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1. Introduction

Bearings are the most commonly used components in rotating 
machinery, and bearing faults may result in significant break-
downs, and even casualties [1–3]. Statistics show that bearing 
failure is about 40% of the total failures of induction motors 
[4], and is the leading contributor of gearbox faults in wind 
turbines [5]. Hence, it is important to diagnose bearings.

Fault diagnosis of bearings is usually based on vibration sig-
nals, and a set of features are extracted in order to classify the 
faults [6]. The features could be in the time domain, frequency 
domain or time-frequency domain [7], such as peak amplitude, 
root-mean-square amplitude, skewness, kurtosis, correlation 
dimension, fractal dimension, Fourier spectrum, cepstrum, 
or envelope spectrum [8, 9]. These features are generally in 
forms of scalar or vector. There are some specific descriptions 
of waveform in the time domain and some parameters of spec-
trum in the frequency domain. A single feature only describes 
one aspect of vibration signals. Therefore, many works com-
bine more than one feature to improve the performance of 

fault diagnosis. For example, Khelf et al [10] performed fault 
diagnosis for rotating machines with several selected, rel-
evant features by doing indicators ranking according to a filter 
evaluation. And many other artificial intelligence methods for 
fault diagnosis have made full use of multi-features in time 
domain, frequency domain and time-frequency domain, so as 
to improve the diagnostic performance [11–16].

The main way humans recognize different objects is using 
vision, and the simplest form of vision is an image. Rich 
information can be included in an image. Time domain and 
frequency domain features represent some characteristics of 
vibration signals. An image can give a comprehensive descrip-
tion of vibration signals, including much more information 
about the bearings. Computer vision techniques have been 
well developed and applied for image processing and recogni-
tion [17–20]. Recently computer vision techniques were also 
further applied in the field of fault diagnosis [21, 22]. In [21], 
an object detection method was used to detect specific lines 
in the time-frequency image of bearing vibration signals. In 
[22], an image processing method was employed to enhance 
the fault features in spectrograms of aircraft engines.

In this paper, we propose a novel fault diagnosis method 
using the spectrum image of vibration signal as the feature. 
The spectrum images of normal bearings and faulty bearings 
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are obtained based on the fast Fourier transformation (FFT) 
of vibration signals, where all images are of the same sizes, in 
pixels. We use two-dimensional principal component analysis 
(2DPCA) to process the images in order to reduce their dimen-
sions and obtain the so-called eigen images, and then we classify 
the bearing faults with the help of a minimum distance method.

The rest of this paper is organised as follows. Section 2 pre-
sents the fault diagnosis method based on spectrum images, 
including image creation, image processing and image rec-
ognition. Section 3 gives the experimental results. Finally, the 
conclusion is given in section 4.

2. Fault diagnosis based on spectrum images

2.1. Image creation with FFT

There are many possible choices for the creation of vibration 
signal images. The images can be obtained in time domain, 
frequency domain, and time-frequency domain. In this study, 
we capture the FFT spectrums of vibration signals as images.  
The x-axis of the spectrum is frequency in Hertz, and the  
y-axis is the amplitude. For a given signal, the x-axis of the 
spectrum is determined by the sampling rate. When capturing 
the spectrum, its y-axis is auto-scaled. Then the parameter of 
the image is just the size (in pixels). With a larger image, more 
details of the spectrum can be depicted; while with a smaller 
image, some details may be lost. The flowchart of image cre-
ation in MATLAB is detailed illustrated in figure 1.

By taking such images as the features of vibration sig-
nals, we actually make use of all information contained in the 

spectrum – i.e., characteristic frequencies and harmonics of 
bearings, the geometrical structure of the spectrum, the peak 
amplitude of the spectrum and so on. The images provide 
much more useful knowledge of bearings, and we can also 
take advantage of the well developed computer vision tech-
nique to realize fault diagnosis. Next, two-dimensional prin-
cipal component analysis (2DPCA) is applied to process the 
obtained spectrum images such that the low dimensional fea-
tures of the images can be obtained.

2.2. Image processing

2DPCA is a feature projection method similar in principle to 
the conventional principal component analysis (PCA), using 
which we can extract the intrinsic information of images with 
a direct operation on the matrix. The 2DPCA projection pro-
cess can be summarized as follows [23].

