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Abstract
A modeling study of the potential for storing energy in the elastic deformation of springs
comprised of carbon nanotubes (CNTs) is presented. Analytic models were generated to
estimate the ideal achievable energy density in CNTs subject to axial tension, compression,
bending and torsion, taking into account limiting mechanisms such as the strength of individual
CNTs, the onset of buckling, and the packing density limitations of CNT groupings. The stored
energy density in CNT springs is predicted to be highest under tensile loading, with maximum
values more than three orders of magnitude greater than the energy density of steel springs, and
approximately eight times greater than the energy density of lithium-ion batteries. Densely
packed bundles of precisely aligned, small diameter single-walled carbon nanotubes are
identified as the best structure for high performance springs. The conceptual design and
modeling of a portable electric power source that stores energy in a CNT spring are presented as
tools for studying the potential performance of a system for generating electricity from the
CNTs’ stored mechanical energy.

1. Introduction

There exists a growing need for rechargeable, high energy
density energy storage media for use in small, lightweight,
highly efficient portable power sources. This paper presents
a study of the potential and feasibility of using mechanical
springs comprised of carbon nanotubes (CNTs) for energy
storage. To use a CNT spring as an energy storage medium,
the spring must first be deformed elastically in order to store
energy in the structure’s deformation. The spring would then
be latched in its deformed configuration in order to hold the
stored energy in the system until use. Finally, the spring’s
deformation would be relaxed, transmitting the stored energy
to the desired load in the process. The application of CNTs
to mechanical energy storage is motivated by the exceptional
properties of individual CNTs, which include high stiffness,
high strength, high flexibility, and low density [1]. Since the
maximum stored energy density of a linear elastic material
is proportional to the product of its material stiffness and the
square of its maximum elastic strain, springs based on dense
arrays of CNTs are an ideal medium for reversible mechanical
energy storage.

Considerable work has been done previously to charac-
terize the mechanical properties of CNTs experimentally. The
effective Young’s modulus of single-walled CNTs (SWCNTs)
and multi-walled CNTs (MWCNTs) is usually estimated to

be 1 TPa, assuming a wall thickness of 0.34 nm [1]. Elastic
strains of up to 6% have been demonstrated experimentally to
date [2], while molecular dynamics models predict reversible
tensile strains as high as 20% [3–5]. CNTs are highly flex-
ible and are able to withstand significant compression, elon-
gation, twisting and bending in a reversible manner and with-
out inducing fracture or plastic deformation [6, 7]. Although
some materials offer a subset of these characteristics, it is the
combination of high flexibility, high strength and high stiffness
that distinguishes CNTs from other materials as an energy stor-
age medium. Of course, the use of CNTs for their mechanical
properties is not new; for example, CNTs have been randomly
dispersed into matrix materials as a low-volume-fraction rein-
forcement to create a composite with higher modulus, strength
and toughness than the matrix alone [8]. In contrast, the present
work examines the use of materials that are completely or pre-
dominantly composed of highly ordered arrays of CNTs for
energy storage.

While impressive mechanical properties have been
recorded for individual CNTs, the ability to fabricate
macroscale fibers and yarns made of millions or more CNTs
with comparable properties remains elusive. The challenge
lies in the difficulty of controlling the alignment, degree
of entanglement, packing density, defects and presence of
nanoscale impurities within macroscale assemblies. The
strength and stiffness of the best fibers and yarns demonstrated
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to date are more than an order of magnitude lower than the ideal
values of individual CNTs [9, 10]. The present work examines
the energy densities for individual CNTs under a range of
deformations. This provides an upper bound for the energy
densities of CNT arrays and predicts their performance in the
case that the assembly maintains the properties of individual
CNTs.

High energy density is just one of many potential benefits
of CNT springs as an energy storage medium. Because
spring-based energy storage is based on different physics than
that which governs electrochemical batteries, the operational
characteristics and limitations of such a device will be different
from those of batteries. For example, batteries operate
with their best energy density when they are discharged
slowly; in contrast, springs can release their energy quickly
without great loss of efficiency. In addition, because
stretching chemical bonds by deforming a macroscale spring
is inherently a more controllable and reversible process than
most chemical reactions, which break and reform bonds, an
energy storage medium based on CNT springs offers the
potential for a much greater number of charge–discharge
cycles, less self-discharge, less sensitivity to temperature
and other environmental conditions, and perhaps even safer
operation than electrochemical batteries. Finally, in systems
such as regenerative braking for vehicles where the target load
is mechanical rather than electrical, mechanical energy storage
may be a simpler and more efficient solution than batteries
coupled to motor/generators.

Practical considerations also play a role in assessing the
potential of CNT springs for implementation as an energy
storage medium. One consideration is the ability to synthesize
long, low-defect CNTs that are suitable for incorporation
into CNT springs in large quantities and at relatively low
costs. Recent progress in this area includes the synthesis
of CNTs with lengths at the centimeter scale [11]. A
second consideration is the ability to create microscopically
highly ordered, macroscale CNT assemblies that can store
significant amounts of energy and be controlled more easily
than individual CNTs; recent research on creating increasingly
strong carbon nanotube fibers provides a useful starting
point [10, 12]. A third consideration is that a practical system
will require not just the CNT springs themselves, but also other
structures with which to control the spring deformation; the
mass and volume of these ancillary structures will reduce the
overall energy density of the system. In particular, a supporting
structure must be employed to carry the load of the deformed
CNT spring while energy is stored in it, and a practical system
must also include a coupling mechanism to transfer the stored
energy to the external load. The overall stored energy density
of the system will therefore be lower than the energy density of
the CNT springs themselves, and the extractable energy density
(after losses due to less than ideal efficiencies) will be lower
still.

