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Abstract
The circular target has been widely used in various three-dimensional optical measurements,
such as camera calibration, photogrammetry and structured light projection measurement
system. The identification and compensation of the circular target systematic eccentricity error
caused by perspective projection is an important issue for ensuring accurate measurement.
This paper introduces a novel approach for identifying and correcting the eccentricity error
with the help of a concentric circles target. Compared with previous eccentricity error
correction methods, our approach does not require taking care of the geometric parameters of
the measurement system regarding target and camera. Therefore, the proposed approach is
very flexible in practical applications, and in particular, it is also applicable in the case of only
one image with a single target available. The experimental results are presented to prove the
efficiency and stability of the proposed approach for eccentricity error compensation.

Keywords: vision inspection, camera calibration, industrial optical metrology, spatial ellipse
center, concentric circles, digital image processing

(Some figures may appear in colour only in the online journal)

1. Introduction

Three-dimensional (3D) optical measurements are involved
in various techniques, such as camera calibration, vision
metrology, close range photogrammetry and fringe projection
profilometry (FPP) [1–5], where circular targets are widely
used as signalizing control points. Because of the camera
perspective projection, a circle is imaged as an ellipse and
usually the center of the ellipse is not identical to the true
projected center of the circular target, under this condition
that the imaging plane and the circular target plane are not
parallel to each other [6]. From the works of Ahn et al [7],
the above deviation as eccentricity error is shown in figure 1
where the point C′ is the center of circle, which is imaged on
the point C. However the center of ellipse is at point B. The
eccentricity error is just the deviation between C and B. The

existence of eccentricity error will cause the inaccuracy of the
3D estimation.

Since circular targets are used as control points in
many applications, it is quite an important task to identify
and compensate the circular targets’ eccentricity errors,
especially for large-size targets in large-scale optical or vision
metrology. In order to ensure high-accuracy measurement,
several strategies have been proposed for identifying and
compensating the eccentricity error. Zhang and Wei [6] built
a position-distortion model and completed the numerical
simulations of the eccentricity error. The major achievements
are focused on the photogrammetry area. Aha et al [7]
gave a complete mathematical description of the eccentricity
error for a typical circular target imaged by camera
considering the circle and target-imaging configuration
parameters. More details will be discussed in section 2.
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Figure 1. The principle of the eccentricity error.

Dold [8] studied how to estimate the suitable diameter
of the circular target for high precision photogrammetric
measurements, and also explored the impact of the eccentricity
error on the 3D reconstruction with bundle adjustment
(BA). In order to correct the eccentricity error with this
mathematical model, one must accurately determine a number
of parameters of the target-imaging configuration, and the
parameters should be determined with the BA or camera
calibration techniques. Recently, Otepka [9] and Otepka
et al [10] predicted the rigorous relationship between a
circular target and its perspective image through a new
mathematical model; with the new model, the surface plane
of circular targets can be automatically determined and
the eccentricity error can be compensated. On the other
hand, Heikkila and Silven [11] discussed the influence of
eccentricity error on camera calibration, and constructed
the error correction equations consisting of the geometric
configuration parameters. However, the determination of these
geometric parameters for correcting the eccentricity error is
not easy. They solved this problem with the four-step camera
calibration method.

Previous approaches mentioned above provide various
mathematical descriptions about the eccentricity error of
circular targets, and these mathematical models include the
geometric parameters associated with the camera and circular
targets. Thus an open issue to be addressed is how to determine
these essential parameters in advance. Generally, this problem
was solved by the techniques of camera calibration or BA
strategy. However, in both cases, a number of circular targets
in 3D space and their associated coordinates in 2D images
are necessary to perform the calibration or BA, and the
eccentricity errors are modeled by the additional parameters
in the calibration or BA by adjustment based on least-squares
methods (LSM), which involves one iterative process since the
model is not linear. In this process, these additional parameters
need to be estimated for correcting the eccentricity error.