 • Step 1 : Suppose that there are M training image samples, 
and the jth training image(with w h×  pixels) is denoted 
by an w h×  matrix A j M, 1, 2, ,j = … . The average image 
of all the training image samples is denoted by A. Then 
the global image scatter matrix G can be evaluated by

G
M

A A A A R
1

j

N

j
T

j
h h

1

( ) ( )∑= − − ∈
=

× (1)

  where • T( )  represents the transpose of matrix •( ).
 • Step 2 : In order to obtain the basis vectors, it is neces-

sary to find the eigenvectors uk and eigenvalues kλ  of the 
global image scatter matrix G by solving the following 
equation:

Gu uλ= (2)

  where k h, 1, 2, ,kλ = … , are the eigenvalues, and 
u u u u, , , h1 2[ ]= …  are the corresponding eigenvectors  
of G. To reduce dimensions, and decrease computational 
expense, we next normalise and sort the eigenvectors u in 
decreasing order according to the corresponding eigen-
values kλ . Then the u u u u, , , hmax1 max2 max[ ]= …  and the 
corresponding eigenvalues , , , hmax1 max2 max[ ]λ λ λ λ= …  
can be obtained. Here kλ  satisfies the following constraint:

hmax1 max2 maxλ λ λ> >…>

 • Step 3 : In order to obtain the optimal projection vectors, 
the first d(d  <  h) largest eigenvectors are selected to form 
the projection basis as

U u u u dmax1 max2 max[ ]= � (3)

 • Step 4 : Feature extraction is implemented with the pro-
jection basis obtained in the previous step. For a given 
image sample B, which is also the same size of w h×  
pixels corresponding to Aj, let

Y BUk k= (4)

  where, U uk kmax= , and k d1, 2, ,= … . Then the projected 
feature vectors, Y Y Y, , , d1 2 …  can be obtained - these are 
called the principal components of the image sample B. 
At last we can obtain the eigen image of B in the form of

Figure 1. Flow chart of image creation in MATLAB.

Vibration signal x(n) sampled with fs Hz

Plot the single-sided amplitude spectrum through
plot( f,2* fft_ampli(1:NFFT/2+1),'b')

End

Start

Then, the FFT spectrum y is obtained in MATLAB

L= 12000; % Length of x(n) ;
NFFT = 2̂ nextpow2(L); % Next power of 2 from L;
y= fft(x,NFFT) % Discrete Fourier transform of x.
fft_ampli= abs(y)/L;
f= fs/2* linspace(0,1,NFFT/2+1); % Frequency

Finally, the spectrum image is captured in MATLAB.

axis off; % Hidden axis
saveas(gcf,'img_1.bmp'); % Save in BMP format

Meas. Sci. Technol. 27 (2016) 035005
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E Y Y Y R, , , d
w d

1 2[ ]= … ∈ × (5)

2.3. Image recognition

In order to classify the bearing faults, spectrum images of 
different faulty bearings must be recognized. Firstly some 
training image samples are processed through 2DPCA to 
obtain the corresponding eigen images of vibration signals 
with different faults. Then a nearest neighbor classification 
method is utilized for the classification of testing spectrum 
images.

Suppose that the ith projection feature matrix of the M training 
image samples is E Y Y Y, , ,i

i i
d

i
1 2[ ]( ) ( ) ( )= … , where i M1, 2, ,= … , 

and that of the jth testing image is T E Y Y Y, , ,j j
j j

d
j

1 2[ ]( ) ( ) ( )= = … . 
Here we apply Euclidean distance [24] to measure the dis-
tance between Ei and Tj as follows

d E T L E T Y Y, ,i i j p i j
r

d

r
i

r
j

2
1

2( ) ( ) ∥ ∥( ) ( )∑= = −=
=

 (6)

where Y Yr
i

r
j

2∥ ∥( ) ( )−  denotes the Euclidean distance between 
Yr

i( ) and Yr
j( ), and Yr

i( ), Yr
j( ) are the rth vector of Ei and Tj.

Suppose L s s s N M, , , ,N1 2 ( ⩽ )= …  is the category label set 
of the M training samples. In order to classify the jth testing 
image, it is necessary to find the subscript η, which satisfies

d dmin i ( )=η (7)

Then if the ηth training image is assigned as s s Lk k( )∈ , the jth 
testing image is classified as sk.

