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Abstract
A simple numerical approach based on the volume of fluid (VOF) method
reveals that a ‘W’-shaped, transient meniscus is ubiquitous during the
formation of a uniformly curved meniscus within a microchannel, which has
been believed to be dominant for the transients. The time that is needed to
maintain the transient meniscus is correlated with viscosity, surface tension
and geometry of the cavity. A generalized correlation is presented to predict
the persistent time of the transient meniscus in a wettable microchannel
(contact angle, θ < 90◦) for Newtonian fluid.

List of symbols

θ contact angle
ρ density
t time
ui velocity vector
xi coordinate component
σij total stress tensor
fi body force
p pressure
δij Kronecker delta tensor
η viscosity
dij strain rate tensor
C color function
F continuum surface force
γ surface tension coefficient
κ curvature
[C] jump of color function across the interface
�ns unit free surface normal vector
�nw unit normal vector directed into the wall
�tw unit tangential vector directed into the fluid
h0 initial thickness of liquid film
L width of channel cavity
S spacing between the adjacent cavities
h meniscus height within the cavity
tr effective relaxation time
Tg glass transition temperature
τ dimensionless time

y dimensionless location
φ aspect ratio of the cavity
tW persistent time of the transient meniscus
α proportionality constant
k universal constant for Newtonian fluid

1. Introduction

When a stationary liquid film is in contact with a wettable
channel or cavity, Laplace pressure is generated due to the
wetting-induced curved interface, leading to the capillary
movement of the liquid [1, 2]. This curvature-induced Laplace
pressure is simply counterbalanced by the gravitational
force (vertical capillary rise) or trapped air or defects in
the void spaces (lateral capillary flow). Capillarity is
important for studying micro/nanoscale patterning methods
such as micromolding in capillaries (MIMIC) [3], nanoimprint
lithography (NIL) [4] and capillary force lithography (CFL)
[5]. In addition, most microfluidic devices utilize the
movement of a fluid as an analyte or coolant, which
necessitates fundamental understanding of the formation and
shape of a meniscus at its early stage, in particular, as
the channel size decreases to a few tens of nanometers
[6, 7]. While capillarity has been studied extensively [8–10],
capillarity in microchannels has not received much attention
in spite of its importance in the above-mentioned systems.
Much less is known about the evolution of transient meniscus
in microchannels.
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Recently, a ‘W’-shaped, transient meniscus was observed
prior to the formation of a uniformly curved meniscus when
a polystyrene film was annealed within a cavity of the
polydimethylsiloxane mold in conformal contact with the
polymer surface [11]. Some speculation on the transient
meniscus led us to consider that a certain time would
be required for a viscous liquid to form a uniformly
curved meniscus since the wall-induced perturbation needs
to propagate toward the center of the channel. In this sense, it
would be interesting to investigate how the transient meniscus
evolves and how long it persists prior to the formation of a
uniform curvature. Motivated by this question along with our
earlier experimental observations, we performed a numerical
analysis on the evolution of a meniscus inside a microchannel
for Newtonian fluid. Although capillarity can either be found
in capillary rise (θ < 90◦) or capillary depression (θ > 90◦),
capillary rise is only considered in this study assuming that
the same approach could be applied to capillary depression.
As the capillary flow involves a moving free surface, a well-
known continuum simulation strategy called the volume of
fluid (VOF) method is used with the Eulerian grid system [12].
It is known that among the solution algorithms based on the
Eulerian method, the VOF method is simple and efficient in
dealing with complex flow patterns inside the cavity. Also,
the continuum surface force (CSF) model is employed to
consider the effects of surface tension and wall adhesion with
the Eulerian grid system [13]. We further assume unsteady,
incompressible flow and isothermal state of the system with
slip boundary conditions.

