation of motion. This results in the DDD and 
CDD microstructures as shown in figure 1(d) and (e). At any subsequent point of time, rel-
evant state quantities of CDD, figure 1(e), can be compared to corresponding DDD quantities 
as obtained from the D2C conversion, figure 1(f ).
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3. Conversion of discrete dislocation lines into continuous fields (D2C)

In what follows the discrete-to-continuum (D2C) approach is described which is used to sys-
tematically average the geometric properties of discrete dislocation lines to obtain CDD state 
quantities. To differentiate between variables for discrete and continuous measures the super-
script ‘d’ is used for discrete quantities. The superscript is dropped for a continuous quantity 
or when the context is clear. This section starts by introducing the geometrical representation 
of discrete lines and their approximation through splines, followed by a formal density defini-
tion. Subsequently, mathematical averaging operators are introduced and concisely derived in 
a discretized form which is suitable for numerical implementation.

3.1. Discrete dislocation lines and their geometrical approximation

From a geometrical viewpoint, a dislocation line is an oriented curve (ℓ)c  which can be param-
eterized by its arc-length ℓ. The local unit tangent vectors are the first derivative of c

(ℓ)
ℓ

=l
cd

d
,d (1)

while the curvature vector is given by the change of orientation per unit arc-length,

ℓ ℓ
= =k

l cd

d

d

d
.d

d 2

2
 (2)

The scalar curvature is the reciprocal of the local radius of curvature R of the dislocation line:

� �= =kk
R

1
.d d (3)

Although parameterization by arc-length is the most natural choice for defining geometrical 
properties of a curve, in general the parameter ℓ is only available after the curve has been 

Figure 1. Sketch of the system (a), coarse graining steps and time evolution. The 
continuous field (c) is obtained from the DDD configuration (b). Both systems then 
evolve independently. DDD and CDD result in (d) and (e), respectively, and can then 
directly be compared by converting (d) into continuous fields (f ).
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constructed. Thus, for practical purposes, it is often necessary to prescribe a curve through a 
parameter u, say [ ]∈u 0, 1 . In this case unit tangent and curvature become

( ) ( )= = −l
c

k
c c

u
J u

u
J u J

J

u u

1 d

d
and

1 d

d

1 d

d

d

d
d d

2

2

2 3
 (4)

where the scalar J and its derivative are given by

( ) ℓ
= = = ⋅

c c c
J u

u u

J

u J u u

d

d

d

d
and

d

d

1 d

d

d

d
.

2

2 (5)

In this work dislocation lines are discretized into segments, each of which is represented by a 
cubic Hermite spline of the form

( ) ⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

γ
γ γ
γ γ

= − − −
−

c

P
T
P
T

u u u u1

1 0 0 0
0 0 0
3 2 3
2 2

,2 3

0

0

1

1

 (6)

where ( )P T,0 0  are position and parametric tangent vectors of the first knot of the segment 
(u  =  0), ( )P T,1 1  are the corresponding quantities for the second knot of the segment (u  =  1), 

∥ ∥γ = − αP P1 0 , and α is a tension parameter3. Cubic splines are used instead of linear seg-
ments in order to have non-vanishing curvature along each segment. This type of representa-
tion is adopted in the so-called Parametric Dislocation Dynamics method (PDD) [11]. The 
numerical studies below are based on the existing implementation [14, 46].

3.2. Averaging dislocation fields

As an auxiliary functional for averaging geometrical properties of discrete dislocations, we 
introduce the Dirac delta-operator on a dislocation line c as

∫δ δ= −• •r c r, d ,c

L

0

c

([ ] ) ( (ℓ) ) ℓ (7)

where the symbol ‘•’ is a placeholder for an arbitrary line property described by a scalar, vec-
torial or tensorial function of c and r is a point in space. Using (7), for each discrete line c we 
can define the scalar dislocation density ρc, the line direction density (or vector of signed GND 
densities) �c, the Kröner–Nye tensor αc [47], and the curvature density vector qc as4

( ) ([ ] ) ( (ℓ) ) ℓ∫ρ δ δ= = −r r c r1 , dc c

L

0

c

 (8)

� ( )
ℓ

( (ℓ) )
ℓ

ℓ
⎛
⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟ ∫δ δ= = −r

c
r c r

cd

d
,

d

d
dc c

L

0

c

 (9)

( )
ℓ

( (ℓ) )
ℓ

ℓ
⎛
⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟ ∫α δ δ= ⊗ = − ⊗r

c
b r c r

c
b

d

d
,

d

d
dc c

L

0

c

 (10)

3 Parameterization corresponding to α = 0, α = 0.5, and α = 1 are called uniform, centripetal, and chordal,  
respectively. 
4 In the following we assume only one slip system, i.e. all dislocations have the same Burgers vector b. From this 
case we can then construct the multi-slip system situation by appropriate superposition (e.g. summation of  
densities). 
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( )
ℓ

( (ℓ) )
ℓ

ℓ
⎛

⎝
⎜
⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟ ∫δ δ= = −q r

c
r c r

cd

d
,

d

d
d .c c

L2

2 0

2

2

c

 (11)

The later on used scalar, signed curvature density qc can be obtained by projecting the curva-
ture vector on the outwards pointing normal

( ) ( (ℓ) )
ℓ ℓ

ℓ⎜ ⎟
⎛
⎝

⎞
⎠∫ δ= − ⋅ ×r c r

c c
nq

d

d

d

d
d ,c

L

0

2

2

c

 (12)

where n is the slip plane normal. These discrete measures are well suited for spatial (or ensem-
ble) averaging over a number of lines, and we introduce an averaging operator for the volume 
Vr of size V as

∫=• •V r: 1/ d ,rV
V

,
3

r

〈 〉 ( ) (13)

where the averaging volume is centered around r. Application of (13) to (8)–(12) leads to the 
definition of the corresponding average fields:

L
( ) ℓ∫∑ ∑ρ ρ= =r

V

1
d

c
c

r cV , c
rV , (14)

� �
L

( )
ℓ

ℓ∫∑ ∑= =r
c

V

1 d

d
d

c
c

c c
rV ,

 (15)

L
( )

ℓ
ℓ∫∑ ∑α α= = ⊗r

c
b

V

1 d

d
d

c
c

c c
rV ,

 (16)

L
( )

ℓ ℓ
ℓ⎜ ⎟

⎛
⎝

⎞
⎠∫∑ ∑= = ⋅ ×r

c c
nq q

V

1 d

d

d

d
d

c
c

c

2

2
c
rV ,

 (17)

Therein, L ⊂ cc
rV ,  denotes a section of line c contained inside the averaging volume V which 

is centered at r. Note, that upon volume integration of the total density (14) the total dislo-
cation line length contained within the volume is obtained. Analogously, integration of the 
signed curvature density (17) yields the number of closed loops as multiple of π2 . The vector 
of signed GND densities �  contains densities of positive and negative edge and screw dis-
locations as later used in the CDD evolution equation (23). We remark that the (scalar) geo-
metrically necessary dislocation density ρG is the norm of � , i.e. � �ρ ≡ =G �� , and that the 
average line direction of the geometrically necessary dislocations is given by the unit vector 

� �� ∥ ∥=l / .

3.3. Numerical discretization of the averaging scheme

Numerically, the fields (14)–(17) can be discretized by replacing the spatial points r with a 
finite set of points ri which have the coordinates ( )x y z, ,i i i . On a regular grid each point ri is then 
the center of a sub-volume ▵ ▵ ▵=V x y zi  which defines the averaging sub-domain Ωi:

▵ ▵ ▵ ▵
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥Ω = − + ×…× − +x x x x z z z x

1

2
,

1

2

1

2
,

1

2
i i i i i (18)
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and determines the resolution of the continuum representation. As a consequence of this 
coarse graining, it is well possible that inside a sub-domain Ωi line segments ‘cross each 
other’ without intersections: although these lines are located on different physical glide planes 
they can not be resolved separately after coarse graining5. The discretized version of the scalar 
dislocation density (14) is:

( ) ( )
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑ρ ρ= =

∈Ω

r
V

J u w
1

.
c c

ci i
i k u

k k
, k i

 (19)

In (19) we compute the line length contribution of each dislocation segment by numerical 
quadrature: letting uk and wk be the abscissas and weights of the quadrature method of choice6 
in the unit interval [0, 1], respectively, each quadrature point contributes a line length ( )J u wk k 
to the domain Ωi which contains ( )c uk . Conveniently, the quantity J(uk) can be directly com-
puted for each dislocation segment from (5) and (6). Analogously, we define the discretized 
vector of signed GND densities, and the discretized signed curvature density as

� � ( )
ℓ

( ) ( )
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑= =

∈Ω

r
c

V
u J u w

1 d

dc c
ci i

i k u
k k k

, k i

 (20)

( )
ℓ ℓ

( )
( )

⎜ ⎟
⎛

⎝
⎜⎜

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

⎞

⎠
⎟⎟∑ ∑= = ⋅ ×

∈Ω

r
c c

nq q
V

J u w
1 d

d

d

d
.

c c
ci i

i k u u

k k
,

2

2
k i k

 (21)

4. Evolution equations for CDD and DDD

4.1. Continuum dislocation dynamics

The Continuum Dislocation Dynamics theory provides conceptual steps to map a discrete 
dislocation system onto a set of continuous, density-like field variables together with the 
respective evolution equations governing their change in time. The original, higher-dimen-
sional theory (hdCDD) was defined in a configuration space which added an additional 
dimension to the spatial domain [32, 48]. hdCDD is very accurate and contains very detailed 
microstructure information [39, 49] but suffers from requiring a large number of computa-
tional degrees of freedoms. As a computationally favorable albeit somewhat less accurate 
theory a simplified version (CDD) is used, which is based on spatial evolution equations for 
the total dislocation density ρ, a vector of geometrically necessary signed densities �  and 
the curvature density q [35, 45, 50]. We assume that the components of �  are oriented such 
that they represent the orientation of screw and edge dislocations: � � �[ ]= ,s e . The temporal 
evolution of these field quantities are—in local slip system coordinates—governed by the 
following set of equations:

�( )ρ∂ = −∇ ⋅ +⊥v vqt (22)

� ( )ρ∂ = −∇× nvt (23)

5 The coarse graining resolution is the reason why short-range interactions have to be handled differently as  
compared to DDD. This, however, will not be discussed here. 
6 In this work we have used a uniform distribution of the quadrature points i the interval [0, 1]. 
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( )( ) ( )∂ = −∇ ⋅ − + ⋅ ∇q v vQ A ,t
1 2 (24)

where n denotes the slip plane normal. The by 90° rotated GND density vector is � � �[ ]= −⊥ ,e s , 
and we assume �( ) ρ= − ⊥qQ /1  (see [50] for a discussion of this assumption). The evolu-
tion equations are mathematically closed by an expression for the tensor ( )A2  which here is 
obtained from a ‘maximum entropy’ approach [50]:

� � � �[( ) ( ) ]( ) ρ
= + Φ ⊗ + − Φ ⊗⊥ ⊥l l l lA

2
1 12

 (25)

where �⊥l  is the unit vector perpendicular to �l . As shown by Monavari et al [50] Φ can be 
approximated as � �( ) ( ( ) )ρ ρΦ≈ +/ 1 / /22 4  and is a non-linear interpolation between � = 0 
(isotropic dislocation arrangement) and � ρ=  (fully polarized dislocation arrangement). In 
section  6 we numerically investigate the validity of this approximation. The correspond-
ing non-dimensionless scaling of the CDD equations (22)–(24) can be found in appendix D 
of [51].