2.4. Main procedure of the method

The main procedure of fault diagnosis process based on spec-
trum images is summarized as follows.

 • Data Acquisition: The spectrum images of vibration 
signals are firstly created through FFT as described in 
section 2.1. The image database can be constructed with 
these spectrum images.

 • Eigen-images Extraction: Once the image database is set 
up, the eigen images can be obtained through 2DPCA, as 
detailed in section 2.2.

 • Fault Classification: A testing spectrum image can be 
classified by comparing with training spectrum images 
using the method given in section 2.3.

The flow chart of bearing fault diagnosis based on spec-
trum images is shown in figure 2.

3. Experimental results

In order to verify the effectiveness of the proposed fault diag-
nosis method, vibration signals from the bearing data centre 
of Case Western Reserve University are used [25]. The test 
stand consists of a driving motor, a 2 hp motor for loading, 
a torque transducer/encoder, accelerometers and control elec-
tronics. The test bearings support the motor shaft. With the 
help of electrostatic discharge machining, inner-race faults 

(IF), outer-race faults (OF) and ball faults (BF) of different 
sizes (0.007in, 0.014in, 0.021in and 0.028in) are made. The 
vibration signals are collected using accelerometers attached 
to the housing with magnetic bases, and four load condi-
tions with different rotating speeds were considered, i.e. 
Load0  =  0 hp/1797 rpm, Load1  =  1 hp/1772 rpm, Load2  =  2 
hp/1750 rpm and Load3  =  3 hp/1730 rpm. The vibration sig-
nals of normal bearings (NO) under different load conditions 
were also collected.

Rotating machinery usually works under different loads 
and speeds. In practice it is common to obtain features of 
faults under a certain load condition. Hence the vibration sig-
nals with two fault sizes (0.014in and 0.021in) under all four 
load conditions are used to demonstrate the effectiveness of 
the proposed method, where the training images of IF, OF and 
BF are created from one load condition (called training load 
condition) and the testing images are from all four load condi-
tions (called testing load condition). In total, eight different 
tests are carried out, as shown in table 1, to classify the faults 
of bearings.

The FFT spectrum of each vibration signal is computed, 
using 1024 sampling points. The y-axis of the spectrum is 
auto-scaled. Then the spectrum is captured as an image of 
420 560×  pixels. Figures 3–6 show the spectrum images of 
a normal bearing and faulty bearings with fault size being 
0.014in. Four hundred spectrum images are generated for 
normal bearing (NO) and faulty bearings (IF, BF or OF) under 
each load condition. The training images of normal bearings 
and faulty bearings are selected randomly under the training 
load condition, and all 400 spectrum images under each 
testing load condition are used for verification. Each test in 
table 1 is performed 20 times and the average classification 
rate is obtained.

In order to demonstrate the effectiveness of the proposed 
method, the spectrum images are processed through PCA 
and 2DPCA, and the classification results between them are 
compared.

3.1. Results based on PCA

The tests are firstly demonstrated with PCA. According to 
the feature dimensionality reduction criterion in [26], the so-
called contribution of selected components with 20%, 40%, 
60%, 80%, 90% and 100% are firstly performed to deter-
mine the reduced dimension. Thereafter, dimension reduction 
with 90% is designated in our research, as this was the case 
in which the average classification rate was the highest. The 
experimental results are shown in tables 2 and 3.

From table  2 we can see that the classification rates are 
mostly larger than 90%, but the classification rates of several 
tests are relatively low. For example, we only obtain a clas-
sification rate of about 75% when using images under Load1 
as training data and images under Load3 as testing data. The 
actual output with n  =  3 in this case is shown as figure  7. 
We can see intuitively that the IF (target output is: 2) images 
are classified incorrectly. Some testing images of IF are  
categorized into BF (target output is: 3), and the others are 
categorized into OF (target output is: 4), incorrectly. Through 

Meas. Sci. Technol. 27 (2016) 035005
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observing and analyzing the spectrum images of IF (Load3) 
and BF (Load1) carefully, it is plausible that the spectrum 
images of IF (Load3), BF (Load3) and BF (Load1) looked 
very similar, which resulted in the low classification rate.

Similar tests are carried out on the spectrum images with 
fault size being 0.021, and the classification results are pre-
sented in table 3. We can observe that the overall classification 
rate is higher than the classification rate with fault size 0.014. 
It is worth mentioning that an acceptable classification rate 
can be achieved by using only a single training image (n  =  1).

