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Abstract
Surface bonded piezoelectric ceramic (PZT) transducers are currently the
most prominent area of research in structural health monitoring using
electromechanical impedance methods. This paper presents a new embedded
PZT patch and its interaction with the host sandwiched beam. Durability and
protection from surface finish, vandalism and the environment are important
features of the embedment. The paper also demonstrates the use of thickness
vibration of the PZT patch in electromechanical admittance formulations.
This embedded PZT–structure interaction model is based on the new concept
of ‘average sum impedance’. The formulations used for this model can be
conveniently employed to extract the mechanical impedance of any
‘unknown’ PZT patch embeddable plane structure. The mechanical
impedance of the structure is obtained from the admittance signatures of the
embedded PZT patch. The proposed model is experimentally verified on
sandwiched beams.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. The electromechanical impedance (EMI) method

Piezoelectric ceramic (PZT) material has emerged as a popular
self-sensing material which can excite structures at high
frequencies of the order of kilohertz. These patches, when
activated at higher modes, facilitate the easy capture of minor
structural damage (Doebling et al 1998). The application
of PZT patches in the electromechanical impedance (EMI)
method is one of the more recent developments in structural
health monitoring (SHM). In this method, a PZT patch is
either surface bonded to or embedded inside the host structure
which is actuated in the presence of an electric field. The self-
sensing PZT transducer enables the transduction of electric
energy to mechanical energy, and vice versa, between the PZT
patch and the host structure (Liang et al 1994, Bhalla and
Soh 2004a). The electrical admittance (inverse of electrical
impedance) of the bonded or embedded PZT patch is expressed
as a coupling of the mechanical impedance of the actuator
and the mechanical impedance of the host structure. Since

1 Author to whom any correspondence should be addressed.

the mechanical impedance of any structure is dependent on
its material properties, structural configuration and boundary
conditions, any damage will alter these properties and the
alterations are induced in the mechanical impedance of the
structure. These alterations are finally reflected in the electrical
admittance of the PZT transducer. At any excited frequency,
the PZT patch produces an admittance response known as the
‘admittance signature’. The changes in these signatures are
indicative of the presence of structural damage. This method
was first used by Sun et al (1995), and was later successfully
explored by many other researchers in the field of structural
health monitoring (Ayres et al 1998, Giurgiutiu et al 1999,
Park et al 2000, Soh et al 2000, Park et al 2001, 2003, Naidu
and Soh 2004, Bhalla and Soh 2004a, 2004b, Peairs et al 2004).

The main assumption made by researchers of the EMI
method is that the PZT patch is a bar undergoing uni-
extensional actuation (axial vibrations) in the length direction
(Liang et al 1994) or bi-extensional actuation in the length
and the width directions (Bhalla and Soh 2004a). Generally,
actuations of the PZT transducers in the presence of electric
fields can be divided into extensional (along the X and Y
directions), longitudinal (along the Z direction) and shear
actuations (in the X Z and Y Z planes), as shown in figure 1.
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(a) (b)

(c)

Figure 1. Actuation of a PZT transducer in the presence of electric
fields E1, E2 and E3: (a) one-dimensional interaction model,
(b) two-dimensional interaction model and (c) three-dimensional
interaction model.

Actuations of the PZT transducer along the X and Y directions
are opposite in nature in comparison with actuation along the
Z direction (Raja et al 2004). However, in the EMI method,
the electric field is only applied along the Z direction; so
actuations in the X Z and Y Z planes do not exist but actuations
along the X , Y and Z directions do exist. Many other
researchers like Zhou et al (1996), Giurgiutiu et al (1999),
Park et al (2003) and Peairs et al (2004) have also developed
interaction models based only on extensional actuation (using
length or width or both) of the PZT patch.

The major limitation of the existing models is that they
ignore vibration of the PZT patch in the thickness direction.
Moreover, the existing (EMI) models are not applicable to
laminated or civil engineering structures where the sensitive
zone to be monitored is inside the structure. The thickness
vibration plays a vital role in thick or confined (embedded)
PZT patches, and hence affects the structural response.

(a) (b)

Figure 2. Electromechanical modelling of embedded PZT patches. (a) A PZT patch embedded in sandwiched aluminium beams. (b) Electric
polarization of the embedded PZT patch.

The structural response depends on factors like PZT patch
thickness, width, orientation, etc (Wetherhold et al 2003).
Moreover, thickness vibration of the PZT patch is used in
innumerable vibration and noise control applications (Raja
et al 2004) but not in SHM. In general, the inability of the
existing models to consider the thickness vibration and its
inapplicability to embeddable structures had left a gap for the
development of a new model.