In general, the velocity v in the above equations needs to be specified in terms of a consti-
tutive equation through which elastic interactions enter the model. This is a priori not part of 
CDD: e.g. long-range (or ‘internal’) interaction stresses have to be obtained from the addi-
tional solution of a dislocation eigenstrain problem [42, 52, 53] while elastic short-range inter-
actions have to be recovered in an alternative way based on CDD fields (see e.g. [54–56] for 
steps into this direction) due to the limited resolution of any continuous description. Within 
the present work we will not tackle this problem of ‘dynamic closure’ and assume for bench-
mark purposes velocity fields given as stationary analytical functions that do not depend on 
the dislocation state7. In other words: we ignore all dislocation interactions and concentrate 
exclusively on the ‘kinematics’, that is, how curved and connected lines move and evolve in 
space and time without interactions.

4.2. Regularization

Equations (19)–(21) can be used to extract coarse grained fields of geometrical data from a 
given configuration of discrete dislocations. However, the CDD evolution equations contain 
spatial derivatives which have to be approximated numerically and which thus require field 
data with a certain level of spatial smoothness. It is therefore helpful to replace the Dirac delta-
function ( )δ r  in the convolution integral (7) with a regularization function ( )rG . To improve 
the numerical efficiency during computation of the convolution it is beneficial to make use 
of the sifting property of the Dirac function: we can always write the regularized function as 

δ=G G * , where the symbol * indicates convolution over three-dimensional space. Together 
with the fact that convolution and volume averaging commute, it follows that regularized 
fields can be obtained by convolution of (19)–(21) with G. In our numerical implementation, 
we chose a Gaussian standard distribution as the regularization function:

( ) ∥ ∥⎛
⎝
⎜

⎞
⎠
⎟

π
= −r

r
G

s s

1

2
exp

2
,

2

2 (26)

where the standard deviation s characterizes the width of the dislocation density distribu-
tion. For numerical reasons G is approximated by a discrete Gauss function Gd which 

7 Note that this assumption can be physical e.g. in the case of a high purity semiconductor single crystal where the 
Peierls barriers are high and dislocation densities are low such that the influence of dislocation interactions on their 
motion can be neglected. In general, of course, interactions cannot be neglected. 

S Sandfeld and G Po Modelling Simul. Mater. Sci. Eng. 23 (2015) 085003



9

is non-zero only at a finite number of discrete points ri and is normalized such that 

▵ ▵ ▵ ( ) ( ( ))∫∑ = ′ ′ ′ ′ ′ ′x y z G i G r x y z x y z, , d d di x y
d

,
 within a small numerical tolerance. We then 

compute the convolution of the coarse grained fields (equations (19)–(21)) with the discrete 
Gauss function Gd. We note, that in (26) the only free parameter is the standard deviation s 
which subsequently will be chosen as the average dislocation spacing s (the mean separation 
between a dislocation and its nearest neighbors) inside the averaging volume (see also the 
discussion in [53]). Note that choosing a much larger value for s would destroy details of the 
dislocation structure to a large extend while if s were very small this would result in a quasi-
discrete rather than continuous density structure. This is further discussed and demonstrated 
in the appendix A.

5. Numerical experiments

One of the key advantages of the CDD theory is the property of kinematic consistency, i.e. the 
ability to represent flowing dislocations through their characteristic geometrical properties:  
a dislocation is a linear, curved line where each of its points moves perpendicular to the respec-
tive local line tangents. In the following benchmark systems we will directly compare the 
evolution of discrete and continuous dislocation microstructure in analytically given velocity 
fields. We start with 3 situations of increasing complexity with regards to boundary condi-
tions: dislocation loop distributions in a rectangular domain (i) with open boundaries allowing 
out-flux of dislocations, (ii) with impenetrable surfaces and (iii) with a circular obstacle (i.e. 
an internal boundary). All 3 systems will start from the same initial dislocation microstructure 
which makes it easy to compare the effects caused by different external and internal boundar-
ies. The 4th benchmark system is a periodic system with a statistically homogeneous random 
distribution of dislocations and investigates how good fluctuation can be represented in a situ-
ation without the strong polarizing effect of boundaries.

5.1. System and initial values

The following examples study a system as sketched in figure 1 where a 3-dimensional pillar 
with a square base is discretized into thin sub-volumes along the z axis. We investigate one 
of such sub-volumes with size = =L L b2000x y  and height ▵ =z b75 , where b  =  0.256 nm 
is the norm of the Burgers vector. Initial values for DDD simulations for Systems 1–3 are 
obtained by randomly distributing =N 50d  circular, discrete dislocation loops with radius 
R  =  75b inside the volume V (note, that we only chose circular loops for ease of implementa-
tion; loops could be arbitrarily shaped—as long as they are closed). Each loop is positioned on 
a different glide plane and thus loops do not intersect by construction; for the first three sys-
tems their centers are distributed on a quadratic domain    ×L L0.5 0.5x y such that all loops are 
completely contained inside the computational domain. The average density in this volume 
is ρ = ×4.8 100

15 m−2. ▵z is the coarse graining height such that the system can be numeri-
cally represented as a two-dimensional object—a thin lamella in the x–y plane (figure 1(a)). 
Continuous field data is obtained by ‘smearing-out’ the coarse grained fields through the regu-
larization outlined in section 4.2. Initial values for system 4 are obtained by distributing the 
loop centers on the whole quadratic domain ×L Lx y while simultaneously taking care of the 
periodicity. For determining the standard deviation for the Gaussian distribution we estimate 
the mean dislocation spacing from the density ρ0, which results in a mean dislocation spacing 

of ( )π= ≈s L N L/ 2 2 /35x xd . For our examples this estimate of the standard deviation works 
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well for all investigated systems and at all time steps (further details on the choise of s can be 
found in the appendix A). Only when the mean dislocation spacing changes drastically—in 
section 5.4 due to dislocation pile ups at grain boundaries—we adjust this value locally during 
the post-processing step for obtaining reference DDD field data to the actual value of the dis-
location spacing. An example for DDD and resulting CDD initial structure that is used for all 
numerical examples is shown in figure 2: the total dislocation density has a maximum in the 
center region where most of the loops overlap. At the same time nearly equal numbers of loop 
segments of all possible orientations are present in the center region which makes the disloca-
tions ‘statistically stored’. Hence, the GND density �∣ ∣ tends to zero. The curvature density 
q has the same shape as the total density because initially all loops have the same radius and 
thus ρ=q R/ . Although for each of the first 3 studies identical initial values are used, we note 
that the chosen CDD fields are not special or more suitable than any other set of statistically 
equivalent initial values.