3.2. Results based on 2DPCA

Having tested the performance of the 2DPCA based method 
with different dimension reduction, we determined d  =  10 
defined in formula (3) as the best selection. The diagnostic 
results with 2DPCA for fault size being 0.014 and 0.021 are 
given in tables  4 and 5. Taking Load0 as training samples, 
the classification rate could reach 100% with n  =  5. When the 

Figure 2. Flow chart of bearing fault diagnosis based on spectrum images.

Vibration Acquisition

Create Image Database by FFT 
with size (w h pixels)

Training Images Testing Image

Arrange the M training 
images into a 3-D matrix 

W in order

Calculate the mean of W
and the global scatter 

matrix G

Calculate the eigenvalues and 
eigenvectors u of G, then 

normalise and sort u decreasing 
order according to

Select the first d largest 
eigenvectors(d h) to combine 

the projection basis U

Project the M training images 
with U into the Eigen Space to 
obtain training feature image E

Project the test image with U
into the Eigen Space to obtain 

test feature image T

Similarity Measurement
(Euclid distance discriminance)

Output the classification result 

Data Acquisition

Eigen-images 
Extraction

Fault Classification

Table 1. Description of the experiment setup.

# of 
test Training Testing

Fault 
type

Fault 
size

1 Load0 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.014in

2 Load1 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.014in

3 Load2 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.014in

4 Load3 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.014in

5 Load0 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.021in

6 Load1 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.021in

7 Load2 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.021in

8 Load3 Load0, Load1, Load2, Load3 IF, BF, 
OF, NO

0.021in

Meas. Sci. Technol. 27 (2016) 035005
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Figure 3. The FFT spectrum image of a normal signal.

Figure 4. The FFT spectrum image of an inner-race fault signal.

Figure 5. The FFT spectrum image of a ball fault signal.

Figure 6. The FFT spectrum image of an outer-race fault signal

Meas. Sci. Technol. 27 (2016) 035005
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sampling number of each training class is equal to or greater 
than 5, most of the test cases could achieve a considerable 
classification rate in excess of 90%. Unfortunately two cases 
(marked with �) are still around 75%, and the reason for this 
is similar to that discussed earlier.

It is worth mentioning that the time consumption of 
2DPCA is considerably smaller than PCA, especially when n 
is larger. A detailed comparison is given in table 6. It is clear 

that 2DPCA method is more efficient than PCA method when 
using FFT spectrum images for fault diagnosis of bearings.

3.3. Discussion

The spectrum image of a given vibration signal is constructed 
based on FFT. In fact the spectrum is just a vector of ampl-
itudes. Nevertheless it is not easy to mine useful knowledge 

Table 2. The classification rate based on PCA with fault size being 0.014.

# of test na

Testing data

Test1(%) Test2(%) Test3(%) Test4(%) T(s)b

1 1 Load0(97.15) Load1(99.95) Load2(97.74) Load3(93.41) 66
3 Load0(98.15) Load1(99.96) Load2(99.99) Load3(99.65) 80
5 Load0(99.99) Load1(100.00) Load2(100.00) Load3(100.00) 95

10 Load0(100.00) Load1(100.00) Load2(100.00) Load3(100.00) 145

2 1 Load0(83.80) Load1(97.15) Load2(100.00) Load3(75.00) 64
3 Load0(84.60) Load1(100.00) Load2(100.00) Load3(75.04) 77
5 Load0(86.40) Load1(100.00) Load2(100.00) Load3(75.00) 92

10 Load0(86.04) Load1(100.00) Load2(100.00) Load3(75.00) 138

3 1 Load0(84.92) Load1(99.76) Load2(97.15) Load3(76.05) 68
3 Load0(86.17) Load1(100.00) Load2(100.00) Load3(77.03) 80
5 Load0(88.70) Load1(99.96) Load2(100.00) Load3(75.26) 94

10 Load0(89.45) Load1(100.00) Load2(100.00) Load3(75.75) 144

4 1 Load0(96.56) Load1(85.75) Load2(98.30) Load3(97.15) 66
3 Load0(96.61) Load1(86.81) Load2(96.26) Load3(100.00) 81
5 Load0(97.70) Load1(84.76) Load2(97.30) Load3(100.00) 97

10 Load0(96.99) Load1(77.72) Load2(97.01) Load3(100.00) 148

a n is the number of training samples per class, and the same below.
b T is the total time consumption of the processing program from Eigen images Extraction to Fault Classification for 20 times randomized tests, and the same 
below as well.