This paper presents an embedded piezoimpedance patch
and its interaction with the host sandwiched aluminium
beam using extensional actuation (along the X direction) and
longitudinal actuation (along the Z direction). Durability
and protection from surface finishes, vandalism and the
environment are important features of the embedment of the
PZT patches. Thus where ever possible, it is sensible to
use embedded an piezoimpedance patch and the interaction
model instead of the existing surface bonded PZT interaction
models. This embedded PZT–structure interaction model
is based on the new concept of ‘average sum impedance’.
The formulations used for this model can be conveniently
employed to extract admittance signatures of any ‘unknown’
plane structure into which a PZT patch can be embedded,
especially in civil engineering structures, sandwiched beams,
etc. During the period of SHM, any change in the admittance
signature signifies damage in the structure, and thus this model
can be conveniently applied for SHM of PZT embeddable
plane structures. The proposed model is experimentally
verified on a system comprising a PZT patch embedded
inside the epoxy layer of a sandwiched aluminium beam
(figure 2).

2. Average sum impedance model

In this paper, an analytical model of a PZT patch embedded
in a sandwiched beam is presented, based on the ‘average
sum impedance (ASI) concept’. This is a generic two-
dimensional (2D) (length and thickness) PZT patch–structure
interaction model. The theoretical formulations are validated
experimentally. For this purpose, a sandwiched beam was
fabricated using two aluminium beams bonded by an epoxy
layer with a PZT patch embedded inside the epoxy layer
(figure 2). This analytical model effectively demonstrates
the contribution of vibration in the thickness direction to the
admittance formulations.
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Figure 3. Behaviour of a PZT patch at any instant of time. (a) Expansion of the patch in direction X and shrinkage in direction Z .
(b) Expansion of the patch in direction Z and shrinkage in direction X .

2.1. Fundamental PZT constitutive equations

Figure 2(a) shows a PZT patch embedded inside a sandwiched
beam. Figure 2(b) shows the X , Y and Z directions along the
length (2L), width (W ) and thickness (2H), respectively, of
the embedded PZT patch.

The derivations covered in this section are based on the
following assumptions:

(1) The PZT patch material is mechanically isotropic.
(2) Plane strain conditions exist within the PZT patch; hence,

only the X and Z directions are considered. For
structures where plane strain conditions are not applicable,
actuations along the X , Y and Z directions are to be
considered.

(3) Force transmission between the embedded PZT patch and
the host structure is distributed along both the X and Z
directions, covering the entire contact area (figure 3).

(4) The PZT patch is infinitesimally small with negligible
mass and stiffness compared with the host structure.
However, if multiple PZT patches are used there could be a
significant increase in the overall mass of the PZT patches;
hence the mass has to be considered in the formulation.

Under a one-dimensional (1D) harmonic electric field
(E3) along direction Z , with an angular frequency ω, the
interaction of one-half of the patch with one-half of the
host sandwiched structure is considered, taking advantage of
symmetry about direction Z as shown in figure 2(a).

Considering directions X and Z , the general 2D stress and
strain relationship can be written as{

T1

T3

}
= Ȳ E (1 − ν)

(1 + ν)(1 − 2ν)

×
[

1 ν/(1 − ν)

ν/(1 − ν) 1

] [
S1

S3

]
(1)

where T1 and T3 are the stresses applied on the PZT patch in
directions X and Z , respectively, and ν is the Poisson ratio. Ȳ E

is the complex Young’s modulus of elasticity of the PZT patch
at zero electric field, and it can be expressed as

Ȳ E = Y E(1 + ηj) (2)

where Y E is the static Young’s modulus of elasticity of the PZT
material and η is the mechanical loss factor.

Equation (1) can be rearranged to produce the strain
equations, S1 and S3, in directions X and Z , respectively, as

S1 = aT1 + bT3

Ȳ E
(3a)

S3 = bT1 + aT3

Ȳ E
(3b)

where a and b are two constants such that

a = (1 + ν)(1 − 2ν)2

(1 − ν)3
and

b = ν
(1 + ν)(2ν − 1)

(1 − ν)4
.

(4)

Thus, the fundamental relationships of the PZT patch in the
presence of an electric field can be written as

S1 = aT1 + bT3

Ȳ E
+ d31 E3 (5a)

S3 = bT1 + aT3

Ȳ E
+ d33 E3. (5b)

The electric displacement (or charge density), D3, (where
the subscript 3 denotes the electric field in the direction Z ) over
the surface of the PZT patch can be written as

D3 = εT̄
33 E3 + d31T1 + d33T3 (5c)

where dZ j represents the piezoelectric strain coefficient of the
PZT, subscript Z signifies the direction of the electric field and
j signifies the direction of the resulting stress (or strain). εT̄

33 is
the complex electric permittivity of the PZT at zero stress, and
can be expressed as

εT̄
33 = εT

33(1 − δj) (6)

where δ is the dielectric loss factor and εT
33 is the static electric

permittivity of the PZT patch.

2.2. ASI of the actuator

Figure 2 shows a PZT patch embedded in the epoxy layer
(RS 850-940 epoxy adhesive, RS Components 2004) of the
sandwiched specimen.
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Table 1. Key properties of PZT grade PIC 151 (PI Ceramic 2004).

