CORRIGENDUM

All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

To cite this article: Yu Jin Kang et al 2012 Nanotechnology 23 289501

View the article online for updates and enhancements.

Recent citations

- Porous WO$_3$/graphene/polyester textile electrode materials with enhanced electrochemical performance for flexible solid-state supercapacitors
 Li-Na Jin et al.

- Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy
 Lang Liu et al.

- Recent advances in flexible supercapacitors based on carbon nanotubes and graphene
 Kang Li and Jintao Zhang
All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

2012 Nanotechnology 23 065401

Yu Jin Kang1, Haeguen Chung2, Chi-Hwan Han3 and Woong Kim1

1 Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea
2 Department of Environmental Engineering, Konkuk University, Seoul 143-701, Korea
3 Photovoltaic Research Center, Korea Institute of Energy Research, Daejeon 305-343, Korea

E-mail: woongkim@korea.ac.kr

Received 25 April 2012, in final form 29 April 2012
Published 21 June 2012
Online at stacks.iop.org/Nano/23/289501

(1) In the experimental section, the amount of PVA used in the preparation of H2SO4/PVA gel should be 2 g instead of 20 mg.
(2) The equation for the power density, P_{cell}, on page 4 should be corrected as follows:

$$P_{\text{cell}} = \frac{E_{\text{cell}}}{\Delta t},$$

where V is the voltage after IR drop, M is the total mass of CNTs, R is the ESR and Δt is the discharge time.
(3) The Y-axis label in figure 5 should be P_{max} instead of P_{cell}.

$$P_{\text{max}} = \frac{V^2}{4RM},$$

where V is the voltage after IR drop, R is the ESR, and M is the total mass of the electrode materials.

Figure 5. Performance comparison of various solid-state flexible CNT supercapacitors. The legend indicates the active electrode materials of each supercapacitor.