2. Numerical method

According to mass and momentum balances, the governing
equations of the two-dimensional system are given as follows:

∂ρ

∂t
+ ρ

∂ui

∂xi

= 0 (continuity equation) (1)

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

= ∂

∂xj

σji(u) + ρfi

(Navier–Stokes equation), (2)

where σij = −pδij + 2ηdij , dij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(i = 1, 2 and

j = 1, 2). Here t is the time, ui is the velocity component
in the xi direction, ρ is the density, η is the viscosity, fi is
the body force component in the xi direction and σij and dij

denote the stress and the strain tensors, respectively. In the
VOF method, the fractional volume is defined for element
variable. The fractional volume is used to divide the total
domain into two regions (occupied or empty). The values of
the fractional volume in fully filled cells, partially filled cells
and empty cells are given by unity, between zero and unity and
zero, respectively. The fractional volume is then computed and
updated at each time step following the advection equation,

∂C

∂t
+ ui

∂C

∂xi

= 0, (3)

where C is the color function (fractional volume). The process
of free surface construction consists of three steps: first, the
flow field is solved at one time step. Then the fluid volume
flux from one element to the neighboring element is calculated

Figure 1. Illustration of the computational domain.

Table 1. Geometries considered in the simulation (see figure 1).

Geometry Case 1 Case 2 Case 3 Case 4

L (µm) 3 1.5 4 2 5 2.5 6 3
h0 (µm) 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25
S (µm) 1.5 0.75 2 1 2.5 1.25 3 1.5

[14]. Finally, the fractional volume is updated. This process
for each time step is repeated until the desired time is reached.

Much attention needs to be paid to deal with surface
tension because of its dominant influence on flow pattern in
micro/nanoscale. In order to consider the effect of surface
tension in the Eulerian grid system, we used Brackbill’s CSF
model formulation [13], which converts the surface force to
body force:

F = γ

[C]
κ∇C, κ = −(∇ · n), n = ∇C

|∇C| , (4)

where γ is the surface tension coefficient, κ is the curvature
and [C] denotes the jump of C across the interface. Finally, the
boundary condition at the wall was imposed as the constant
contact angle. This condition can be expressed using the unit
free surface normal vector �ns along the wall,

�ns = �nw cos θ + �tw sin θ, (5)

where θ is the contact angle between the fluid and the wall,
�nw is the unit normal vector directed into the wall and �tw is the
unit tangential vector directed into the fluid.

The computation domain is shown in figure 1 where h0 is
the initial thickness of liquid film, L is the width of channel
cavity and S is the spacing between the adjacent cavities.
Four different geometries were considered in the simulation
as described in table 1 where the aspect ratio defined as L/h0

monotonically increases with two different cavity widths for
the same aspect ratio. In this manner, the role of aspect ratio
and channel width can be examined at the same time. The
value of S was determined such that the ratio of line width and
spacing was maintained to be the same (L/S = 2). In addition
to the geometrical parameters, material properties are also
important. First, the density of liquid was set to be constant
(1.06 × 103 kg m−3), which is independent of other parameters
such as viscosity and surface tension. Second, a wide range
of magnitudes were tested for surface tension and viscosity
due to their significant impact on the transient behavior: 4–
400 (mN m−1) for surface tension and 10−3 –4 × 109 (Pa s−1)
for viscosity. While high-viscosity liquids such as polymer
melt frequently show a shear thinning behavior, the viscosity
could be assumed to be constant at extremely small shear rates
as can be found in the capillary system presented here [15].
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(a) (b)

(c) (d)

Figure 2. Typical numerical results for the evolution of the transient meniscus over time for four viscosities (increasing order): (a) η = 1 ×
10−3 Pa s−1, (b) η = 1 × 10−1 Pa s−1, (c) η = 5 × 107 Pa s−1 and (d) η = 4 × 109 Pa s−1. Other parameters were set to be constant: h0 =
500 nm, γ = 40 mN m−1 and L = 6 µm.

Finally, both surface tension and viscosity were assumed to be
constant under isothermal conditions during the evolution of
the transients.