Table 3. The classification rate based on PCA with fault size being 0.021.

# of test na

Testing data

Test1(%) Test2(%) Test3(%) Test4(%) T(s)b

5 1 Load0(97.65) Load1(99.13) Load2(92.94) Load3(87.22) 65
3 Load0(97.92) Load1(100.00) Load2(98.83) Load3(99.26) 80
5 Load0(99.75) Load1(98.67) Load2(96.89) Load3(97.28) 90

10 Load0(99.75) Load1(98.26) Load2(97.35) Load3(97.71) 134

6 1 Load0(99.66) Load1(99.75) Load2(90.36) Load3(93.86) 66
3 Load0(99.75) Load1(100.00) Load2(92.28) Load3(97.06) 78
5 Load0(99.75) Load1(100.00) Load2(93.99) Load3(97.69) 92

10 Load0(99.75) Load1(100.00) Load2(94.74) Load3(96.66) 138

7 1 Load0(99.20) Load1(98.33) Load2(97.92) Load3(99.76) 64
3 Load0(99.61) Load1(100.00) Load2(100.00) Load3(100.00) 77
5 Load0(99.66) Load1(100.00) Load2(100.00) Load3(100.00) 90

10 Load0(99.75) Load1(100.00) Load2(100.00) Load3(100.00) 132

8 1 Load0(99.72) Load1(100.00) Load2(99.41) Load3(99.75) 65
3 Load0(99.55) Load1(100.00) Load2(100.00) Load3(100.00) 76
5 Load0(99.65) Load1(100.00) Load2(100.00) Load3(100.00) 91

10 Load0(99.69) Load1(100.00) Load2(100.00) Load3(100.00) 132

Meas. Sci. Technol. 27 (2016) 035005
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directly from the vector. The spectrum image is a different view 
of the vector and provides a new way to extract information.  
We also carry out similar tests by taking FFT spectrum ampl-
itudes as the features, where PCA and the same minimum  
distance method are used for fault classification. Similarly, 
after testing the performance of different dimension reduc-
tion with PCA and selecting the best case, the contribution of 
selected components with 90% is also designated in this section.

The results are shown in tables  7 and 8. Obviously the 
classification performance using FFT amplitude as features is 
inferior to that using the spectrum images, especially when 
the testing load condition is different from the training load 
condition.

Some other remarks are as follows.

 (1) By comparing tables 2 and 3 with tables 4 and 5, it can be 
found that bearing fault diagnosis based on 2DPCA can 
achieve better performance than PCA in most cases.

 (2) Time consumption of processing based on 2DPCA is 
much less than PCA, especially when the number of 
training samples per class is large.

 (3) In general, a larger n could obtain a higher classification 
rate (see tables 2–5)). When using the spectrum image as 
the feature, an acceptable classification rate can still be 
achieved with only one single training image.

In order to illustrate the potential application of the pro-
posed method in bearing fault diagnosis, a comparative study 
between the present work and published literature is presented 
in table  9. Adopting the same faulty bearing data collected 
from the Case Western Reserve University [25], most of the 
previous works considered only single load condition, where 
the training load condition and the testing load condition are 
the same. Only a few works evaluated the vibration data of 
multiple loading conditions. As shown in table 9, bearing fault 
diagnosis based on SLLEP under load 3hp condition, was 

Figure 7. Actual output of Load1 for training and Load3 for testing with fault size being 0.014.
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Table 4. The classification rate based on 2DPCA with fault size being 0.014.