This paper examines these issues in detail in order
to assess the potential of CNT springs for energy storage.
Section 2 presents energy density estimates for CNTs under
different modes of mechanical deformation, and then extends
these estimates to include the effect of a support structure

on the overall energy density. Section 3 presents the design
and modeling results for a conceptual power source that
incorporates a CNT-based spring. The model predicts the
power output, overall system efficiency, operating frequency of
the energy regulation mechanism, and energy discharge time.
Finally, section 4 outlines the implications of these results for
the development of practical energy storage devices that use
CNT-based springs.

2. Energy density

In this work, well-established, analytical models for CNT
mechanics were utilized to estimate the energy that may be
stored in elastically deformed CNT springs under a broad range
of different loading conditions. The value of this modeling
approach lies in the simplicity and computational efficiency
with which it provides guidance for the design of CNT-based
springs and energy storage systems. Ideally, such analytical
models provide insight into the physical trends that govern
the potential performance of this proposed new type of energy
storage system. The insights gained in this way may then be
used to design specific energy storage systems, which may then
be further studied by more advanced numerical analyses and
ultimately by experiments.

The analytical models used here employ several approxi-
mations. The CNTs are modeled using the continuum assump-
tion [8], in which each CNT is treated as a uniform, hollow,
cylindrical beam, and each shell of the CNT is taken to con-
tribute 0.34 nm to the beam’s wall thickness. Therefore, each
beam has an inner radius ri, a tightly packed wall thickness of
n · 0.34 nm, and an outer radius ro = ri + n · 0.34 nm, where
n is the number of shells in the CNT. The model does not ac-
count for sets of diameters of the internal MWCNT shells other
than the tightly packed structure described above because non-
tightly packed MWCNTs would buckle more easily and would
in general have lower spring performance than otherwise iden-
tical, tightly packed MWCNTs would. The commonly ac-
cepted Young’s modulus E of 1 TPa is employed [1]. The
maximum deformations are assumed to be governed by either
the elastic limit or the onset of buckling, depending on which
limit is reached first. Treating a CNT as a beam is a simplis-
tic model that does not account for the nested shell structure,
van der Waals forces, shear interactions between the layers,
or non-linear post-buckling behavior [13]. However, because
the simple analytical models used here employ parameters de-
rived from more advanced analytical models such as molecular
dynamics, they provide reasonable strain energy density esti-
mates in the elastic regime and before the onset of buckling.
Finally, the maximum gravimetric energy density of a spring
comprising a large assembly of CNTs under a given mode of
deformation is assumed to be equal to the maximum gravimet-
ric energy density of a single CNT under that deformation. In
practice, some modes of deformation are more readily applied
to all members of an assembly in a uniform fashion than oth-
ers, so this assumption will generally produce an upper bound
on the maximum energy density that may be stored in the as-
sembly. Using these assumptions, the strain energy density is
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estimated in CNT springs under loading in axial tension, axial
compression, bending, and torsion.

In continuum mechanics, the energy stored in an
elastically deformed object is given by

U = 1
2

∫
V

∑
i

∑
j

σi jεi j dV (1)

where V is the volume of the body, σ is the stress tensor, and
ε is the strain tensor. For the case of CNTs loaded below
the failure and/or buckling limits in axial tension or axial
compression to an elastic strain of ε, the volumetric energy
density ushells

v within the shell walls (i.e. omitting the unfilled
space inside the CNT from the volume integral) is given by

ushells
v = 1

2 Eε2, (2)

while the gravimetric energy density ushells
m within the shell

walls is given by

ushells
m = 1

2
Eε2 1

ρ
(3)

where ρ is the density. The existence of unfilled space
inside a CNT (and between the CNTs that comprise a CNT
assembly) will not affect gravimetric energy density, so the
overall gravimetric energy density um will be equal to the
gravimetric energy density ushells

m of the shells alone. However,
the unfilled space does impact the volumetric energy density
of the overall structure, so that the overall volumetric energy
density of the spring uv will not be equal to the volumetric
energy density ushells

v of the shells. Approximating a CNT as a
cylindrical tube, its cross-sectional area is A = π(r 2

o −r 2
i ), and

its total enclosed area is Aencl = πr 2
o . Therefore, the overall

strain energy density per unit volume of a hollow cylindrical
beam loaded to an elastic axial strain of ε under axial tension
or compression is reduced by a factor of A/Aencl, yielding.

uv = 1

2
Eε2 A

Aencl
. (4)

For springs composed of large assemblies of CNTs, the overall
volumetric energy density uv of the spring will be reduced
further by the spacing between the CNTs in the assembly.
The amount of spacing will depend on the size, uniformity,
and packing of the CNTs. For CNTs packed into an ideal
hexagonal lattice, the spacing between adjacent CNTs will
be 0.34 nm [1]. This reduces uv by an additional fill factor
f = 0.91 [14].

Equation (4) assumes effective load transfer through all
shells of a tightly packed MWCNT. For ideal MWCNTs (that
is, those in which the inter-shell coupling is solely due to
van der Waals effects), the assumption that all shells fully
share the load is only valid under compressive loading or
bending. It is not valid for ideal, tightly packed MWCNTs
under tensile or torsional loading because the inner shells slide
past one another almost without friction [15, 16]. For an ideal
MWCNT under tensile or torsional loading, the outer shell
carries most of the load, so that the maximum achievable strain
energy density for ideal MWCNTs in tension or torsion will be
significantly reduced as compared with the case in which all

Figure 1. Volumetric energy density as a function of tensile strain for
SWCNTs and MWCNTs.

shells carry the load. However, previous work has shown that
inter-shell interactions in MWCNTs are not necessarily ideal.
In particular, the existence of inter-shell sp3 bonds, which
may be created using controlled sputtering or irradiation, can
significantly improve inter-shell load transfer [17]. In this case,
it may be possible to transfer loads to the inner shells of the
MWCNT, though the induced defects may decrease the axial
strength.