5.2. Numerical methods

For the numerical solution of the continuum evolution equations a Galerkin finite element 
scheme together with an implicit time integration scheme is used. To accurately represent 
derivatives of up to second order, Lagrangian shape functions with cubic polynomials were 
chosen. The finite element mesh consists of ×30 30 elements and thus has an element size 
which is in the same range as ▵z. When high density gradients at boundaries occur (system 2 
and 3) we additionally refine elements in those regions. To increase numerical stability in par-
ticular in regions with high fluxes and where the density approaches zero a small viscous term 
was added to each evolution equation. E.g. in (22) we replace the divergence term �( )∇ ⋅ v  
with � �ε( )∇ ⋅ + ∇v , where ε is chosen sufficiently small such that the physical behavior of 

Figure 2. Initial values for the DDD simulation (upper left) from which initial values 
for the CDD field variables are obtained.
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the equations is not affected while numerical oscillations are suppressed. The FEM simula-
tions presented below all take less than two minutes computational time on a off-the-shelve 
computer with a 2.6 GHz dual core processor.

Computation of the evolution of plastic strain can be done for CDD based on the Orowan 
equation ( γ ρ∂ = bvt ) by time integration alongside with the CDD evolution equations (22)–
(24). To obtain the initial values for γ from DDD one can compute γ from the GND vector 
and the relation � γ= − ∇

b

1 : geometrical construction of the swept area for each unit of GND 
density and subsequent superposition of these areas—followed by division by ▵z—gives the 
plastic strain. Since the plastic strain is a derived quantity it suffices to show that main CDD 
field quantities match those from DDD and we do not explicitly show γ.

The DDD model used the representation by chordal splines (α = 1); for further numerical 
details on the used Parametric Dislocation Dynamics method please refer to [14, 46].

5.3. System 1: distribution of dislocation loops, open boundaries

For this system a constant velocity of v0  =  0.01 nm/μs is prescribed, and time is expressed as 
multiple of the duration that density needs to completely traverse the domain, L v/x 0. Boundaries 
are ‘open’, i.e. dislocations may leave the volume as if the domain were just a sub-domain of a 
much larger domain. This case of dislocation loops which have the same curvature and expand 
with constant velocity is a case for which the CDD theory is supposed to give mathematically 
exact results, and the system therefore can be used as a reference system for testing the quality 
of the numerical scheme and if the chosen standard deviation s is appropriate. Initial values are 
shown in figure 2. Two different simulations are run: discrete microstructure is evolved with 
the DDD model and—separately—the continuous microstructure is evolved with the CDD 
model. To compare the two simulations at time t the discrete microstructure was converted 
into CDD field quantities using the same strategy as for obtaining initial values from discrete 
data (in the sketch figure 1(f ) which is then compared with (e)). Figure 3 shows a snapshot in 
time, where in the contour plots the dashed lines indicate CDD values and the full lines are the 
contours of the converted DDD values. We observe that as dislocation loops expand they flow 
away from the center region where the total density ρ tends to zero (compare ρ in figure 3). 
The difference in the centers of the loops becomes more insignificant as their radii grow and 
the resulting density distribution takes a loop-like shape. In each point dislocations now have 
all approximately the same orientation, they become GNDs which shows in �∣ ∣ρ≈  as can be 
observed in figure 3. The comparison of DDD and CDD fields shows excellent agreement. 
Only minor features of the DDD fields are slightly smoothed out which is an artifact of the 
numerical solution. The volume integrals of ρ and πq/2  give the total line length and the total 
number of dislocation loops and are shown in figure 4. For reference we also show the line 
length for an infinite size system (approximated by a significantly larger domain in x and y 
direction) for which the total line length can be obtained analytically as ( ) ( )π= +L t N R vt2d . 
Initially, both systems exhibit a linear line length increase (loops expand with constant veloc-
ity). As soon as density leaves the volume through the boundaries the line length for the finite 
size system decreases; the line length in the infinite system, however, continues to increase 
linearly. CDD data matches the DDD data perfectly and also coincides for the large system 
with the analytical solution. The right plot of figure 4 shows the total number of dislocation 
loops. This value stays constant for the infinite system, which is correct since there are nei-
ther sources nor annihilation. For the finite system the surfaces act as sinks and the number 
of loops is reduced. Note that this interplay between density and curvature density will also 
become relevant when sources and annihilation are to be modeled (which we do not consider 
within the present work).
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5.4. System 2: distribution of circular loops in a finite domain

Now the outflow of dislocations will be constrained by imposing impenetrable boundary con-
ditions, i.e. the dislocation flux ρv is enforced to be zero at the boundaries. Numerically, this 
is done by prescribing a velocity field which decays smoothly to zero directly at the bound-
ary (in physical terms this boundary layer could be imagined as the result of FIB damage in 

Figure 4. Normalized dislocation line length (with L0 the initial line length) and total 
number of loops for system 1 as function of time. For comparison also the data for an 
unbounded system is shown together with the analytical solution.