# of test na

Testing data

Test1(%) Test2(%) Test3(%) Test4(%) T(s)b

1 1 Load0(99.97) Load1(99.85) Load2(99.41) Load3(94.50) 51
3 Load0(100.00) Load1(100.00) Load2(100.00) Load3(99.95) 56
5 Load0(100.00) Load1(100.00) Load2(100.00) Load3(100.00) 63

10 Load0(100.00) Load1(100.00) Load2(100.00) Load3(100.00) 81

2 1 Load0(85.78) Load1(100.00) Load2(100.00) Load3 75.45( )� 50
3 Load0(88.67) Load1(100.00) Load2(100.00) Load3 75.00( )� 56
5 Load0(91.17) Load1(100.00) Load2(100.00) Load3 76.46( )� 63

10 Load0(92.56) Load1(100.00) Load2(100.00) Load3 78.26( )� 81

3 1 Load0(87.79) Load1(100.00) Load2(100.00) Load3 77.69( )� 51
3 Load0(91.56) Load1(99.96) Load2(100.00) Load3 80.74( )� 58
5 Load0(92.24) Load1(100.00) Load2(100.00) Load3 80.66( )� 65

10 Load0(93.45) Load1(100.00) Load2(100.00) Load3 83.13( )� 84

4 1 Load0(99.25) Load1(86.17) Load2(99.51) Load3(100.00) 52
3 Load0(99.55) Load1(85.94) Load2(99.47) Load3(100.00) 59
5 Load0(99.65) Load1(84.63) Load2(99.26) Load3(100.00) 66

10 Load0(99.89) Load1(83.64) Load2(99.53) Load3(100.00) 85
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carried out to classify bearings with fault size being 0.021in 
using minimum-distance classifier in [27]. In [28], with FDF 
as feature, SVMs and fractal dimension were employed 
to diagnose the bearings with fault size being 0.014in and 
0.021in. In [29], feature extraction based on LMD analysis 
method and MSE was put forward to perform fault diagnosis 
of bearings under load 3hp condition. In [30], bearings under 
load 2hp condition, were subjected to fault diagnosis based on 
multiscale permutation entropy (MPE) and improved support 

vector machine based binary tree (ISVM-BT). Moreover 
taking all load conditions into account, the improved distance 
evaluation technique and ANFIS were also employed to diag-
nose bearings with seven healthy cases in [31].

However the classification rate of the proposed method 
can achieve 100% in cases where the training and testing load 
condition are the same, as shown in tables 4 and 5. And the 
classification rate is still high when the training and testing 
load condition are different.

Table 5. The classification rate based on 2DPCA with fault size being 0.021.

# of test na

Testing data

Test1(%) Test2(%) Test3(%) Test4(%) T(s)b

5 1 Load0(99.75) Load1(99.89) Load2(96.91) Load3(92.94) 52
3 Load0(99.75) Load1(100.00) Load2(99.86) Load3(100.00) 58
5 Load0(100.00) Load1(100.00) Load2(100.00) Load3(99.04) 65

10 Load0(100.00) Load1(100.00) Load2(100.00) Load3(100.00) 84

6 1 Load0(99.74) Load1(100.00) Load2(91.71) Load3(95.45) 51
3 Load0(99.75) Load1(100.00) Load2(96.70) Load3(98.24) 58
5 Load0(99.75) Load1(100.00) Load2(96.08) Load3(99.95) 65

10 Load0(99.75) Load1(100.00) Load2(99.25) Load3(100.00) 84

7 1 Load0(99.75) Load1(98.06) Load2(100.00) Load3(99.72) 50
3 Load0(99.75) Load1(100.00) Load2(100.00) Load3(100.00) 57
5 Load0(99.75) Load1(100.00) Load2(100.00) Load3(100.00) 63

10 Load0(99.75) Load1(100.00) Load2(100.00) Load3(100.00) 82

8 1 Load0(99.75) Load1(100.00) Load2(98.83) Load3(100.00) 51
3 Load0(99.75) Load1(100.00) Load2(100.00) Load3(100.00) 58
5 Load0(99.75) Load1(100.00) Load2(100.00) Load3(100.00) 65

10 Load0(99.75) Load1(100.00) Load2(100.00) Load3(100.00) 83

Table 6. The time consumption diversity of Load0 as training with fault size being 0.014.

Training data Testing data n Tpca(s) T2dpca(s) T� (s)a

Load0 Load0 1 68 51 17
3 82 58 24
5 96 64 32

10 144 82 62

Load1 1 71 52 19
3 85 59 26
5 95 65 30

10 145 83 62

Load2 1 65 51 14
3 80 57 23
5 99 64 35

10 143 82 61

Load3 1 66 51 15
3 80 56 24
5 95 63 32

10 145 81 64

a = −�T T Tpca 2dpca, that is: the time consumption difference between PCA and 2DPCA.
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Table 7. The classification rate with FFT amplitude with fault size being 0.014.