Figure 1 plots the calculated volumetric energy density
uv (equation (4)) as a function of axial strain for the tensile
loading both of SWCNTs and of MWCNTs with either just
the outer shell carrying the load (to represent ideal MWCNTs)
or all shells carrying the load (as an absolute upper bound
on MWCNTs with inter-shell load transfer). The SWCNTs’
diameter is taken to be 1 nm, and the MWCNTs’ outer
diameters are taken to be 3, 8 and 20 nm. In the case where all
MWCNT shells carry the load, the MWCNTs are assumed to
be entirely filled with densely packed inner shells to determine
the upper bound on the energy density; under this assumption,
the volumetric energy density of MWCNTs in which all shells
carry the load does not depend on the outer diameter. The
energy density is maximized by applying high tensile strains
to the spring; the strain that can be applied to the spring in
tension is limited only by the elastic limit. The ratio A/Aencl

must be large to achieve high energy density, so assemblies
of SWCNTs with small diameters offer higher energy density
than do MWCNTs in which only the outer shell carries a tensile
load. Defect-free, densely packed, completely filled MWCNTs
in which all shells carry the load offer a somewhat higher
value of maximum energy density than that offered by small
diameter SWCNTs. This energy density represents an upper
bound on MWCNT performance because it assumes that there
is complete load transfer between shells but that the defects
that enable this increased load transfer do not reduce the shells’
yield strength. For the purposes of the design and potential
performance assessments presented here, the SWCNT results
will be considered to represent a reasonable best-case scenario
for tensile loading. Although this may slightly understate
the potential performance of MWCNTs with well-coupled
shells, the approximation is justified both by the comparability
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between the SWCNT and coupled-shell MWCNT results and
by the better-characterized set of assumptions that go into
the SWCNT calculations. SWCNTs with small diameters
also offer the most stability against radial deformation due to
van der Waals interactions when in close contact with other
nanotubes [13]. With an applied tensile strain of 15% to
1.02 nm diameter SWCNTs (A/Aencl = 0.75), the achievable
energy density uv for a single tube is 8.4 × 106 kJ m−3

(corresponding to a gravimetric energy density um of 5 ×
103 kJ kg−1), while for a densely packed bundle of these
tubes, the maximum volumetric energy density uv is 9% less,
or 7.7 × 106 kJ m−3. In comparison, the volumetric energy
density of a lithium-ion battery is in the range of 0.9 × 106–
1.44 × 106 kJ m−3, corresponding to a gravimetric energy
density of 430–650 kJ kg−1 [18], and the energy density of a
steel spring is about 1080 kJ m−3 or 0.14 kJ kg−1 [19].

When sufficiently large loads are applied to CNTs in
bending, torsion or compression, they deform into complex
buckling patterns. While the buckles remain largely elastic and
reversible [20], loading above the buckling point increases the
likelihood of permanent defects forming in the lattice to release
the localized strain. Beyond the first buckle, the quadratic
relations between strain energy and strain for compression,
strain energy and bending angle for bending, and strain
energy and twist angle for torsion are lost, and these relations
become roughly linear [6, 21]. To avoid permanent defects
forming in the lattice and to maintain the more favorable
quadratic dependence of stored energy on strain, applying
loads sufficient to induce buckling should be avoided when
using CNT-based springs for energy storage.

The treatment of CNTs loaded in compression mirrors that
of CNTs in tension, with two important differences. First,
energy storage in CNTs under compression may be limited
by buckling rather than by the elastic limit of the material.
Second, as mentioned above, a compressive loading can be
transferred to the inner shells of a MWCNT without the need
to grasp the inner shells directly. Therefore, equation (4)
can be used to calculate the maximum strain energy density
in a compressively loaded, MWCNT-based spring without
modification.

The critical buckling strain for a CNT depends on its
structure and is highly sensitive to the number of shells, the
CNT diameter, and for MWCNTs, the type and degree of
interaction between adjacent shells. Various analytical models
have been created to capture this buckling behavior; two basic
models will be used here. In one model, Chang et al [22]
used molecular mechanics to develop an expression for the
critical buckling strain of both SWCNTs and thick MWCNTs
in compression, where a ‘thick’ MWCNT is defined as a tightly
packed one that has a diameter ratio di/do of less than 0.62.
In this model, the critical buckling strain εs

cr for SWCNTs is
calculated as

εs
cr = 4

d

√
Do

Et

(
1 + h

d

)
, (5)

where d is the SWCNT diameter, h = 0.34 nm is the effective
wall thickness, Do = 0.85 eV is the bending stiffness and
Et = 360 J m−2 is the in-plane stiffness of the SWCNT. The

Figure 2. Maximum volumetric energy density before the onset of
buckling in compression plotted as a function of diameter for
SWCNTs, and plotted as a function of outer diameter for MWCNTs
with three shells and for thick MWCNTs.

critical buckling strain εm
cr for thick MWCNTs in compression

is found in this model to be insensitive to the inner diameter di

and depends only on the outer diameter do according to

εm
cr = 0.0985 × 10−9

do
. (6)

In another model, Xia et al created a continuum model to
predict the onset of buckling in MWCNTs. This model is
supported by molecular dynamics simulations and can be used
to describe buckling either in ideal MWCNTs or in MWCNTs
with inter-shell sp3 bonding. The critical buckling strain is
given in [17] as

εm
cr = h

R
√

3(1 − ν2)
+ n − 1

n

Gδ

Eh
(7)

where R is the average radius of the MWNT, n is the number
of shells, ν is the Poisson’s ratio, G is the shear modulus,
and δ is the spacing between neighboring shells. Both models
yield similar values for the critical buckling strain for ideal
MWCNTs.