Figure 3. A snapshot in time (after segments traveled ≈0.4 Lx) for system 1 with open 
boundaries. The color values and solid contour lines show reference DDD data, the 
dashed lines show contours of the CDD data.
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the surface-near regions). To mathematically model the boundary layer we use the following 
sigmoidal function,

( )
[ ]

ξ
ξβ

=
+ −

−f
2

1 exp
1, (27)

where the parameter β controls the shape of the function and is chosen such that the bound-
ary layer is clearly visible and allows to study the dislocation flux in detail (β = 20). ξ is the 
normalized distance from the boundary, e.g. with ξ = …0 1. The velocity field can now be 
composed from the four contributions

= ⋅ ⋅ − ⋅ ⋅ −v x y v f x L f x L f y L f y L, / 1 / / 1 / .x x y y0( ) ( ) ( ) ( ) ( ) (28)

It is depicted in figure 5 and will be used for CDD as well as for DDD simulations. Both 
simulations are conducted with the initial dislocation structure that was used as well for sys-
tem 1 (figure 2). Again, the DDD simulation starts from the discrete microstructure, the CDD 
simulation from the continuous microstructure as obtained by D2C conversion. Both simu-
lations evolve independently. Only in a post-processing step we again convert the resulting 
DDD microstructure for reference purposes into continuous field quantities as outlined before.  
A snapshot in time of the respective evolved dislocation field quantities is shown figure 6 with 
CDD values shown as dashed contour lines and converted DDD field values shown as solid 
lines (also see the figure in the appendix A and the supplementary movie 1 (stacks.iop.org/
MSMSE/23/085003/mmedia) which additionally shows the evolution of average curvature 

ρ=k q/ ). During the simulation dislocation loops initially expand freely until parts of them 
reach the boundary layer within which the velocity decays to zero. The non-zero velocity 
gradient rotates line segments such that they eventually are parallel to the boundary, i.e. their 
line tangents are aligned with the contours of the velocity field. This causes the initial SSD 
density to increasingly become geometrically necessary when dislocations pile up against the 
boundaries (compare ρ and �∣ ∣ in figure 6). Additionally, dislocations need to bend with a high 
curvature radius near the corners of the domain. This shows in the high value of the curvature 
density in these regions. For a more detailed view figure 7 shows horizontal and diagonal line 
plots through the domain for two different time steps. We observe again an excellent agree-
ment between the DDD and CDD field values for all times, and only small deviations can be 
seen close to the boundaries and in particular for the curvature density.

The total line length inside the system serves as a good plausibility test: initially we again 
would expect free loop expansion until finally all loops are aligned with the boundary and 

Figure 5. Prescribed velocity field with v0  =  0.01 nm/μs in the center region and v  =  0 
at the boundaries of a ‘grain’ with impenetrable boundary conditions (system 2). This 
velocity field is used both for the CDD and the DDD simulation.

S Sandfeld and G Po Modelling Simul. Mater. Sci. Eng. 23 (2015) 085003

http://stacks.iop.org/MSMSE/23/085003/mmedia
http://stacks.iop.org/MSMSE/23/085003/mmedia


14

are (nearly) rectangular in shape. Figure 8 shows the total line length versus time, and it is 
obvious that at all times DDD and CDD agree very well: both approach the horizontal tangent 
when all lines are aligned with the boundaries. The fact that DDD values are slightly below 
the horizontal tangent is correct because loops are not exactly rectangular but still have small 
rounded corners. For the DDD curve we directly used the line length from the discrete data 
while for the CDD data we first had to integrate ρ. The small difference in the final value of 
the line length arises from discretization errors due to very steep gradients at the boundaries. 
In this respect, more realistic systems that also consider elastic dislocation interactions will 
numerically behave even better because pile ups always have a finite size.

5.5. System 3: circular dislocation loops in a domain with an impenetrable inclusion

The third system studies the idealization of a plastically deforming matrix into which an 
elastic, circular inclusion is embedded. Dislocations can move freely in the matrix while the 
inclusion acts as an impenetrable obstacle for dislocation motion. Annihilation of lines is 
not considered, hence, the number of dislocation loops stays constant; for real systems this 
is a strong restriction, but again, the philosophy is to decouple interactions and reactions 
from the purely kinematic effects. The computational model is—as in system 1—a quadratic 
domain ( =L Lx y) with open boundaries and contains the inclusion in the center. The inclu-
sion itself is represented by an internal boundary which we model as a circular sub-domain 
(radius R  =  Lx/10) with zero velocity in the center region and a smooth transition from v  =  0 
to a constant velocity v0 away from the inclusion (see figure 9(a)). As a result of the velocity 
field dislocations are first slowed down on their way towards the inclusion and eventually 

Figure 6. Snapshot of dislocation structure in a quadratic grain with impenetrable 
boundaries. The solid contour lines show reference data obtained from DDD, the 
dashed lines show CDD data.
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Figure 7. Snapshots in time for system 2: total density (left column) and curvature 
density profiles (right column) for an early point of time (top row) and a later point of 
time (bottom row) which corresponds to figure 6. The plotted data is along a horizontal 
line at y  =  Ly/2 (blue) and a diagonal line at y  =  x (red), where the lower left corner of 
the domain is at x  =  y  =  0 (see figure 1).

Figure 8. Dislocation line length for system 2 as function of time. For comparison also 
the two analytical asymptotes are shown.
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freeze in their motion so that they cannot enter the inclusion. Both simulation methods use the 
same initial values as before. This does place some dislocations inside the inclusion which is 
unphysical. It turned out, however, that the influence on the resulting microstructure is only 
small. Therefore, we decided to consistently use the same initial values as for all other systems 
as well. Evolving the DDD and CDD system gives typical dislocation patterns as shown in 
figure 10, additional plots including error plots can be found in the appendix A.