Physical property Value

1 Density (kg m−3) 7800
2 Young’s modulus (N m−2) 6.667 × 1010

3 Poisson ratio 0.33
4 Electric permittivity, ε33 (F m−1) 2.124 × 10−8

5 Piezoelectric strain coefficient in −2.10 × 10−10

direction X , d31 (m V−1)
6 Piezoelectric strain coefficient in 4.50 × 10−10

direction Z , d33 (m V−1)
7 Dielectric loss factor, δ 0.015
8 Mechanical loss factors η 0.023

At any instant of time, the forces developed due to the
actuation of the PZT patch as shown in figure 3, which
respectively correspond to expansion in direction X and
shrinkage in direction Z , or vice versa. The forces take into
consideration the alternate signs of d31 and d33, as listed in
table 1. Due to the alternate signs, the expansion of the patch
in direction X is accompanied by shrinkage in direction Z ,
and vice versa. The ASI of the actuator can be represented
mathematically as

Zas = FPH
1
m

∑m
1 u̇m1

+ 2FPT
1
n

∑n
1 u̇n3

= FPH

u̇1(X=L)

+ 2FPT

u̇3(Z=H )

(7)

where Zas is the average sum of the actuator impedance, FPH

and FPT are the total force components acting on the PZT patch
along directions X and Z , respectively, m and n are the finite
number of points considered along the boundary (at X = L and
Z = ±H , respectively), u̇m3 is the velocity of the mth point in
direction Z , u̇n1 is the velocity of the nth point in direction X ,
u̇1(X=L) is the average velocity in direction X at X = +L and
u̇3(Z=H ) is the average velocity in direction Z at Z = ±H of
the PZT patch.

As described in equation (7), the average velocities in
directions X and Z are determined first, and the ratios of the
force components to the average velocities are then calculated.
Finally, these ratios are added to obtain the average sum
actuator impedance, hence this is called the ‘average sum
impedance’ (ASI) model. The final value of the actuator
impedance is the same irrespective of the direction considered,
as shown in figure 3.

2.3. Derivation of the actuator impedance from stress–strain
relationships of the PZT

Using strain equations (3a) and (3b), in short-circuited
condition, i.e. E3 = 0, the equations for the stresses acting
on the PZT patch can be written as

T1 = Ȳ E S1a − S3b

a2 − b2
(8a)

T3 = Ȳ E S3a − S1b

a2 − b2
. (8b)

Let u1 be the average displacement developed along
direction X and u3 be the average displacement developed
along direction Z . The displacement equations for two

directional in-plane vibrations are derived similar to that of
Zhou et al (1996), which can be expressed as

u1 = (A sin kx)ejωt (9a)

u3 = (C sin kz)ejωt (9b)

where A and C are the coefficients of vibration, which are
to be determined from the boundary conditions, and k is the
wavenumber given by

k = ω

√
ρ(1 + ν)(1 − 2ν)

Ȳ E(1 − ν)
(10)

where ω is the angular frequency of vibration, related to natural
frequency f as

ω = 2π f (11)

and ρ is the density of the PZT patch material. For simplicity,
let

C = αP A (12)

where αP is a factor dependent on the material properties
and dimensions of the PZT. The interaction between the
embedded PZT patch and the host structure is not completely
characterized by the basic material properties such as Young’s
modulus, piezoelectric constant, dielectric constant and
electromechanical coupling factor (Wang and Shen 1998).
Hence the factor αP is introduced into this model to simplify
the formulations. The detailed procedure for determining its
value is covered in section 3.2.

Differentiating equations (9a) and (9b) with respect to
time, and using equation (12), the velocities in the X and Z
directions can be written as

u̇1 = jωA(sin kx)ejωt (13a)

u̇3 = αP jωA(sin kz)ejωt . (13b)

Further, differentiating equations (9a) and (9b) with respect to
x and z, the strains in the X and Z directions can be written as

S1 = ∂u1

∂x
= Ak(cos kx)ejωt (14a)

S3 = ∂u3

∂z
= αP Ak(cos kz)ejωt . (14b)

Also, equation (7) can be written as

Zas = T1W (2H)

u̇1(X=L)

+ 2T3W L

u̇3(Z=H )

(15)

where the forces are replaced by the stresses acting on the
boundary multiplied by the areas on which the stresses act.
Substituting equations (8a), (8b) and (13) into equation (15),
the following expression is derived for Zas:

Zas = W Ȳ Ek

jω(a2 − b2)

[
H(2a cos kL − bαP cos k H)

sin kL

+ L(aαP cos k H − 2b cos kL)

αP sin k H

]
. (16)

Further, let N be a substitute variable, as given below

N =
[

H(2a cos kL − bαP cos k H)

sin kL

+ L(aαP cos k H − 2b cos kL)

αP sin k H

]
. (17)
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With this substitution, the mechanical impedance of the
actuator (equation (16)) can be written in a closed form as

Zas = W Ȳ Ek N

jω(a2 − b2)
. (18)

2.4. ASI of the host structure

In this derivation, the ASI approach described in the previous
section is again adopted. The mechanical impedance of the
structure is determined in the presence of an electric field
(i.e. E3 �= 0).