Calculated maximum strain energy densities for SWCNTs
and MWCNTs with various shell structures in compression
before the onset of buckling are plotted as a function of
diameter in figure 2, using the three models for buckling
strain described above. A fraction of inter-shell sp3 bonds
of 6% has been used in the buckling strain model from [17].
The calculations assume in all cases that buckling occurs
before the elastic limit is reached, which is valid if the elastic
strain limit is greater than εs

cr in the case of SWCNTs and
εm

cr in the case of MWCNTs. Independent of the buckling
model that is used, energy density decreases rapidly with
increasing diameter because of the limit on the applied strain
due to buckling. Thick MWCNTs also have higher energy
density than thinner MWCNTs and SWCNTs for the same
outer diameter because of their dense inner shells and higher
buckling strain. Beyond these trends, it can be seen that
if CNT deformation is limited only by buckling, the energy
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density of MWCNTs with inter-shell bonding is higher than
the energy density both of SWCNTs and of MWCNTs with
only van der Waals interactions between neighboring shells.
These results are valid only if the elastic limit exceeds
the buckling limit. Given that the buckling limit for the
MWCNTs examined here is calculated to be as high as 0.1
for certain geometries, this assumption may not be valid. If
a fraction of the atoms in a MWCNT form inter-wall bonds,
the resulting defects may lower the elastic limit of the shells,
and consequently MWCNTs containing these defects are more
likely to reach their elastic limit before buckling. In that
case, the calculations accounting for inter-shell bonding will
overestimate the achievable energy density in MWCNTs. In
general, the maximum achievable energy density of SWCNTs
depends on parameters that are known with a greater degree
of certainty than those of MWCNTs. SWCNTs are therefore
recommended as a better structure than MWCNTs for a spring
in compression because their smaller diameters ensure high
energy densities, independent of the details of the inter-shell
interaction.

To evaluate the validity of the continuum beam model
employed here for a single shell, the strain energy per atom
of a SWCNT under uniform compressive loading prior to
buckling is compared with the results of molecular mechanics
and finite element models. Figure 3 plots strain energy per
atom as a function of strain for a 1.41 nm diameter (18, 0)
SWCNT modeled by Arroyo et al [23], a 1.25 nm diameter
(16, 0) SWCNT modeled by Sears et al [24], and a 1 nm
diameter (7, 7) SWCNT modeled by Yakobson et al [21]. In
general, strain energy is expected to be largely independent
of chirality [1]. Strain energy per atom for each modeled
SWCNT is plotted up to its respective compressive buckling
strain, which varies between models because of the different
diameters of the modeled SWCNTs in addition to variations
between models. The energy per atom of a SWCNT predicted
by the continuum beam model is plotted as a function of strain
on the same graph. The energy predicted by the continuum
beam model is independent of diameter and chirality, so the
curve is plotted up to the maximum strain on the graph since
the SWCNT diameter, which determines the buckling strain,
is unspecified. Good agreement between the four models
indicates that the continuum beam model can be used to obtain
reasonable energy density estimates.

Inter-shell sp3 bonding will be neglected in determining
the onset of buckling in MWCNTs subjected to bending or
torsional loads, for which the analytical expressions of [17]
are not directly applicable; the models from [21, 22, 25] will
be used instead. As in the case of compression, inter-shell sp3
bonds are expected to increase the buckling strain of MWCNTs
but adversely affect the elastic limit. The range of potential
MWCNT inter-shell interactions and the variations among the
models that describe the onset of buckling in CNTs add some
uncertainty to the maximum predicted strain energy densities.
The assumptions used here nonetheless provide a reasonable
estimate of the overall maximum strain energy density, with a
degree of variation with detailed shell structure that is similar
to that observed for compressed CNTs.

The treatment of energy storage in bending requires a
different framework because of the spatial variation of strain

Figure 3. Strain energy per atom of a CNT under compression
calculated using the continuum beam model compared to the results
of molecular dynamics [21, 24] and finite element [23] models.

within a bent CNT. In pure bending, a uniform bending
moment is applied to the cylindrical beam so that it develops
a maximum strain of ±ε at its outer diameter. The volumetric
strain energy density of the beam is

uv = 1

8
Eε2

[
1 −

(
ri

ro

)4]
. (8)

For a given value of ε, high energy density can be achieved
when the ratio ri/ro of the CNT is small, which implies that
the highest energy densities will be achieved in SWCNTs with
small outer diameters or in MWCNTs with densely packed
shells. The amount of bending that can be applied to a CNT
is limited by the strain at which a CNT begins to buckle.
Yakobson et al [21] modeled the critical buckling strain of a
SWCNT under bending as

εs
cr = 0.077 × 10−9

d
, (9)

where d is the SWCNT diameter. Chang et al [22] modeled
the critical buckling strain of thick MWCNTs in bending as

εm
cr = 0.111 × 10−9

do + h
, (10)

where do is the outer diameter and h = 0.34 nm. Both
expressions contain an inverse relation between buckling strain
and diameter. As for the case of compressive loading,
deforming a CNT in pure bending has the advantage of
deforming all shells of a MWCNT rather than just the
outermost shell, leading to higher overall energy density than
if only the outermost shell were deformed.