An auspicious feature is the formation of pile-ups of bent lines around the inclusion: when 
expanding dislocation loops touch the inclusion they get a ‘dent’ (see the colored line in fig-
ure 10(a)) and adjust to the shape of the inclusion. At the same time, line segments further 
away start ‘spiraling’ around the inclusion and deposit an increasing number of segments 
around the inclusion (also see the figure  in the appendix A and the supplementary movie) 
(stacks.iop.org/MSMSE/23/085003/mmedia). This behavior has a number of consequences 
and can be observed in the CDD representation as well:

 • Circular pile-ups of dislocation density can be seen in the upper middle and right plots of 
figure 10 : ρ has a high value in the vicinity of the inclusion because density from piled-up 
dislocations together with pre-existing line segments in the inside of the precipitate add 
up. In conjunction with the GND density �∣ ∣ we infer that dislocations in the inside are 
mainly statistically stored while pile-ups around the inclusion are—literally—geometri-
cally necessary.

 • Circular GNDs around the inclusion form an inverted loop, see figure 10 bottom right 
and middle plot. Taking a look at the sign of e.g. the edge GNDs �e around the inclusion 
it is found that their orientation was rotated by 180° (also compare the initial values in 
figure 2). For instance the upper half is now negative and therefore would move down-
wards but is hindered by the inclusion.

 • Bent dislocations around the inclusion have negative curvature—the above statement 
about an inverted loop already suggests that the curvature of dislocations around the 
inclusion should be negative which in fact can be observed in the two plots on the right of 
figure 11 where the average curvature ρ=k q/  was computed and plotted along two lines 
passing through the inclusion. The inclusion has a radius of Lx/10 which is equivalent to 
a curvature of =k 0.020inc  nm−1. Due to the smooth interface the velocity is zero only 
at about Lx/16 which is equivalent to a curvature of =k 0.031min  nm−1. In the bottom 
right plot of figure 11 we find the negative curvature peak values at ∣ ∣≈k 0.040CDD  nm−1 

Figure 9. Velocity field with the ‘inclusion’ in the center and evolution of line length 
(normalized with initial total line lenght L0).
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in good agreement with both the geometry value kmin and the DDD curvature value of 
∣ ∣≈k 0.028DDD  nm−1.

Deviations between DDD and CDD are larger than for the previous two benchmark mod-
els. They are particularly large in those regions which exhibit large gradients in the velocity 
and in the CDD field values, both of which cause increasing discretization errors. What is the 
average response of this system? Comparing the temporal evolution of the DDD line length 
in figure 10 to system 1 shows that the inclusion creates additional density which is clearly 
visible from approximately t  =  0.15 L v/x 0 on and is caused by lines bending around the inclu-
sion. CDD is lagging behind and is initially even slightly below the line length of system 1 
(due to the lower average velocity as compared to system 1). After ⩾t 0.25 L v/x 0 the CDD 
model is then also showing an additional increase in line length.

The difference between CDD and DDD is the result of larger errors close to the inclusion 
where CDD almost always underestimates the true density values. Increasing the resolution of 
the spatial discretization of the finite element scheme does not yield any appreciable allevia-
tion. The reason is the very complex deformation state of dislocations that brings the CDD 
theory to its limits because near the inclusion the line curvature can be different for different 
line orientations in the same averaging volume—a detail that cannot be represented with this 
simplified variant of CDD (this CDD theory only can represent one average curvature value 
for each point/averaging volume). Although a number of details of this system have been 
predicted properly—e.g. the line curvature around the inclusion which is important when it 
comes to hardening effects in terms of line tension—this particular CDD formulation only 
roughly predicts the line length production close to the inclusion. More elaborate evolution 

Figure 10. Evolved dislocation loops in a domain with an precipitate, i.e. a region in 
the center with zero velocity. The color values and solid lines show reference DDD data, 
the dashed contour lines are CDD data.
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equations which contain more information about the orientation distribution and curvature of 
dislocations are required as e.g. those derived in [45, 50]. The D2C strategy for more detailed 
CDD formulations, however, will still remain the same.

5.6. System 4: random dislocation distribution in a periodic domain

The previous benchmark systems have in common that they start with random initial values 
which during time evolution become strongly polarized through the geometrical constraints 
imposed by boundary conditions (e.g. dislocations adjust their line orientation and curvature 
to the shape of external or internal boundaries and become geometrically necessary). System 
4 will now investigate how good CDD performs in a bulk-like situation where the total den-
sity consists to a large extend of statistically stored dislocation density superimposed with 
(smaller) GND density fluctuations. Periodic boundary conditions are used to eliminate geo-
metrical constraints. Initial values consist of a statistically homogeneous random distribution 
of 200 dislocation loops of the same radius, and their centers are distributed across the whole 
volume ▵× ×L L zx y . This results in the same average density ρ0 as in the center region of 
Systems 1–3; all other parameters stay the same.

The velocity and loops’ curvature radius are constant everywhere. Since this study ana-
lyzes the quality of the representation of flow and evolution of density fluctuations, it is 

Figure 11. Snapshots in time for system 3: total density (left column) and curvature 
profiles (right column) for an early point of time (top row) and a later point of time 
(bottom row) which corresponds to figure 10. The plotted data is along a horizontal line 
at y  =  Ly/2 (blue) and a diagonal line at y  =  x (red), where the lower left corner of the 
domain is at x  =  y  =  0 (see figure 1).
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useful to decompose the total density into fluctuating and volume-averaged contributions, 
( ) ( ) ⟨ ⟩ρ ρ ρ= +x y x y, ,fluct . For plotting the field data we additionally normalize the fluctua-

tions with the variance of the respective field, e.g. in figure 12 we plot for the total density 
( ⟨ ⟩) ( )ρ ρ ρ− /var . Figure 13 shows line plots of initial and evolved DDD and CDD data, addi-
tional error plots can be found in the appendix A. The supplementary movie S3 shows the time 

Figure 12. Initial values and evolved state of dislocation microstructure in a periodic 
domain. Contour plots show the normalized fluctuations of total density (middle 
column) and of the GND density (right column). The color values and solid lines again 
denote reference DDD data, the dashed contour lines are CDD data.