Figure 2 shows an embedded PZT patch in the presence
of an electric field, E3, where FTE, FBE and FHE are the total
forces acting on the respective faces due to actuation in the PZT
patch caused by the presence of E3.

The size of the PZT patch is very small compared with
the host structure. Hence a uniform stress distribution prevails
along the top and bottom edges of the PZT patch, and they
are assumed to act on equal areas (eventually leading toFTE =
FBE = F). Thus, the structural impedance can be written as

−Zs = FHE

u̇1(X=L)

+ 2F

u̇3(Z=H )

. (19)

The negative sign indicates that a positive average
displacement in the X or Z direction causes compression in
the patch (due to reaction from the structure).

The electric field is given by

E3 = V0

2H
ejωt (20)

where V0 is the instantaneous voltage across the PZT patch.
Using equations (5a)–(5c), the stresses acting along the X

and Z directions can be written as

T1 = (S1a − S3b)Ȳ E

a2 − b2
+ Ȳ E E3

a2 − b2
(d33b − d31a) (21a)

T3 = (S3a − S1b)Ȳ E

a2 − b2
+ Ȳ E E3

a2 − b2
(d31b − d33a). (21b)

Substituting equations (16), (21a) and (21b) into (19), the
ASI of the structure can be written as

Zs + Zas = (−1)
Ȳ EV0W

A(2H)(a2 − b2)jω

×
[

2H(d33b − d31a)

sin kL
+ 2L(d31b − d33a)

αP sin k H

]
. (22)

Substituting

A0 = A

/(
V0

H

)
(23)

into equation (22) and after rearranging, the following
expression is obtained:

A0 = Ȳ EW

2(a2 − b2)jω(Zas + Zs)

×
[

2H(d31a − d33b)

sin kL
+ 2L(d33a − d31b)

αP sin k H

]
. (24)

In equation (24), Zas, Zs and A0 exist together. Although
Zas can be determined from equation (18), there are no closed
form solutions for Zs and A0. Therefore, Zs has to be
determined using the finite element method (FEM) described in
detail in the following section. Then, using Zs, the coefficient
A0 is calculated, and then coefficient A is calculated using
equation (23).

2.5. Expression for complex electromechanical admittance

Substituting equations (21a) and (21b) into (5c), the electric
displacement can be written as

D3 = ε̄T
33

V0

2H
ejωt + d31Ȳ E

a2 − b2

×
[
(S1a − S3b) + V0

2H
ejωt(d33b − d31a)

]

+ d33Ȳ E

a2 − b2

[
(S3a − S1b) + V0

2H
ejωt(d31b − d33a)

]
. (25)

Electric current is the rate of change of total electric charge
over the surface (either the top or bottom surface which share
opposite charges), as shown in figure 2(b). Hence, the electric
current I can be written as

I =
∫ ∫

AXY

Ḋ3 dx dy = W
∫ X=L

X=−L
Ḋ3 dx = 2jωW

∫ L

0
D3 dx

(26)
where AXY is the total surface area. Here there is no variation
along the Y direction (width W is constant) but there exists
variation along the X direction.

Electrical admittance is the ratio of the electric current to
the applied electrical voltage. The electric admittance Ȳat and
the applied voltage V across the PZT patch are expressed as

Ȳat = I

V
and V = V0ejωt . (27)

Hence, using equations (26) and (27), the final complex
electromechanical admittance of the PZT patch is obtained as

Ȳat = jωW

H

(
L ε̄33 + d31Ȳ E

a2 − b2

× {(2a sin kL − bαPkL cos k H)A0 + L(d33b − d31a)}
+ d33Ȳ E

a2 − b2
{(αP akL cos k H − 2b sin kL)A0

+ L(d31b − d33a)}
)

. (28)

The procedure for finding the unknowns αP and A is
described in later sections. Equation (28) is the complete
expression for the admittance of the embedded PZT patch.

3. Experimental and numerical analysis

This section describes the experimental setup, initialization,
determination of the ASI of the structure using a numerical
method, experimental verification and convergence testing.

3.1. Experimental setup

Figure 4 shows the experimental setup used for both
‘experimental initialization’ and ‘experimental verification’.
The setup used for acquiring the admittance signature consisted
of a HP 4192A impedance analyser (Hewlett Packard 1996),
a 3499A/B switching box (Agilent Technologies 2004) and a
personal computer. In both the ‘experimental initialization’
and ‘experimental verification’, the PZT patch was wired to the
impedance analyser through the switch box. The signature of
the experimental mechanical admittance, which consists of the
real part (conductance) and the imaginary part (susceptance),
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3499A/B switching Box

HP 4192A
Impedance
analyzer

Computer

Epoxy layer

Sandwiched beam

Aluminium beam

Aluminium beam

LB

HB

Figure 4. Experimental setup to verify the ASI-based impedance
method.

Table 2. Key properties of epoxy adhesive (RS 850-940) and Al
6061-T6.