The maximum overall volumetric strain energy density in
bending before the onset of buckling is plotted as a function
of diameter in figure 4. Energy density decreases rapidly with
increasing diameter because of the decrease in buckling strain
at higher diameters. For the same outer diameter, MWCNTs
store energy with higher density than SWCNTs because of the
dense packing of inner shells. However, SWCNTs generally
have smaller diameters than MWCNTs, so SWCNTs will tend
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Figure 4. Maximum volumetric strain energy density before the
onset of buckling in bending plotted as a function of diameter for
SWCNTs, and as a function of outer diameter for MWCNTs with
three shells and for thick MWCNTs.

to store energy with higher density, although modifications to
the critical buckling strain of MWCNTs due to strong inter-
shell interactions may improve the performance of MWCNTs.
Overall, SWCNTs with small diameters would be an excellent
structure for a spring deformed in bending. Typical radii of
curvature for bent CNTs at the onset of buckling are 6.7 and
26 nm for 1.02 and 2 nm diameter SWCNTs respectively,
which are quite small for implementation in springs at anything
above the nanoscale.

To estimate the maximum strain energy density of a
CNT under torsion, a torsional moment M is applied to the
cylindrical beam. The volumetric strain energy density uv, is
given by

uv = M2

2G Jπr 2
o

, (11)

where G is the shear modulus and J = π
2 (r 4

o − r 4
i ) is the polar

moment of inertia of the beam. Wang et al [25] propose a
model for the critical moment at which buckling first occurs
for torsionally loaded long SWCNTs and MWCNTs:

Mcr = 4E Jh3/2

3(ro + ri)5/2(1 − ν2)3/4
, (12)

where ν is the Poisson’s ratio. For ideal MWCNTs, an applied
moment affects only the outer shell since grasping the inner
shells is difficult [16, 26]. However, previous work has shown
that load transfer in torsion may be increased through inter-
wall sp3 bonding [27], which would enable inner shells to
contribute to supporting a torsional load. Using the critical
moment from [25], the maximum volumetric energy density of
torsionally loaded SWCNTs and MWCNTs before the onset of
buckling is calculated and plotted against diameter in figure 5,
indicating that the maximum energy density decreases rapidly
with increasing diameter. In this plot, the inner shells of the
MWCNTs are assumed to carry loads. However, if only the
outer shell of a MWCNT supported an applied load, then
the curves for MWCNTs would coincide with the curve for
SWCNTs. Within these approximations, SWCNTs will have

Figure 5. Maximum volumetric energy density before the onset of
buckling in torsion as a function of diameter for SWCNTs and outer
diameter for MWCNTs.

a higher volumetric energy density than MWCNTs because of
their smaller outer diameters, so that for energy storage in pure
torsion, the highest energy densities are achieved in SWCNTs
with small diameters. For stronger inter-shell interactions,
the energy density stored in MWCNTs will be higher than
the MWCNT strain energy density shown here only if the
increased critical buckling strain is less than the elastic limit
which may be affected by the defects present in the structure.
Nonetheless, MWCNTs with inter-shell bonding may once
again offer an alternative to SWCNTs as a means of reaching
high strain energy density.

There are advantages and disadvantages to each deforma-
tion mode and type of CNT structure. Deforming MWCNTs in
axial tension or torsion comes with the challenge of grasping
the inner shells, while compression and bending ensure that
loading is applied to all shells. Torsion, bending and com-
pression are limited by critical buckling stresses, while ten-
sion is limited only by the stress at the elastic limit. For all
loadings, the highest energy density without strong inter-shell
bonding is achieved in SWCNTs with diameters of 2 nm or
less, with MWCNTs with strong inter-shell bonding offering a
potentially attractive alternative structure.

The strain energy densities of bundles of SWCNTs
deformed in each of the four deformation modes as a function
of diameter are plotted in figure 6. The plot shows that storing
energy in tension is advantageous for SWCNTs with diameters
greater than 2 nm since the maximum energy density before the
onset of buckling drops off rapidly in compression, bending,
and torsion because of the limits on the applied strain due to
buckling. For diameters smaller than 2 nm, the energy densities
of all deformation modes are in the same range, so any of
the deformation modes could be selected for a spring, based
on practical considerations of implementation. Nevertheless,
if elastic strains of 9% or greater can be applied to CNTs in
tension before failure, then tension would be the best choice
regardless of diameter. These results indicate that a good
choice for a spring would be a dense bundle of SWCNTs with
diameters less than 2 nm, stretched in tension.
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Figure 6. Maximum volumetric energy density of SWCNT bundles
as a function of diameter for four deformation modes.

A support structure is needed to deform a CNT-based
spring and hold it in its maximally deformed configuration
until the stored energy is released. The volume and mass of
this structure must be included in system-level energy density
calculations. For instance, a support structure in compression
may be used to maintain a bundle of CNTs in tension, and
since there are no materials as strong in compression as carbon
nanotubes are in tension, the supporting structure must be
larger than the CNT-based spring itself. This will reduce the
overall system’s energy density considerably.

One type of support structure is a solid cylindrical shaft
around which a CNT spring stretched predominantly in tension
is wrapped. While the loaded support structure stores energy
itself, we conservatively assume that only the energy from the
spring can be extracted to perform useful work, and the energy
stored in the support structure is neglected when calculating
the overall energy density of the combined spring and support
system. In practice, an architecture could be designed in which
the energy in the support structure is used to perform work as
well, so it may be possible to reach higher energy densities than
the ones proposed here.

The maximum volumetric energy density in the combined
spring and support structure consisting of a cylindrical shaft
about which the CNT is wrapped, as described above, is [14]

uv = Eε2 A/Aencl

2 + Eε
σy

, (13)

where σy is the compressive yield strength of the support
structure material, and all the other symbols are defined
as above. The corresponding maximum volumetric energy
density for a CNT spring supported in pure tension combined
with a compressively loaded support is [14]

uv =
1
2 Eε2

Aencl
A + Eε

σy

. (14)

A comparison of equations (13) and (14) indicates that higher
energy density in a supported CNT spring can be reached
with a circular shaft support than with a support in axial

Figure 7. Volumetric energy densities of bundles of SWCNTs under
tensile loading with a cylindrical shaft support structure made of
single crystal diamond, silicon, silicon carbide and tungsten carbide.
The energy densities of conventional energy storage technologies
(lithium-ion batteries and steel springs) are also shown on the graph
for comparison.

compression, though the difference in performance between
the two support structures is relatively small.