In consequence, it will increase the computation complexity
and reduce convergence speed. To bypass this sensitive
problem, we will introduce a novel method for identifying and
compensating the eccentricity error of a circular target before
the iterative process, where a concentric circles target (CCT)
plays a key role. In previous studies, CCT is widely used
in camera calibration and photogrammetry, and it normally
has two usages: one as a control point [8–11], which is
most common, and the other as a calibration object not a
control point. In the second usage, the calibration arithmetic
is based on the theorem of projective geometry [12–14], such
as projective invariance, the unique properties of conic, the
projective equation of a circle or CCT, etc. And in this paper,
CCTs are used to compensate the eccentricity errors and, after
this compensation, can be utilized to calibrate the camera.
The mathematical description of the CCT eccentricity error is
developed. Meanwhile, the corrected center will be determined
by using a linear combination of two projected centers of
ellipses formed by concentric circles. With this new method,
the eccentricity errors can be identified and compensated
without using any calibration parameters. In particular, this
method is still valid in the case of only one available CCT and
its associated image.

The rest of this paper is organized as follows: section 2
gives a brief review of the eccentricity error of a circular target
reported by previous literature; section 3 introduces the CCT
eccentricity error and develops a new compensation model for
the eccentricity error of a circular target; section 4 presents the
computer simulation and experiment results for compensating
the eccentricity error; and section 5 summarizes the major
points drawn from this study.

2. Eccentricity error of a circular target

Since Ahn et al [7] used a simple mathematical description
to analyze the eccentricity error, we continue our study on
this issue along their direction. As shown in figure 2, adapted
from Ahn et al [7], three intermediate coordinate systems are
introduced: the object coordinate system xyz with origin O, the
camera coordinate system x′y′z′ with origin O′ and the image
coordinate system uv with origin H.

The coordinates of image point (uc, vc) (the image point
of object target center C′) in the image coordinate system Huv
can be calculated as [7]

uC = cxp

d cos(ω − α)

vC = −c tan(ω − α),

(1)

where c is the focal length of the camera lens; xp is the
x-coordinate of C′ (center of circle) in the object coordinate
system Oxyx; ω represents the angle between axis z and axis z′

(the angle between the normal of circle and the optical axis of
camera), that is the angle between the normal circular target
and the normal camera imaging plane (same as the camera’s
optical axis direction); α represents the angle between axis z
and the line OO′ (the origin of the object coordinate system and
the origin of the camera coordinate system); and d represents
the exposure distance in the object coordinate system (the
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Figure 2. The camera model and intermediate coordinate systems.

distance between the origin O of the object coordinate system
and the origin O′ of the camera coordinate system).

The image point B (the center of the image ellipse) is
represented by the following equation:

uB = cxpd cos(ω − α)

d2 cos2(ω − α) − r2 sin2 ω

vB = −c
d2 sin(ω − α) cos(ω − α) + r2 sin ω cos ω

d2 cos2(ω − α) − r2 sin2 ω
,

(2)

where d is the distance of OO′, r is the radius of the circular
target, and ω–α is the angle between the axis z′ and the
line OO′.

It can be seen (in figure 1) that the eccentricity errors in the
image plane are characterized by the coordinate differences
between two image points B and C. In the case of l =
d cos(ω − α) (l is the distance of OO′ projected on the optical
axis direction), the eccentricity error can be obtained with
equations (1) and (2):

εu = uB − uC = c(xp/l) sin2 ω

(l/r)2 − sin2 ω

εv = vB − vC = −c(d/l) sin ω cos ω

(l/r)2 − sin2 ω
.

(3)

For more details on how to deduce equations (1)–(3), the
readers may refer to literature [7].

3. Eccentricity error of a CCT and new
error-compensation model

From the eccentricity error equation (3), we can see that a
number of geometric parameters such as ω, l, d, xp and c
must be determined before calculating the eccentricity error.
However, it is difficult to obtain the accurate values of these
geometric parameters without dedicated estimation techniques
such as calibration or BA strategy. In order to avoid these
troublesome calculations, we propose a new method to solve
the problem of error-compensation. First, we recommend
the usage of a CCT, which is shown in figure 3. In the
perspective projection, the shapes of two circles are changed
to two different ellipses. In figure 3, C is the center of the
CCT, B1 and B2 are the centers of the ellipses, respectively. It
is observed that the eccentricity errors of the two circles do
not coincide with each other due to the deviation of their radii
(also seen in equation (3)).