Property Epoxy adhesive Aluminium (Al)

1 Density (kg m−3) 1180 2715
2 Young’s modulus (N m−2) 2 × 109 68.95 × 109

3 Poisson ratio 0.4 0.33
4 Damping factor (βM ) 1.5923 × 10−9 1.5923 × 10−7

was acquired for the desired frequency range of <200 kHz
for experimental initialization and <120 kHz for experimental
verification. The highest frequency range to date used by any
researcher (Naidu and Soh 2004) for beams is <60 kHz.

The sandwiched beam specimens used in the experimental
verification were fabricated using aluminium beams of grade
A1 6061-T6 (table 2), high-strength epoxy adhesive (RS
Components 2004, table 2) and a PZT patch of grade PIC (PI
Ceramic 2004, table 1). In order to prepare each specimen,
a PZT patch was first surface bonded at the centre of the
bottom aluminium beam using a very thin (negligible) epoxy
adhesive. After allowing for initial setting, an epoxy layer
of a certain thickness (as listed in table 3) was applied over
the entire surface of the bottom aluminium beam and the
bonded PZT patch. Another aluminium beam was placed
over this epoxy layer (figure 2) and the whole arrangement
was allowed to cure for 24 h with a nominal pressure applied
over the entire arrangement throughout the curing time. The
PZT patch, which is sandwiched between the two aluminium
beams, thus behaved as an embedded patch in the epoxy layer.
The embedded patch was connected to an impedance analyser
which recorded the admittance signature (structure response).
Details of the dimensions of the sandwiched beam specimens
and embedded PZT patches are listed in table 3.

3.2. Experimental initialization

Before using the electromechanical admittance equation (28)
for comparison with the experimental results, it is necessary to
determine the ASI of the actuator (Zas) and the host structure
(Zs). To find the impedance of the actuator and the host
structure, αP needs to be determined. The electromechanical
admittance Ȳat (equation (28)) is a complex term, and can be

Table 3. Details of specimens and PZT patch.

Length Width Height
Specimen no. Layers/ PZT patch (m) (m) (m)

1 Al (top and bottom) 0.230 0.026 0.0020
Epoxy (middle) 0.230 0.026 0.0010
Total specimen dimensions 0.230 0.026 0.0050
(2L Bm × WBm × 2HBm)
PZT (2L × W × 2H ) 0.010 0.010 0.0002

2 Al (top and bottom) 0.140 0.026 0.0020
Epoxy (middle) 0.140 0.026 0.0012
Total specimen dimensions 0.140 0.026 0.0052
(2L Bm × WBm × 2HBm)
PZT (2L × W × 2H ) 0.010 0.010 0.0003

separated into real (conductance) and imaginary (susceptance)
parts as given below.

Ȳat = G + B j. (29)

The free (unembedded) signatures of two PZT patches
were experimentally obtained before embedding the PZT
patches into the specimens, using an impedance analyser
and multiplexer (Bhalla and Soh 2004a). The unknown αP

was determined using experimental comparisons as described
below.

Factor αP is an unknown parameter; this is determined
by matching the experimental conductance and susceptance
signatures of the PZT patch in the ‘free–free’ condition with
the analytical free conductance and susceptance signatures,
respectively. From equations (24) and (28), to get the
free analytical (PZT patch in free–free condition) admittance
signature, a value of ‘zero’ is substituted for Zs in
equation (24), which resulted in

A0−Free = Ȳ EW

2(a2 − b2)jω(Za)

×
[

2H(d31a − d33b)

sin kL
+ 2L(d33a − d31b)

αP sin k H

]
(30)

where A0−Free is the coefficient of vibration in the absence of
Zs.

Substituting equation (30) in (28), the complex admittance
of the free PZT patch is obtained as

ȲFr−at = jωW

H

(
L ε̄T

33 + d31Ȳ E

a2 − b2
{(2a sin kL

− bαPkL cos k H)A0−Free + L(d33b − d31a)}
+ d33Ȳ E

a2 − b2
{(αP akL cos k H − 2b sin kL)A0−Free

+ L(d31b − d33a)}
)

(31)

where ȲFr−at is the complex admittance of free PZT and can
be split into the sum of conductance and susceptance as

ȲFr−at = GFree + jBFree. (32)

Thus, the derived admittance equation is independent of
the host structure but depends on the PZT patch. Equation (31)
is used to obtain the GFree and BFree signatures for the free PZT
patch, which correspond to the different trial values of αP . The
particular value of αP at which the analytical signature and
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Figure 5. Plots of free PZT patch signatures of specimen 1. (a) Conductance signatures (experimental versus analytical). (b) Susceptance
signatures (experimental versus analytical).

experimental signature match satisfactorily is adopted for that
PZT patch. The values of αP obtained for the PZT patches
embedded inside the two sandwiched specimens obtained by
trial and error are 0.02 and 0.12, respectively.

However, to obtain the trial and error value of αP for the
PZT patch, it is advisable to begin the initial guess for αP with
a ‘reasonable’ value. This ‘reasonable’ value can be obtained
using the constant axial strain assumption as explained below.