The energy density of a bundle of 1.02 nm diameter
SWCNTs under tensile loading is plotted as a function of
applied strain in figure 7, taking into account a cylindrical
shaft support structure. The materials considered for the
support structure are single crystal silicon (σy = 7 GPa),
single crystal silicon carbide (σy = 21 GPa), hot-pressed SiC-
N (σy = 7 GPa), single crystal diamond (σy = 53 GPa),
and tungsten carbide (σy = 2.7 GPa), all chosen for their
high compressive strength [28, 29]. The choice of material
for the support structure is important because its properties
have an impact on the resulting energy density. The energy
densities of lithium-ion batteries and steel springs are plotted
on the same graph for comparison. The maximum achievable
overall stored energy density is predicted to be comparable
to lithium-ion batteries as long as high elastic strains can be
applied to the CNTs and a high quality material is used for the
support structure. A CNT spring with its associated support
structure can store energy with a density more than two orders
of magnitude greater than steel springs, so CNT springs have
the potential to significantly improve upon the energy storage
capability of currently available mechanical springs.

These analytical models represent a computationally
efficient approach to assessing the potential value of
CNT springs and guiding decisions about their design.
Characterizing and reaping the full benefits of the CNT spring
technology will also require experimental characterization
of CNT springs. Experiments on first generation carbon
nanotube springs have been done, and both their execution
and their results are reported in detail elsewhere [30]. In
these experiments, energy storage in fibers made of continuous,
aligned, four-shelled MWCNTs was measured using cyclic
tensile loading tests. The gravimetric energy density of the
CNT fibers exceeds the gravimetric energy density of steel
springs by a factor of more than 30, indicating the considerable
advantage of CNTs over conventional materials such as steel

7
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for mechanical springs. The volumetric energy density for the
first generation CNT fibers falls short of the energy density
of mechanical springs by a factor of about 5 in part because
non-ideal packing of the CNTs within the initial fibers resulted
in lower than ideal densities. The results reported in [30] do
not match the theoretically predicted upper bounds on energy
densities as found here of 7.7 × 106 kJ m−3 or 5 × 103 kJ kg−1

for defect-free SWCNT groupings with ideal packing at 15%
strain. The results are also lower than the predicted ideal
energy density for MWCNTs comparable to those used in the
experiments of 4.7 × 106 kJ m−3 if all shells share the applied
load, or 1.3 × 106 kJ m−3 if only the outer shell supports
the load. Nonetheless, the results do represent a significant
advance over steel spring technology. The reasons for the
difference between the maximum theoretical and experimental
values include a number of experimental non-idealities in the
first generation CNT springs and test apparatus which are
discussed at length in [30].

3. Conceptual design and modeling of a CNT
spring-based power source

One could construct practical systems in which small or large
CNT springs power different-sized mechanical or electrical
loads. For the case of a mechanical load, the spring may be
coupled to the load relatively directly, through an appropriate
mechanical coupling mechanism. For an electrical load, the
energy must also be converted from the mechanical to the
electrical domain. As an example of the latter, we now
consider the case of using a small CNT-based spring to drive an
electrical generator, thus forming an electrical power supply.

On its own, a spring stores potential energy when an
external force is applied, but the energy is released in a single
rapid burst once the force is removed. An effective power
supply must not only store energy over a period of time, but
also release the energy only as needed and at the desired
power level. One way to slow the rate of energy release
from a mechanical spring is to use an escapement mechanism,
much like that which has been used in mechanical clocks
for centuries. The mechanical work done by the spring as it
unwinds may be converted into an electric output by adopting
the technology of vibrational energy harvesters; in this case,
the mechanical energy comes from a spring rather than from
vibrations in the environment. A specific architecture based on
these ideas is developed below and used to assess the tradeoffs
that arise in such a system. This approach keeps the average
power output roughly constant over most of the discharge
period, instead of falling steadily as it would if the spring
were used to drive a conventional electromagnetic generator
connected to a constant electrical load.

This microscale power supply was introduced in [14] as
a tool to study how densely energy might be stored in an
actual device based on the mechanical deformation of CNTs
and how efficiently the energy could subsequently be recovered
as an electrical output. A theoretical model of the system was
built to simulate the system’s performance, and the simulation
results are used to determine how scaling affects the power
output, overall system efficiency, operating frequency of the

Escape wheel

Carbon nanotube 
bundle Left-hand 

threaded screw

Pallet

Piezoelectric cantilever 
beam

Right-hand 
threaded screw

Figure 8. Schematic diagram of a power supply that stores energy in
a CNT-based spring, showing the spring stretched between a
right- and left-handed pair of screws, the escape wheel driven to
rotate by the screws, the pallet that is made to oscillate by the escape
wheel, and the two piezoelectric cantilever beams with which the
pallet interacts.

energy regulation mechanism, and energy discharge time. The
conceptual design presented here employs components that are
chosen for simplicity of operation and ease of modeling rather
than for microfabricatability, and it has not been systematically
optimized for performance. Thus this design should not be
viewed as a blueprint for a practical device nor should the
results be viewed as a best-case estimate of how well such
a device could perform. Nevertheless, the results do provide
a lower bound on the performance of a practical device,
which complements the more general upper bounds obtained
in section 2.