Figure 13. Densities along a horizontal line through the center of the computational 
domain for Study 4: initial state (left) and evolved state at t  =  0.4 Lx/v (right).
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evolution of density fields. Clearly, all details of the discrete microstructure are accurately 
reproduced. Fluctuations evolve in a non-trivial manner and we attribute negligible devia-
tions to numerical errors. The average behavior matches exactly the DDD values. The overall 
very good agreement is not surprising after seeing that already system 1, which initially had a 
similar random structure in the center of the domain, gave very good agreement between DDD 
and CDD. It is, however, important to show that this good agreement is sustained during time 
evolution and that even the increase in the range of the fluctuations are properly represented. 
An application based on this type of system has been studied in the context of dislocation pat-
terning [41] where in particular the fluctuations together with the correct line length increase 
and a Taylor-type flow stress were identified as key ingredients for pattern formation.

6. Determining the kinematic closure parameter Φ from DDD

The numerical studies in section  5 demonstrated that DDD simulations can serve as an 
elegant means for directly benchmarking continuum dislocation microstructure and its evo-
lution. Thus, it seems natural to directly use DDD simulations to verify or even obtain expres-
sions that were used to constitutively close the set of CDD evolution equations. Within the 
CDD equations occurred in particular one quantity which had to be assumed: the interpo-
lation function Φ, which was taken in the ‘maximum entropy approximation’ approach as 

� �(∣ ∣ ) ( (∣ ∣ ) )ρ ρΦ = +/ 1 / /22 4 . Φ was in an earlier approach assumed to interpolate linearly 
between SSD and GND density. We will now analyze DDD simulations in order to decide 
which assumption is under realistic simulation conditions the most suitable one. Recall the 
definition of the evolution equation of the curvature density and ( )A2 :

( )( ) ( )∂ = − − + ⋅ ∇q v vQ Adiv ,t
CD 1 2 (29)

⎡⎣ ⎤⎦
ρ

= + Φ ⊗ + − Φ ⊗⊥ ⊥l l l lA
2

1 1 .2
� � � �( ) ( )( ) (30)

In ( )A2  the approximation Φ occurs in a vector product together with a spatial velocity gra-
dient. Thus, ∂ qt CD is sensitive w.r.t. variations in Φ only in regions where the velocity field is 
non-constant, as e.g. in the boundary layer close to the impenetrable boundary of system 2 
from section 5.4. Continuous CDD field variables can be obtained from a DDD simulation as 
outlined before, and the time derivative ∂ qt  can be numerically approximated by an explicit 
Euler scheme in time,

( ) ( )
∂ =

−
∆

+q
q t q t

t
.t

i iDD
DD

1
DD

 (31)

At the same time also the evolution equation  for q (equation (29)) can be evaluated based  
on field data obtained from DDD ( ( )Q 1  and ∇v are both known, and l, ⊥l  are functions of �   
and ρ)8. The unknown value of Φ can now be obtained for each point (where ∇ ≠v 0) from 
solution of the inverse problem:

( )   ( ) ( )  
∥ ( ) ( ( ) )∥
Φ − ∇ ≠ −
∂ − ∂ Φ →

x y x y v x y

q x y q x y x y

Find for all with such that, , , 0

, , ; , MIN.t t
DD CD (32)

8 We note, that the space dependent tensors Q 1( ) and A2( ) also can be extracted from DDD data. E.g. the ‘11’  
component of A2( ) can be obtained by integrating the discrete density for each separate line segment against the 
ϕcos c

2  of the discrete line orientation ϕc, followed by regularization based on the Gaussian convolution.
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Note that no CDD simulation needs to be done, only DDD data is used. For each point (x, y)  
we record the optimum value of Φ together with the local total density ( )ρ x y,  and GND den-
sity �( )x y, . Plotting these data gives the distribution shown in figure 14. There, the point of 
time was chosen such that already a significant amount of density reached the boundary layer 
but did not yet reach a stationary state. For an earlier point of time dislocations would not yet 
have reached the region where ∇ ≠v 0 and no data could be obtained. At a later point of time 
most dislocations form pile-ups of geometrically necessary configurations near the boundar-
ies which results in a strong accumulation of data points at the top right corner of the dia-
gram. It is obvious that the optimization strategy yielded points with a relatively large scatter. 
However, it can be concluded that most data points are located below the straight dashed line 
which is the linear interpolation between GNDs and SSDs. The polynomial maximum entropy 
approximation fits much better. Binning the data e.g. in 20 � ρ/  intervals gives averages that 
for � ρ =/ 0.8..1.0 coincide nicely with the polynomial approximation. Nonetheless, the data is 
not sufficient for any statistical analysis in all other regions and could not be much improved 
through additional simulations. These results might indicate that the approximation of ∂ qt  
is not sufficiently sensitive w.r.t. to the only parameter � ρ/ . Currently, higher order closure 
assumptions are under investigations. Their results might help to understand the difficulties in 
identifying a unique functional Φ for closure.

7. Conclusion

We developed a systematic method for averaging geometrical properties of discrete disloca-
tion lines which allows for a direct comparison of discrete and continuum descriptions of 
evolving dislocation microstructures. Particular care was taken to formulate the numerical 
approximation such that discrete and continuous formulations are at all times consistent with 
each other (e.g. both the DDD and the CDD descriptions were based on the same spline rep-
resentation). Using DDD data as reference the comparison of simulation results for 4 different 
systems revealed a surprising accuracy of the CDD theory and its numerical implementation: 
CDD is able to evolve very complex dislocation microstructure and simultaneously respect 

Figure 14. �( )ρΦ /  for the linear approximation and the ‘maximum entropy 
approximation’. Data points show best fits of the numerically computed values for Φ.
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various physical boundary conditions in almost exactly the same level of detail as DDD simu-
lations do. Even in situations where the simplifying assumptions of the used CDD formula-
tion were clearly violated (system 3) we found that results were still reasonably. Within this 
work we only considered the kinematic closure and assumed a (fixed and analytical) velocity 
function. An important step for future work which still requires a large amount of fundamen-
tal work, however, is the ‘dynamical closure’, i.e. the question what the average velocity of 
interacting continuum distributions of dislocations under stress is.

