This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:

An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing

, and

Published 6 August 2010 IOP Publishing Ltd
, , Citation D H Wang et al 2010 Smart Mater. Struct. 19 105008 DOI 10.1088/0964-1726/19/10/105008

0964-1726/19/10/105008

Abstract

In this paper, an integrated relative displacement self-sensing magnetorheological damper (IRDSMRD) and the corresponding electronic system to realize the integrated relative displacement sensing and controllable damping, including the relative displacement modulator/demodulator, circuit for superposing the carrier signal for the integrated relative displacement sensor (IRDS) on the exciting current from the controllable current driver for the controllable damping and controllable current driver are developed and tested. In the developed IRDSMRD, the exciting coil is energized by the current from the controllable current driver, on which the carrier signal for the IRDS is superposed by the superposition circuit. The amplitude modulation of the carrier signal for the IRDS by the relative displacement between the piston and cylinder of the IRDSMRD and the magnetization of the MR fluid are realized through the frequency division multiplexing of the exciting coil for both the IRDS and the MR damper and the relative displacement is accessed by demodulating the induced harmonic voltage from the induction coil of the IRDSMRD by the demodulator. The characteristics of the developed IRDSMRD, including the linearity, sensitivity and hysteresis error of the IRDS and the controllable damping force are tested on the established experimental setup based on the MTS 849 shock absorber test system and the real time simulation system. The testing results indicate that the developed IRDSMRD can not only achieve the integration of the relative displacement sensing capability but also possesses good performance of the relative displacement sensing of the IRDS and the large controllable damping force range. In addition, the performance of the IRDS will not be affected by the exciting current within a certain range and the damping force will not be degraded by the carrier signal for the IRDS. The realized principle and technology of the IRDSMRD lay a foundation for reducing the commercializing cost of MR dampers.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0964-1726/19/10/105008