Figure 3. The shape of the CCT and its deformed image with
perspective projection.

In the actual camera imaging model, l � r and sin2 ω < 1,
so (l/r)2 � sin2 ω. Therefore, we can neglect the term sin2 ω

in the denominator of (3). Then equation (3) becomes

εu = uB − uC ≈ c(xp/l) sin2 ω

(l/r)2
= Ku · r2

εv = vB − vC ≈ −c(d/l) sin ω cos ω

(l/r)2
= Kv · r2,

(4)

where Ku = cxp sin2 ω/l3 and Kv = −cd sin ω cos ω/l3

are two coefficients that are not functions of the radius r.
Therefore, for two circles of a CCT, their coefficients Ku, Kv

are respectively equal, except for the radius r.
With two concentric circles of the CCT, two equations can

be developed as follows:{
εu1 = uB1 − uC = Ku · r2

1

εv1 = vB1 − vC = Kv · r2
1

(5)

{
εu2 = uB2 − uC = Ku · r2

2

εv2 = vB2 − vC = Kv · r2
2

. (6)

In the above equations, r1, r2 are the radii of larger and smaller
circles, (uB1 , vB1 ), (uB2 , vB2 ) are the centers of larger and
smaller ellipses, correspondingly. In order to solve the center
(uC, vC) of the CCT, equations (5) and (6) should be combined
to establish a closed-form solution described as follows:

uC = k1uB2 − k2uB1

vC = k1vB2 − k2vB1 ,
(7)

where k1 = r2
1

/(
r2

1 − r2
2

)
, k2 = r2

2

/(
r2

1 − r2
2

)
. The factors

k1, k2 can be simply calculated with the known radii r1, r2. The

3
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centers of two ellipses (uB1 , vB1 ), (uB2 , vB2 ) can be detected by
some image processing techniques. Now the eccentricity error
is compensated by using the set of linear equation (7).

The above discussion is under the ideal lens without
distortion; however, distortion is unavoidable [15]; and in
many camera calibration methods [16–20] the lens distortions
are seen as additional parameters, including the radial,
de-centering and affine distortion [20]. In order to prove
that the proposed compensation model is still valid while
considering the lens distortions, further explanations are as
follows: after adding lens distortions, the centers of ellipse are
B′1(uB1 +�u1, vB1 +�v1), B′2(uB2 +�u2, vB2 +�v2), where
�u1,�v1,�u2,�v2,are the lens distortions containing all its
components, regardless of the model used. Since the centers
of the bigger and smaller ellipses B1, B2 are very close, the
distortions at locations B1 and B2 are nearly the same. We can
assume that �u1 = �u2 = �u, �v1 = �v2 = �v. Under
this assumption, equation (7) can be written as

u′
c = k1

(
uB2 + �u

) − k2
(
uB1 + �u

) = k1u′
B2

− k2u′
B1

v′
c = k1

(
vB2 + �v

) − k2
(
vB1 + �v

) = k1v
′
B2

− k2v
′
B1

.
(8)

In equations (8), B′
1

(
u′

B1
, v′

B1

)
, B′

2(u
′
B2, v

′
B2) are the centers

of the two ellipses, which are detected by digital image
processing; and C′

2(u
′
c, v

′
c) is the center of the CCT

after compensating the eccentricity but containing the lens
distortion. By the above analysis, we can draw a conclusion
that the coordinate of the CCT center C is the linear
combination of the coordinates of the two ellipses’ centers
B1, B2 including lens distortion. It should be noted that
the eccentricity error can also be represented by the linear
combination of the coordinates of the two ellipse centers by
contrasting equations (7) and (8). By comparing equations (1)
or (3) with equation (7), we can see that the geometric
parameters are no longer required. Instead, we need to locate
two centers of ellipses, which is simpler than estimating
geometric parameters by using a calibration process or BA
strategy as done in previous approaches.

4. Simulation and experimental results

To demonstrate the validity of the proposed method, a few
experiments were conducted on both computer simulation and
real experiment.