For a mechanically isotropic bar, the elongation (or
compression) is proportional to the overall dimension
(length/width) of the bar. In the absence of an electric
field, just for the initial ‘reasonable’ guess, free PZT patch
behaviour is assumed to be similar to that of a mechanically
isotropic bar. Mathematically, taking the ratio of amplitudes of
displacements of equations (9a) and (9b), and using (12), the
following equation is obtained:

∣∣∣∣u1

u3

∣∣∣∣ = A

αP A
= L

H
. (33)

For the free PZT patch, from figure 3, the points of
consideration are on the boundary. Hence equation (33) can
be written as

αP = H

L
= DF (34a)

where H and L are the half-height and half-length,
respectively, of the PZT patch and DF is a dimensional factor.

After the initial ‘reasonable’ assumption, many trials
were made to predict the final value of αP . This was
done by matching the analytically obtained conductance and
susceptance signatures of the free PZT patch in the ‘free–free’
condition using the trial values of αP with the experimental
conductance and susceptance of the free PZT patch in the
‘free–free’ condition.

Table 4. Material properties and αP variations for specimen 1.

Density (kg m−3) 7800 8005 8095
Dielectric loss factor, δ 0.015 0.012 0.013
Mechanical loss factors, η 0.023 0.025 0.0205
Electric permittivity, ε33 (×10−8 F m−1) 2.125 2.225 2.325
αP DF1 1.8DF1 2.0DF1

From experiments, it was found that changes in some of
the material properties of the PZT patch changed the predicted
value of αP . Three different αP values are listed in table 4 for
the change in some of the material properties of specimen 1.
Other material properties are found not to have changed the αP

values. Hence, αP is written as

αP = (MPF)DF (34b)

where MPF is a material property factor.
Figures 5 and 6 show plots of the analytical and

experimental admittance signatures for the free PZT patches of
the specimens. Satisfactory agreement of both experiment and
analytical conductance and susceptance show that the values
obtained for αP for both the PZT patches are reliable and
can be used in determining the mechanical impedance of the
actuator and the structure. The additional peaks as shown in
figure 6 of the experimental admittance signature are due to the
deviation in the shape of the PZT patch from a perfect square
during manufacturing. This leads to partly independent peaks
corresponding to the two slightly unequal edge lengths. It is
reported in the literature that the properties of piezoceramic
patches vary due to inhomogeneous chemical composition and
mechanical differences during the formation and polarization
process (Sensor Technology Limited 1995), and statistical
variations are reported to be common (Giurgiutiu and Zagrai
2000).
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Figure 6. Plots of free PZT signatures of specimen 2. (a) Conductance signatures (experimental versus analytical). (b) Susceptance signatures
(experimental versus analytical).
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Figure 7. Finite element mesh of half of the specimen.

A frequency range of 0–200 kHz was considered, and a
peak match of both experimental and analytical conductance
and susceptance signatures was obtained at 160 and 170 kHz
for specimens 1 and 2, respectively.

3.3. Determination of structural mechanical impedance using
a FEM

Actuator impedance (Zas), as described in the previous section,
is determined by substituting the value of αP into equation (17)
and then solving equation (18). Unlike the actuator impedance
Zas, a simple closed-form solution is not available for the
structural impedance Zs. Hence, for complex systems one
needs to rely on FEM as this is the most widely used tool in
non-destructive evaluation methods. Therefore in this study,
this tool was employed as it has the ability to model real-life
complex structures.

Recently, researchers such as Makkonen et al (2001)
demonstrated that in dynamic analysis problems excitation of

very high frequencies (even up to the GHz range) can be
modelled with good accuracy using FEM. Bhalla and Soh
(2004a) (who excited frequencies of >200 kHz) used FEM to
verify their impedance model. The excitation of test specimens
with a harmonic electric field was compared with linear steady
state forced vibration, and the new ASI 2D impedance model
was verified as below.

The sandwich specimen was discretized into 2D quadri-
lateral elements as shown in figure 7. Since the structure was
symmetric about the Z direction, only the right half of the
structure was modelled. The experimental free–free condi-
tion was idealized by using appropriate boundary conditions,
and the X component of displacement along the Z direction
(i.e. the axis of symmetry) and the Z component of displace-
ment up to the end of the patch along the X direction were set
to zero.

As shown in figure 7, Hal is the thickness of the top and
bottom aluminium layers, HEp is the thickness of the epoxy
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layer, and LBM is the half-length of the beam specimen. The
finite element (FE) analysis was carried out using ANSYS 5.6
(ANSYS 2000), with differential element mesh sizes (different
sizes for different layers namely, aluminium top and bottom,
and the epoxy layer). The element used is the 2D quadrilateral
element (solid 42, four nodes), with two degrees of freedom at
each node. Details of the mesh sizes and convergence criteria
are discussed in the next section.