3. Results and discussion

Typical numerical results for the transient meniscus are shown
in figure 2 for a 6 µm channel. As can be seen from the
figure, a flat or ‘W’-shaped meniscus persists for a period
of time prior to the formation of a ‘U’-shaped, uniformly
curved meniscus for different viscosities ranging from 10−3

to 109 Pa s−1. For a low viscosity liquid such as water
(figure 2(a), η = 1×10−3 Pa s2−1), the persistent time (defined
as the time when the center point of meniscus is located at the
lowest position) is merely on the order of 10−7 s, suggesting
that it is unlikely to observe a transient meniscus under a
simple optical setup. When the viscosity is increased by two
orders of magnitude (figure 2(b)), the corresponding persistent
time is increased roughly by two orders of magnitude. This
linear relation can also be applied to a high-viscosity liquid
or polymer melt (figures 2(c)–(d)) where the persistent time is
on the order of hours to tens of hours [11]. In particular,
the transient profiles shown in figure 2(c) have practical
implications for the micromolding process involving polymer
films such as NIL [4] and CFL [5]. For example, we previously

observed in CFL that it took ∼30 min for a rubbery polymer
to completely fill the cavity of the mold with a height of
600 nm and a width of 400 nm at 100 ◦C. The viscosity of the
polymer was ∼106 Pa s−1 from the rheometrics spectroscopy
(RMS) measurement at zero shear stress. If we assume a linear
dependence of the persistent time on viscosity, the time scale
for the evolution of meniscus at this viscosity is estimated to be
several minutes. This time can be defined as an incubation time
that is needed to form a uniform curvature prior to capillary
rise of the polymer melt [5].

A physical interpretation is as follows: once the liquid
wets the wall of a channel the perturbation propagates to the
inside of the channel. During the propagation, the nearest
region of the perturbation should be depressed to meet mass
conservation. As a result, it follows that the transient meniscus
first presents a W-shape and then evolves into a flat and finally
a uniform curvature. The uniformly curved meniscus is a
part of a circle, the radius of which is (L/2) / cos θ . This
phenomenological explanation is not complete but can point
out key aspects for the evolution of the transients. The time
it takes for the film to form a uniform curvature strongly
depended on viscosity, surface tension, film thickness and
geometrical parameters. Of these, the effects of viscosity
turned out to be dominant, which is readily understood in terms
of mobility of the film. Interestingly, the whole evolution to
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form a uniform curvature takes approximately two to three
times the persistent time as shown in figure 2.

To provide a dimensionless analysis for predicting
the persistent time, we consider a simple one-dimensional
conservation equation for a liquid film (<10 µm) after
reducing the original Navier–Stokes equation to a simple form
[11, 16],

η
∂h

∂t
= −γ

3

∂

∂x

(
h3 ∂3h

∂x3

)
, (6)

where h is the meniscus height within the cavity. To study the
initial transients, it is sufficient to consider a linearized version
of the equation:

∂H

∂τ
= − 1

3φ4

∂4H

∂y4
, (7)

where φ ≡ L/h0 (the aspect ratio defined as the channel width
divided by film thickness) and τ ≡ t/tr (tr ≡ ηh0/γ ). Here,
the height is scaled with respect to the initial film thickness h0

for H, the time with respect to an effective ‘relaxation’ time tr
for τ , and the coordinate x with respect to the channel width
L for y. tr can be viewed as an effective relaxation time since
it can be interpreted as a time scale that is needed to form
a uniform curvature within the channel. For example, in the
case of polymer melt, the polymer chains are highly coiled
and entangled so that it takes a lot of time for the chains to be
relaxed. When we insert η0 ∼ 6 × 1010 Pa s−1 at glass transition
temperature (Tg) (Mw = 1.4 × 105) [17], h0 = 1 µm, and γ ∼
35 mN m−1 for polystyrene (PS) [18, 19], the relaxation time
is calculated to be ∼1.7 × 106 s at Tg, indicating that it takes
about 472 h or 20 days for the chains to be fully relaxed. In the
case of water, on the other hand, the corresponding parameters
are η0 ∼ 9.3 × 10−4 Pa s−1 at 23 ◦C [1], h0 = 1 µm and γ =
72 mN m−1 [1], yielding tr ∼ 13 ns.