For the escapement mechanism, a dead beat escapement
was adopted; this escapement is commonly used in pendulum
clocks and is well understood [31]. In this mechanism, an
escape wheel (a gear with an application-specific tooth design)
is driven to rotate by the force from a spring (a mainspring
in horology). Without any additional mechanisms, the escape
wheel would accelerate and release all of the energy from the
spring in a single burst. A second component called a pallet is
employed to control the rate of energy release from the spring
through the escape wheel. The pallet is connected to a pivot
and is driven to oscillate by a second spring (a hairspring in
horology). Each oscillation of the pallet allows the toothed
escape wheel to rotate by an angle equal to the angular spacing
between two teeth. The escape wheel transfers energy to the
oscillating spring on each increment of rotation, so that the
amplitude of the oscillations remains large over time despite
damping losses. The oscillations of the pallet in turn drive a
vibrational energy harvester, as described below.

Figure 8 shows a schematic diagram of this power supply.
The energy storage element is modeled as a defect-free densely
packed assembly of parallel SWCNTs with a stiffness of
1 TPa and ideal strength. This CNT grouping is connected
between a right-handed screw and a left-handed screw. The
attachment is assumed to distribute the load evenly among all
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tubes within the grouping and is assumed to be sufficiently
strong to withstand the force from the fully stretched spring
without fracture occurring at the points of attachment. Energy
is stored in the system by turning both screws in the same
direction, thereby stretching the CNT bundle in pure extension.
Once the spring is fully stretched, the energy is maintained
in the system by latching the two screws in place. During
operation, a separate mechanism allows the escape wheel to
spin while preventing the screws from doing so. The force
from the spring acting on the screw threads of the escape
wheel makes it spin. As the escape wheel spins, the spring
contracts. Each pallet oscillation allows the escape wheel to
advance by a small increment, which in turn constrains the
spring to contract by only a small increment with each pallet
oscillation. The motion of the pallet drives a pair of identical
cantilever beams that oscillate at their resonant frequency and
have a phase difference of 180◦. A thin film of piezoelectric
material on the cantilevers is used to convert the mechanical
oscillations into electrical energy.

The spring is assumed to be a bundle of parallel SWCNTs
with a circular cross-section and bundle radius b stretched
under axial tension to a fully reversible 6% strain. Treating
each SWCNT as a hollow cylinder of thickness 0.34 nm, the
elastic strain energy stored in the spring is

U = 1

2
Eε2πb2 f

A

Aencl
L (15)

where E = 1 TPa is the usual Young’s modulus of an SWCNT,
ε is the applied strain, f = 91% is the fill factor for ideal
hexagonal close packing, L is the length of the bundle, and
A/Aencl = 0.75 for SWCNTs with diameters of 1.02 nm.

The spring, escapement mechanism and piezoelectric
cantilevers are analogous to a driven damped oscillator, but
with the important difference that the driving force from the
spring depends on the angle of the escape wheel rather than
on time directly [31]. The angle of rotation of the pallet with
respect to its neutral position is denoted θp, and the angle of
rotation of the escape wheel with respect to its starting position
is denoted θw. With this particular escapement design, the
escape wheel rotates and the spring contracts for −3◦ < θp <

3◦. For θp > 3◦ and θp < −3◦, the escape wheel is locked in
place and the pallet oscillates freely. The equation of motion
describing the cantilever tip displacement x(t) is

meff ẍ + (bm + be)ẋ + kx = −Ipθ̈p
cos(θo + θp)

e

+ u(θp)[M(θw) − Iwθ̈w]cos(θo + θp)

e
, (16)

where u(θp) = 1 and θ̈w = θ̈p for −3◦ < θp < 3◦, and
u(θp) = 0 and θ̇w = 0 otherwise. In this equation, meff is
the effective mass of a cantilever beam, bm is the mechanical
damping coefficient, be is the electrical damping coefficient, k
is the cantilever spring constant, Iw is the moment of inertia of
the escape wheel, Ip is the moment of inertia of the pallet, e
is the escape wheel radius, and M(θw) is the driving moment
on the escape wheel from the spring, including the effects of
friction in the screws. Operation begins with the spring in its
fully stretched state and ends once the spring has returned to its

Table 1. System dimensions.

Micron-
scale

Submillimeter-
scale

Millimeter-
scale

Spring diameter 3 μm 30 μm 300 μm
Spring length 8 mm 8 cm 80 cm
Cantilever length 400 μm 4 mm 4 cm
Cantilever width 80 μm 800 μm 8 mm
Cantilever height 20 μm 200 μm 2 mm
Escape wheel radius 50 μm 500 μm 5 mm
Piezoelectric
layer thickness

0.5 μm 5 μm 50 μm

original length and all of the energy transferred to the cantilever
beams has been converted into electrical energy or dissipated
to friction.

The electrical damping coefficient is calculated as be =
2mζeω [32], where ζe is the electrical damping ratio

ζe = ωk2
31√

ω2 + 1/(RC)2
. (17)

C is the capacitance of the piezoelectric layer, R is the external
load resistance, and ω is the angular frequency of the cantilever
oscillations. The electrical damping coefficient depends on
the parameters of the electrical circuit and the load driven
by the generator, so a suitable circuit can be designed by
choosing an appropriate load resistance to adjust the value of
be. A range of values for the electrical damping coefficient
is considered by varying the magnitude of the external load
resistance driven by the piezoelectric circuit. The mechanical
damping coefficient bm cannot be known precisely without
measuring the performance of the actual system, but it can be
approximated using values for the quality factor of cantilever
beams reported in the literature.