4.1. Computer simulation

The simulated camera has the following specifications: the
resolution is 1280 × 1024 pixels, the principal point (pp)
coordinates are expressed in pixels, as the following: u0 = 640
pixels, v0 = 512 pixels, the focal length is c = 12 mm.
The ratio of radii r1/r2 is fixed as 2 (r1 = 2r2). In this
case, the coefficients are k1 = 4/3, k2 = 1/3. The sub-pixel
centers of the two ellipses (uB1 , vB1 ), (uB2 , vB2 ) were detected
with the ellipse center location approach [21, 22]. Then the
CCT corrected center was determined with equation (7). The
corrected center was then compared with the ground truth,
and the eccentricity error can be estimated as the Euclidean
distance between the corrected center point and true center
point measured in pixels.

Table 1. The values of eccentricity errors (EEs) with respect to the
radius of the larger circle.

Radius (mm) EEs (pixels)

5 4.8 × 10−7

10 5.4 × 10−6

15 2.4 × 10−5

20 7.2 × 10−5

25 1.7 × 10−4

30 3.4 × 10−4

35 6.2 × 10−4

40 1.0 × 10−3

45 1.7 × 10−3

50 2.5 × 10−3

55 3.6 × 10−3

60 5.1 × 10−3

Table 2. The values of eccentricity errors (EEs) with respect to the
angle ω.

Angle (radians) EEs (pixels)

π/15 4.3 × 10−6

2π/15 2.9 × 10−5

3π/15 8.0 × 10−5

4π/15 1.2 × 10−4

5π/15 1.6 × 10−4

6π/15 1.3 × 10−4

7π/15 7.7 × 10−5

4.1.1. Performance with respect to the radius of CCT. In
order to simplify the calculation, the structure parameters
are assumed as ω = π/4, d = 800 mm and α = ω, then
l = d = 800 mm. The radius r1 is set from 0 to 60 mm with
5 mm intervals, and the ratio remains constant (r1/r2 = 2).
Figure 4(a) shows the eccentricity errors by using our method,
where ‘�’ represents the distance (eccentricity error) between
the estimated center using our approach and the true center
of the CCT; and figure 4(b) shows the result using the ellipse
fitting method, where ‘◦’ represents the distance (eccentricity
error) between the center of the fitted ellipse and the true center
of the CCT. It can be seen that the ellipse centers gradually
deviate from the true center of the CCT as the radius value
increases; obviously it cannot identify the eccentricity error. It
can be seen that our approach can efficiently compensate the
eccentricity error, even when the radius value is very large. In
order to see more clearly, table 1 shows the concrete values of
the eccentricity error. The eccentricity error is enlarged with
increase of the radius of the CCT. However, the maximum
error does not exceed the accuracy of sub-pixel levels with the
center location method [21, 22] (0.01 pixels).

4.1.2. Performance with respect to the angle ω. This
experiment investigates the performance with respect to angle
ω. In the experiment, the radii of the smaller and larger circles
are set to 12 and 24 mm, respectively, and the angle ω is
assumed to be from π/15 to 7π/15 with an interval of π/15.
The simulation result is as follows: the eccentricity errors
obtained by our method are shown in figure 5(a), and the
results obtained by the ellipse-fitting method are shown in
figure 5(b). Table 2 shows that the concrete values of the error

4



Meas. Sci. Technol. 24 (2013) 075402 D He et al

0 10 20 30 40 50 60
0

1

2

3

4

5

6
x 10

-3

T
he

 e
cc

en
tr

ic
it

y 
er

ro
r(

in
 p

ix
el

s)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

T
he

 e
cc

en
tr

ic
it

y 
er

ro
r(

in
 p

ix
el

s)

(a) (b)

The radius of the larger circle(in mm) The radius of the larger circle(in mm)

Figure 4. (a) The eccentricity errors of center location with respect to the radius with our method, (b) with the ellipse fitting method.
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Figure 5. (a) The eccentricity errors of center location with respect to the angle ω with our method, (b) with the ellipse fitting method.

are very small after correction by our method. The errors are
changed with the variation of angle ω by using the ellipse-
fitting method; and with our approach, the eccentricity error
can be kept at a very low level.