The dimensionless version of mass balance shown in
equation (7) indicates that the initial thickness profiles would
be the same for the same dimensionless time (τ ), location
(y) and geometry (φ) [H = H(τ, y; φ)]. The functional
dependence of the dimensionless channel width y or channel
width L can be formulated into Laplace pressure (�P ∼
cos θ · γ /L) since the rate of capillary rise at the wall, for
example, would decrease with increasing channel width [20].
As a result, the persistent time of the transient meniscus (tW )
could be correlated with viscosity, aspect ratio and Laplace
pressure, leading to

tW = tW (tr , φ, L) ≈ tW (η, L/h0,�P ). (8)

In figure 3(a), we plotted tW as a function of tr for various
geometrical conditions shown in table 1. As shown in
the figure, tW is linearly proportional to tr for a given
aspect ratio and Laplace pressure. Here, we define the
proportionality constant as α(φ, y), such that tW = α(φ, y) · tr
following equation (8). The linear increase indicates that
a high tr (low mobility) gives rise to sluggish movement
of the liquid, thus requiring much time to form a uniform
curvature. Furthermore, α(φ, y) was found to increase with
increasing aspect ratio. This is readily understood in terms
of the propagation time and capillary movement of the liquid,
corresponding to our earlier experimental observations using
different channel widths for a given film thickness and tr [11].
Surprisingly, the measured persistent times did not show much
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Figure 3. (a) Plot of the persistent time of the transient meniscus as
a function of the effective relaxation time for various geometrical
conditions shown in table 1 with two different contact angles (40◦

and 70◦). For θ = 70◦, the data with the same aspect ratio but half
the cavity width (1/2 scale) were also presented. (b) Plot of the
proportionality constant in equation (9) as a function of the third
order of aspect ratio.

difference for two contact angles (40◦ and 70◦) and different
cavity widths for a given φ and tr. This finding implies that the
persistent time might be independent of Laplace pressure or
the propagation be mainly governed by material properties and
cavity geometry, not by wetting kinetics at the wall. Also, this
is supported by our earlier observation that the capillary rise
takes place only after forming a uniformly curved meniscus
[21]. Based on these findings, we propose a simple linear
relation between tW and tr :

tW = α(φ, y) · tr ≈ α(φ) · tr . (9)

In figure 3(b), we found that α(φ) is best fitted with the third
order of φ, yielding the slope of ∼8.79 × 10−3 from the
regression. Thus, one can represent tW in terms of geometrical
parameters and key material properties as follows:

tW = k
ηL3

h2
0γ

∼ 8.79 × 10−3φ3tr , (10)
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Figure 4. A generalized plot comparing the experimental data with
the correlation presented in this study. Various geometrical
conditions were tested for the plot including L/S = 2 and 1. For
L/S = 2, the data with the same aspect ratio but half the cavity width
(1/2 scale) were also presented. S = 1 µm indicates that the spacing
was maintained constant with different values of L shown in table 1.

where k is the universal constant for Newtonian liquid films
considered in this study. Figure 4 shows a generalized plot
comparing the simulation data with the correlation derived
in equation (10). A good agreement was seen for all the
conditions tested except for relatively large scatterings for
larger tW . A question arises as to whether this generalized
correlation can be applied to other geometries of the mold. As
shown in figure 4, the influence of the spacing with respect
to the cavity size seems non-significant for various mold
geometries. This is because the meniscus formation appears to
be governed by the movement of a liquid film within the cavity
rather than mass transport from outside the cavity (the space
region between cavities), which was observed experimentally
in our previous work [21]. Thus, the correlation could be
equally applied to different cavity sizes having different values
of L/S.

4. Summary

We have presented numerical simulations on the evolution
of the transient meniscus for a Newtonian liquid when a mold
cavity is in contact with a liquid surface. A W-shaped meniscus
was always found prior to the formation of a uniformly curved
meniscus regardless of material properties (e.g., viscosity,
surface tension, contact angle (<90◦)) and geometry of the
cavity (e.g., channel width, spacing, film thickness). Also
a generalized correlation has been derived to predict the
persistent time of the transient meniscus as a function of
viscosity, surface tension and aspect ratio with an appropriate
proportionality constant. It was found that the persistent time
was independent of Laplace pressure and mainly governed
by material properties and cavity geometry. Also, the whole
evolution to form a uniform curvature took two to three times
the persistent time for a given liquid film. The generalized
correlation was also in good agreement with various mold
geometries, suggesting that it is potentially widely applicable
to describing wetting behavior in a wettable microchannel or
flow kinetics in micro/nanofluidics.
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