Using a commonly employed general model (see for
example [33]), the electrical power generated by a single
piezoelectric cantilever beam is taken to be equal to the power
removed from the mechanical system due to the electrical
damping:

P = 1
2 be ẋ2. (18)

Since there are two cantilever beams, the total output power is
multiplied by two. Once energy is stored in the spring, three
main sources of losses reduce the amount of energy that can
be extracted from the system: frictional losses in the screws,
losses inherent to the escapement mechanism, and losses in the
piezoelectric energy conversion. The overall efficiency of the
system η over its discharge time is expressed as:

η = 2
∫ tend

tstart

1
2 be ẋ2 dt

U
. (19)

Based on this analysis, a model of the conceptual power
source was generated and simulations were run for systems
at different size scales to demonstrate the effect of scaling on
the stored energy, the operating frequency, the power output,
the discharge time and the efficiency. Three main cases are
considered, by scaling all dimensions by factor of 10 in each
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(a) (b)

Figure 9. (a) Overall system efficiency and (b) average electric power output versus load resistance for the submillimeter-scale case.

Table 2. Mechanical damping coefficients bm corresponding to
Q = 24 and 200.

Micron-
scale

Submillimeter-
scale

Millimeter-
scale

Q = 24 (kg s−1) 0.000 04 0.004 0.4
Q = 200 (kg s−1) 0.000 0045 0.000 45 0.045

Table 3. Operating parameters.

Micron-
scale

Submillimeter-
scale

Millimeter-
scale

Stored energy (J) 6 × 10−5 0.06 60
Operating
frequency (Hz)

192 700 19 400 1906

Max overall
efficiency (%)

22 22 22

Percentage CNTs
by mass (%)

0.36 0.36 0.36

Average power
output (W)

0.0013 0.13 13

Discharge
time (s)

0.01 0.1 1

case, and they are referred to for simplicity as the micron-
scale, submillimeter-scale, and millimeter-scale cases. The
dimensions of the three systems are listed in table 1.

Appropriate values of bm are selected by considering
mechanical damping coefficients that yield quality factor (Q)
values of 24 and 200, values that have previously been reported
in the literature for cantilevers that are used as piezoelectric
generators [34, 35]. The values of bm are listed in table 2.
The electrical damping ratio ζe is varied by considering a range
of values for the load resistance in order to vary the electrical
damping coefficient be. Operating parameters are listed for the
three cases in table 3. Plots are generated of efficiency and
power output versus load resistance for the three systems.

The operating frequencies of the representative devices
are 190 kHz for the micron-scale system, 19 kHz for the
submillimeter-scale system and 1.9 kHz for the millimeter-
scale system. These results show that the operating frequency
of the system scales roughly inversely with the overall scale of
the system, as expected. Figure 9(a) shows a plot of efficiency
versus load resistance for the submillimeter-scale case. Similar
plots were generated for the other two cases. In all three cases,

(b)

(a)

Figure 10. Electric power output versus time for the
submillimeter-scale case with bm = 0.004 and be = 0.01 kg s−1,
showing (a) detailed variation of the power over short times and
(b) power variation over the entire discharge time.

overall efficiency approaches 18% with a Q of 24 and 22%
with a Q of 200. As expected, greater efficiencies can be
reached with higher values of Q. These results indicate that
efficiency is unaffected by the scale of the system within the
limits of this model.

Average power output is defined as the average power
output over the discharge time. Average power output is
plotted against load resistance for the submillimeter-scale case
in figure 9(b). A plot of power output versus time is shown
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in figure 10 for the submillimeter-scale case with bm = 0.004
and be = 0.01 kg s−1. Power reaches 0.13 W with a Q of
200 and a discharge time of 0.1 s. As expected, power output
is higher with larger values of Q due to the higher efficiency
of the energy conversion. Similar plots were generated for
the micron-scale and millimeter-scale systems. Power output
reaches 0.0013 W with a discharge time of 0.01 s in the
micron-scale case, and 13 W for the millimeter-scale case with
a discharge time of 1 s. The discharge time of the spring
scales roughly linearly with the linear dimensions of the spring.
Energy storage scales cubically with the linear dimensions
(linearly with spring volume), so power output scales as the
square of the spring’s linear dimensions.

4. Conclusions

We have shown that springs comprised of highly ordered
bundles of parallel carbon nanotubes form the basis for a
new class of energy storage devices. These devices are
physically quite different from other kinds of energy storage
devices based on carbon nanotubes, such as supercapacitor
electrodes [36] or hydrogen adsorbents for use with fuel
cells [37]. Like supercapacitors, such devices have the
potential to be discharged and recharged rapidly, repeatedly
and safely even at extreme temperatures, but they also have
the potential to achieve energy densities and self-discharge
rates comparable to electrochemical batteries and perhaps even
approaching those of fuel cell-based systems.

Considering the carbon nanotube (CNT) spring element
alone, calculations using the widely accepted Young’s modulus
and yield strains for CNTs predict the maximum energy density
of CNT springs loaded in tension at the highest applied strains
to be 7000 times greater than that of steel springs and eight
times greater than the energy density of lithium-ion batteries.
Once practical considerations are taken into account, such
as the need for a support structure or additional extraction
hardware, the energy density of a power source containing
a CNT spring will be lower than the calculations predict for
the spring element alone. However, even when a support
structure is taken into consideration, a CNT spring can still
store energy with a density more than two orders of magnitude
higher than a steel spring and on the same level as batteries.
Groupings of SWCNTs with diameters of 2 nm or smaller
stretched in tension are identified as the best structure and
loading mechanism for high-performance springs.

The conceptual power supply model presented in this
paper provides only an early stage mathematical examination
of the concept; it has not yet been optimized for performance
or manufacturability. The results of this work indicate that
operating frequency, efficiency, discharge time and power all
scale reasonably with size, leaving flexibility in the choice
of overall size scale. It is important to observe that at all
three size scales presented here, the CNT-based energy storage
element occupies a small fraction of the mass and volume of
the total system. The model does not yet demonstrate the
extent to which systems can be engineered to maintain high
overall energy density. Future work should concentrate on
optimizing the fraction by mass and volume of CNTs in a
power source.
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