# of test na

Testing data

Test1(%) Test2(%) Test3(%) Test4(%) T(s)b

1 1 Load0(85.51) Load1(62.81) Load2(67.84) Load3(66.20) 10
3 Load0(93.41) Load1(63.69) Load2(59.66) Load3(61.17) 10
5 Load0(96.78) Load1(57.50) Load2(54.91) Load3(51.51) 10

10 Load0(99.39) Load1(51.25) Load2(53.75) Load3(50.00) 11

2 1 Load0(73.64) Load1(99.09) Load2(73.81) Load3(73.04) 9
3 Load0(76.31) Load1(99.89) Load2(75.00) Load3(75.06) 9
5 Load0(75.00) Load1(100.00) Load2(75.00) Load3(75.00) 9

10 Load0(75.00) Load1(100.00) Load2(75.00) Load3(75.00) 11

3 1 Load0(77.81) Load1(74.99) Load2(90.99) Load3(76.25) 9
3 Load0(78.59) Load1(74.17) Load2(98.47) Load3(77.01) 9
5 Load0(76.65) Load1(75.00) Load2(99.91) Load3(75.00) 10

10 Load0(75.66) Load1(75.00) Load2(100.00) Load3(75.00) 12

4 1 Load0(73.56) Load1(75.00) Load2(73.40) Load3(97.61) 9
3 Load0(74.86) Load1(75.00) Load2(75.00) Load3(98.94) 9
5 Load0(75.00) Load1(75.00) Load2(75.00) Load3(99.01) 10

10 Load0(75.00) Load1(75.00) Load2(75.00) Load3(99.31) 11

Table 8. The classification rate with FFT amplitude with fault size being 0.021.

# of test na

Testing data

Test1(%) Test2(%) Test3(%) Test4(%) T(s)b

5 1 Load0(85.08) Load1(58.45) Load2(59.14) Load3(60.05) 9
3 Load0(95.58) Load1(65.08) Load2(68.80) Load3(63.63) 9
5 Load0(98.96) Load1(66.78) Load2(69.65) Load3(65.17) 9

10 Load0(99.76) Load1(70.14) Load2(72.04) Load3(65.30) 10

6 1 Load0(66.04) Load1(86.88) Load2(70.35) Load3(60.31) 8
3 Load0(72.36) Load1(97.33) Load2(72.59) Load3(67.45) 9
5 Load0(74.40) Load1(99.70) Load2(72.86) Load3(69.40) 9

10 Load0(74.81) Load1(99.99) Load2(73.53) Load3(70.94) 10

7 1 Load0(71.17) Load1(69.04) Load2(94.28) Load3(64.80) 8
3 Load0(74.74) Load1(73.97) Load2(99.99) Load3(69.79) 9
5 Load0(74.97) Load1(74.95) Load2(99.99) Load3(71.80) 9

10 Load0(75.08) Load1(75.00) Load2(100.00) Load3(74.17) 10

8 1 Load0(73.40) Load1(68.90) Load2(71.17) Load3(96.39) 9
3 Load0(75.22) Load1(75.15) Load2(73.70) Load3(96.99) 9
5 Load0(75.50) Load1(75.05) Load2(75.42) Load3(97.33) 9

10 Load0(76.33) Load1(75.00) Load2(75.89) Load3(99.70) 10

Table 9. Comparisons between the current work and some published work.

References Load conditions No. of training samples Classification rate

Li et al [27] Single 100 98.33%
Yang et al [28] Single 118 95.253 % (0.014in)

99.368 % (0.021in)
Liu et al [29] Single 15 100%
Li et al [30] Single 80 100%
Lei et al [31] Multiple 20 91.42%
The proposed method Multiple 10 95.65% (0.014in)

99.90%(0.021in)
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4. Conclusion

In this paper, spectrum images were proposed as the features 
for fault diagnosis of bearings. The spectrum images of vibra-
tion signals could be simply obtained through FFT. After pro-
cessing with 2DPCA, the corresponding eigen images were 
extracted. The classification of faults was realized with a 
simple minimum distance criterion based on the eigen images. 
The effectiveness of the proposed method was demonstrated 
with experimental vibration signals. As a different view of 
FFT spectrum, the images could significantly improve the per-
formance of fault diagnosis. When the training sample is very 
limited - e.g. only one training image - the proposed method 
can still achieve high accuracy.
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