The PZT patch was not discretized since in the actuator
impedance Zas (admittance equations (18) and (28)), the
stiffness and damping of the PZT patch were already included
(Liang et al 1994, Bhalla and Soh 2004a). The following
differential equation is employed (ANSYS 2000):

[M][ü] + [C][u̇] + [K ][u] = {F} (35)

where [M] and [K ] are the mass matrix and the stiffness
matrix, respectively, and are given as

[M] =
N E∑
i=1

[Me
i ] and [K ] =

N E∑
i=1

[K e
i ]. (36)

[Me
i ] is the individual element mass matrix, NE the

number of elements and [K e
i ] is the individual element stiffness

matrix. {F} is the applied harmonic force matrix and [C] is
the structural damping matrix. In practice, the damping matrix
is difficult to determine, since in structural mechanics one is
more interested in dry friction and hysteretic damping rather
than viscous damping. Hence, the structural damping matrix
[C] is approximated as Rayleigh damping, as

[C] = αd[M] + β[K ] (37)

where αd and β are the mass damping factor and stiffness
damping factor, respectively. In most of the cases, the mass
damping factor, αd, is ignored (ANSYS 2000). Hence, the
stiffness damping factors β can be written as

β =
N M AT∑

j=1

β j [K j ] (38)

where [K j ] is the portion of the stiffness matrix based on
material j , and N M AT is the number of materials (layers) in
the model. In this model, two materials and three layers (top,
middle and bottom) were used, where the top and bottom were
aluminium layers and the middle layer was an epoxy layer.

The damping matrix [C] can also be expressed as follows:

[C] =
(

η

ω

)
[K ] (39)

where η is the mechanical loss factor of the material. Hence,
the damping factor β can also be expressed as

β = η

ω
= η

2π f
, more specifically, βM = ηM

2π f
(40)

where the subscript M denotes the material type. The values
of the damping factors for aluminium and epoxy used in this
model are listed in table 2.

In order to determine the ASI at a particular frequency,
an arbitrary harmonic force is applied on three edges of the

patch boundary. Using FEM, dynamic harmonic analysis
is performed and the complex displacement responses at
the points of force application are obtained for a frequency
range of 120 kHz. Using the linear sums of interpolation
functions of all elements, the required displacements are then
obtained. Boundary conditions, both natural and essential, are
included in the load vectors and stiffness matrix (Bathe 1996).
Equation (35) was solved by the solution tool of ANSYS 5.6.
The approach employed to determine ASI is described below.
The harmonic load applied on the structure can be expressed as

{F} = {FR + FIj}ejωt (41)

where FR and FI are the real and imaginary components,
respectively, of the applied harmonic force vector {F}. The
resultant harmonic displacement is expressed as

[u] = [uR + uIj]ejωt (42)

where [u] is the complex displacement vector and uR and uI

are the real and imaginary components, respectively, of the
displacement vector. The displacement is a complex term, due
to the phase lag caused by the impedance of the system.

Substituting equations (41) and (42) into (35), the
following equation is obtained:

{[K ] + jω[C] − ω2[M]}[uR + juI] = [FR + jFI]. (43)

In matrix form, the above equation can be written as
[−ω2[M] + [K ] −ω[C]

ω[C] −ω2[M] + [K ]
] [

uR

uI

]
=

[
FR

FI

]
.

(44)
The unknown displacements at each load point were

obtained from the above equation. Using u̇1 = jωu1, u̇3 =
jωu3, (figure 2), the ASI of the structure is given as

Zs = FHE
jω
m

∑m
1 (umR + umI)

+ FBE
jω

nαP

∑n
1(unR + unI)

+ FTE
jω

nαP

∑n
1(unR + unI)

(45)

where the subscripts to force F , namely HE, BE and TE,
indicate the horizontal, bottom and top sides, respectively, of
the PZT patch. In this model n and m are 5 and 3, respectively.

The procedure used is the full solution method (FSM).
Researchers like Bhalla and Soh (2004a) also used the FSM
to prove the effectiveness of their impedance method. This is
more accurate than the reduced solution method (RSM) used
by Makkonen et al (2001).

3.4. Convergence test

In order for the FE analysis (ANSYS 2000) to produce accurate
results, it is important to use an appropriate mesh size. Suitably
fine meshing to realistically simulate the transfer of the PZT
forces (Liang et al 1994) is necessary. Thus in the present
research, for the two test specimens used, different sets of mesh
sizes were employed until the model frequencies converged.
Table 5 lists the details of mesh size employed for specimens 1
and 2. The model frequencies for set 2 and set 3 as given
in table 5 are found to be in close proximity, thus indicating
the convergence of the frequencies. Hence, set 3 was finally
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Aluminium beam (top)

Aluminium beam (bottom)Epoxy layer (bottom)

Epoxy layer (top)PZT patch

Figure 8. Layers used for meshing.

Table 5. Mesh sizes used for specimens 1 and 2.