Considering that in 3D DDD simulations the computational cost scales approximately with 
N2 (N being the number of nodes/segments) and considering that for a continuum theory the 
computational cost does not increase with the number of dislocations at all (not even when 
dislocation interactions are considered) we are very optimistic that a continuum description 
of dislocation plasticity might very soon complement DDD simulations in particular when it 
comes to high densities in large volumes and/or high accumulated plastic strains. Furthermore, 
the D2C conversion might even be directly beneficial for analyzing DDD data: the continuum 
representation is well suitable for ensemble averaging and could be a novel way of directly 
comparing discrete microstructures.
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Appendix A. On the resolution of continuum fields

In section 4 continuous fields were obtained that had to be artificially smoothed out for numer-
ical reasons. This was done by convolving the coarse grained fields (equations (19)–(21)) with 
a discrete Gauss function Gd. Choosing the standard deviation s in (26) is a choice which has 
to be made for every system and e.g. with regards to numerical aspects as well as based on the 
desired degree of detail which the density fields should be able to represent (e.g. in terms of 
density fluctuations). In the following, we summarize some key aspects that one might want 
to consider for deciding on a suitable value for s.

 • The obvious criterion for a lower bound for s is related to the resolution of the numerical 
scheme: choosing s much smaller than roughly the size of a finite element (which addition-
ally depends on the used shape functions) results in discretization errors, i.e. the fluctuations 
of the density field cannot be numerically represented properly anymore. In principle the 
discretization error can be measured. For practical purposes one could e.g. compare the 
numerical representation of a ‘continuum loop’ with the analytical solution. Note that 
choosing a value of the standard deviation in the range of a Burgers vector results in a 
computationally very expansive continuum model of nearly discrete objects (figure A1 left).

 • A numerically stable solution of the transport equations of density fluxes additionally 
requires a certain degree of smoothness in order to avoid strong, undesired numerical 
oscillations. Studying the aspect of numerical stability is non-trivial (see e.g. [57] for a 
stability analysis for a continuum dislocation dynamics model based on the Kröner-Nye 
tensor) and was not attempted for the present CDD equations so far. We approach this 
problem in a pragmatic way and choose numerical parameters as well as the lower bound 
for the standard deviation s such that a single continuum dislocation loop can be expanded 
accurately within a small error tolerance during the simulated time [48].
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Figure A1. Initial density ρ for different values of the standard deviation s obtained 
from the DDD data of system 4. The left plot is a nearly discrete microstructure, while 
in the right plot an almost homogeneous structure without any gradients resulted. CDD 
can in principle evolve all initial values accurately, the only limitation is our used 
numerical scheme, which does not work for values of below ≈s L /200x .

Figure B1. System 2—DDD data, density and relative error at time steps =t 0, 0.2 
and 0.4 L v/x 0 (from top to bottom). The white regions in the error plots indicate that the 
relative error was not computed due to (nearly) zero density.
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 • Deciding on an upper bound for the standard deviation s is problem specific: CDD works 
properly for all values of s exceeding the above introduced lower bounds. However, the 
larger the chosen s the more details of the heterogeneous microstructure will be destroyed. 
In particular, choosing s in the range of magnitude of the system dimension causes all 
gradients of the density fields to vanish. As a consequence, the partial differential equa-
tions for transport of densities deteriorate to ordinary differential equations, which are no 
longer able to describe fluxes on a scale below the system size (figure A1 right).

In this work, the emphasis is on heterogeneous dislocation microstructure. Hence, we 
chose, guided by the mean dislocation spacing of ≈s L /35x , a value of s which is small enough 
that fluctuations are not getting smeared out, but which at the same time is large enough so that 
discrete dislocations can no longer be differentiated.

Appendix B. Additional time evolution and error plots for system 2–4

In figures B1–B3 the time evolution of discrete and continuous microstructure together with 
the relative error ∣ ∣ρ ρ ρ− /DD CD DD for system 2 (grain with impenetrable boundaries), system 

Figure B2. System 3—DDD data, density and relative error at time steps =t 0, 0.135 
and 0.27 L v/x 0 (from top to bottom). The white regions in the error plots indicate that 
the relative error was not computed due to (nearly) zero density.
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3 (‘precipitate’) and system 4 (periodic BCs) are shown. In order to reduce the unreasonable 
diverging behavior of the relative error in regions where ρ → 0DD  we chose a cut off value of 
0.5 (i.e. less than half the size of the smallest interval of the color scale of the density contour 
plot for system 2 and 3) below which the error is not computed (shown as white regions). In 
the density plots the solid lines are—as before—the contours of the converted DDD data while 
the dashed lines show the CDD data.

System 2 in figure B1 has in most regions and for all time steps relative errors of less than ≈
5%. Only at later time steps when dislocations pile up against the boundaries and density exhib-
its steep gradients deviations become larger in some places. The CDD theory does represent 
the evolution of this system properly. System 3 in figure B2 shows clearly that the geometri-
cal constraint of the inclusion creates a complex situation which only partially can be repre-
sented by CDD and causes large errors. Despite the fact that a number of features are correctly 
represented (in particular the curvature close to the inclusion, see main text), a more precise 
evolution of this system would require a more refined CDD theory. System 4 in figure B3 dem-
onstrates that CDD consistently and accurately predicts the increase of average density as well 
as the transport of density fluctuations—both of which are automatically contained within the 
set of evolution equations. The relative error is in most places even smaller than 4%.

Figure B3. System 4—DDD data, density and relative error at time steps =t 0, 0.25 
and 0.5 L v/x 0 (from top to bottom). Note the changing color range for the total density. 
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