4.2. Experiment by using real data

In the experiment, we printed a CCT, where the radii of
the larger and smaller circles were 120 and 60 mm, and the
CCT center was marked with ‘+’ on the pattern. A Daheng
CMOS camera with a resolution of 1280 × 1024 pixels was
used to capture the image of the CCT. The exposure distance
between the camera and CCT was about 1.0 m, and the angle
between the normal CCT and the optical imaging axis was
about 45◦. Figure 6 shows the center identification results using
equation (7). The red ‘+’ represents the location of the center
of the smaller circle obtained by image processing techniques
[21, 22]; the red ‘∗’ represents the location of the center of
the larger circle; and the blue ‘+’ is the location of the CCT
center identified by our method. Experiment results showed
good accordance with the true CCT center predicted by the
theoretical model. It should be especially pointed out that this
experiment was performed successfully without considering
the estimate of any calibration parameters (include exterior
and inner orientation parameters) but using only one image of
a single CCT. Moreover, the eccentricity error has also been
greatly compensated by locating the center of the CCT with
our method.

Figure 6. Correction results for one image of a single CCT.

In order to compare the method presented by Ahn et al
[7] (referred to hereafter as ‘the compared method’) with ours,
we need to calculate the calibration parameters in advance.
Therefore, a standard plane with 58 CCTs was used for camera
calibration, and these CCT-coordinates in the 3D space had
been determined, as shown in figure 7. The radius of the
smaller circle was 2.5 mm and the radius of the larger circle was
5.0 mm. In our method, both circles of the CCTs were used, but
only smaller CCTs were employed in the compared method.
In addition, there were five coded markers, which were used
to automatically search for the corresponding CCTs among

5
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Figure 7. The eight images of the plane with 58 CCTs taken from eight different viewpoints.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. The deviations of identified centers between the compared method and ours; plots (a)–(h) represent eight different images.

the images. In order to determine the calibration parameters
for the compared method, the ImagingSource CCD camera
with resolution of 1280 × 960 pixels was used to capture
eight images of the CCTs from eight different viewpoints.
Then we detected and located the coordinates of the centers
of smaller ellipses (the circle of the CCT changes to an ellipse
under the perspective projection) in eight images. With the
coordinates of ellipse centers in 3D space and in images, the
required parameters were estimated by Zhang’s calibration
method [23]. The calibration parameters were employed to
correct the center of the centers of CCTs C1(uC1 , vC1 ) with
equation (3), in the compared method. On the other hand, we
identified the center of the CCTs C2(uC2 , vC2 ) with our method
only using equation (7). In our approach, both the centers of
larger and smaller ellipses were determined simultaneously,
which led to the elimination of the troublesome process of
the necessary parameters’ estimation for compensating the
eccentricity errors. In order to compare the differences of
identified centers’ coordinates between the two methods, we
calculated the deviation betweenC1(uC1 , vC1 ) andC2(uC2 , vC2 ),

and illustrated the differences C1 − C2(uC1 − uC2 , vC1 − vC2 )

for eight images; in figure 8, 58 ‘+’ implied that there were 58
CCTs in each image. The values of uC1 −uC2 and vC1 −vC2 were
illustrated in horizontal and vertical axes, respectively. The unit
was measured in pixels. It could be seen that the deviations
are smaller than 0.01 pixels under the influence of imaging
noise. In common, the location error was less than 0.02 pixels
in the center location techniques. Therefore, it would not
affect the accuracy of measurement. Note that our method
can achieve the same accuracy level as that with the compared
method. However, our method does not need to determine
those parameters associated with the CCTs and the camera. It
is more flexible for various measurement applications.

5. Conclusion

In conclusion, we have proposed a new approach for correcting
the eccentricity error of a circular target with the use of a
pattern of two concentric circles instead of a single circle
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pattern. Linear center-identification equations are developed
by using an approximate description regarding eccentricity
error. Compared with those approaches previously reported,
the new correction approach eliminates the need of calibration
parameters that are usually used to estimate the eccentricity
errors. Both computer simulation and practical experiment
have been performed, which have demonstrated the efficiency
and stability of the proposed method. As a systematic error, the
eccentricity error can be successfully compensated. Because
the camera parameters are no longer required, the proposed
correction method can also be used in high-accuracy 3D
measurement in a simple way, such as camera calibration,
close range photogrammetry, vision measurement and FPP
calibration.
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