Mesh size
(m × m)

Specimen no. Set no. (10−3 × 10−3) Layer description

1 1 2 × 2 Aluminium beam (top)
2 × 0.8 Epoxy layer (top)
2 × 0.1 Epoxy layer (bottom)
2 × 2 Aluminium beam (bottom)

2 1.25 × 1 Aluminium beam (top)
1.25 × 0.8 Epoxy layer (top)
1.25 × 0.1 Epoxy layer (bottom)
1.25 × 1 Aluminium beam (bottom)

3 1 × 1 Aluminium beam (top)
1 × 0.8 Epoxy layer (top)
1 × 0.1 Epoxy layer (bottom)
1 × 1 Aluminium beam (bottom)

2 1 1 × 1 Aluminium beam (top)
1 × 0.9 Epoxy layer (top)
1 × 0.15 Epoxy layer (bottom)
1 × 1 Aluminium beam (bottom)

chosen for specimen 1. A similar procedure was adopted to
select the mesh size for specimen 2 (table 5). Figure 8 shows
the layers used for meshing the top and bottom aluminium
layers and the two sandwiching epoxy layers. Table 6 lists the
modal frequencies of the mesh size employed for specimen 1
with a description of the mode shape.

In order to ensure adequacy of the meshing, modal
analysis was also performed. The element size should be
sufficiently small (typically three to five nodal points per
half-wavelength) to ensure an accurate solution (Makkonen
et al 2001, Bhalla and Soh 2004a). All the modes of
vibration in the frequency range of interest were analysed,
from which the wavelengths of the excited modes were found

z

z

x

x

(a)

(b)

Figure 9. Graphical representation of the highest modal frequency of specimens 1 and 2. (a) Mode 28 ( f = 118.982 kHz) for specimen 1.
(b) Mode 18 ( f = 119.099 kHz) for specimen 2.

Table 6. Modal frequencies for different mesh sizes of specimen 1.

Modal frequency (kHz)
Mode shape

Mode Set 1 Set 2 Set 3 description

1 0.330 0.327 0.327 Flexure
2 1.981 1.955 1.954 Flexure
3 5.183 5.104 5.099 Flexure
4 9.342 9.182 9.172 Flexure
5 10.457 10.457 10.456 Axial
6 14.167 13.903 13.883 Flexure
7 19.483 19.090 19.057 Flexure
8 25.226 24.674 24.621 Flexure
9 31.360 30.634 30.554 Flexure

10 31.391 31.362 31.361 Axial + Flexure
11 37.975 36.977 36.858 Flexure
12 45.017 43.712 43.542 Flexure
13 52.251 50.848 50.612 Flexure
14 52.537 52.239 52.233 Axial + Flexure
15 60.542 58.393 58.073 Flexure
16 69.045 66.343 65.918 Flexure
17 73.092 73.052 73.033 Axial + Flexure
18 78.029 74.682 74.132 Flexure
19 87.360 83.341 82.649 Flexure
20 93.797 91.721 91.041 Flexure
21 94.061 93.735 93.697 Axial + Flexure
22 97.379 94.638 94.407 Flexure
23 100.066 98.529 98.294 Flexure
24 107.356 102.909 102.021 Flexure
25 109.756 107.687 107.466 Flexure
26 114.179 112.753 111.629 Flexure
27 119.084 114.138 114.030 Axial + Flexure
28 120.957 119.452 118.982 Flexure

to be quite large compared with the element size considered.
Figure 9 shows mode 28 and mode 18 (the highest excited
mode), characterized by a natural frequency of 118.982 and
119.009 kHz for specimens 1 and 2, respectively. Hence,
the criterion of sufficiently small element size is also clearly
satisfied.

4. Experimental results and discussion

Using the ASI for the actuator and structure, obtained by FE
analysis as described in the preceding sections, the value for
A0 is obtained from equation (24), which is then substituted
into equation (28) to finally derive the admittance.

The experimental and analytical conductance and suscep-
tance signatures of specimens 1 and 2 are shown in figures 10
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Figure 10. Experimental and analytical signatures of specimen 1:
(a) conductance and (b) susceptance.

and 11. In the considered range of frequency (<120 kHz), both
experimental and analytical peaks were observed. The peaks
in signatures are dependent on the type of material of the test
specimen.

The peak matches of conductance signatures at 95 kHz
for specimen 1 and 50 kHz for specimen 2 are clearly evident.
Difficulty in using epoxy to bond the aluminium layers could
be one of the reasons for the variations of other peaks, but
generally the trends are the same.

5. Conclusions

In this paper, a new ASI concept is introduced where
the ASI-based admittance formulations considered both the
vibrations in the length and thickness directions (extensional
and longitudinal actuations) of the PZT patch. Thus the
formulations are generic and impose no constraints like the
thickness limitation of the PZT patch, and can be used
for all PZT patches. Vibration of the thickness dimension
(longitudinal actuation) of the PZT patch, which was
previously neglected by other researchers, was successfully
employed in our formulations and the confined behaviour of
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Figure 11. Experimental and analytical signatures of specimen 2:
(a) conductance and (b) susceptance.

the PZT patch was demonstrated. To validate our model,
two sandwiched beam specimens fabricated using aluminium
beams sandwiching an epoxy layer were used. The ASI-
based analytical admittance signatures were compared with the
experimental signatures, and the trends were found to be in
good agreement.
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