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14 It is shown that the acoustic scaling patterns of anisotropic flow for different event shapes at

15 a fixed collision centrality (shape-engineered events), provide robust constraints for the event-by-

16 event fluctuations in the initial-state density distribution from ultrarelativistic heavy ion collisions.

17 The empirical scaling parameters also provide a dual-path method for extracting the specific shear

18 viscosity (1/s)qap of the quark-gluon plasma (QGP) produced in these collisions. A calibration of

19 these scaling parameters via detailed viscous hydrodynamical model calculations, gives (n/s)qap

20 estimates for the pl'asma prOdl}CGd in_ {:ollisions o'f Z'XL_H—Au (vsvn = 0.2 TeV) and P_’b—|—Pb (Vsnn =

21 2.76 TeV). The estimates are insensitive to the initial-state geometry models considered.

22 2 PACS numbers: 25.75.-q, 12.38.Mh, 25.75.Ld, 24.10.Nz

23

24

25 13 Considerable attention has been given to the study of «  Recent attempts to reduce the wuncertainty for
26 1 anisotropic flow measurements in heavy-ion collisions at s (/s)qep have focused on: (i) the development of a
27 15 both the Relativistic Heavy Ion Collider (RHIC) and the % more constrained description of the fluctuating initial-
28 1 Large Hadron Collider (LHC) [1-14]. Recently, the at- « state geometry [22], (ii) the combined analysis of va and
29 v tack has focused on studies of initial state fluctuations s vz [18, 23, 24] and other higher order harmonics [11]
30 18 and their role in the extraction of the specific shear vis- » and (iii) a search for new constraints via “acoustic scal-
31 10 cosity (i.e. the ratio of shear viscosity to entropy density s ing” of v, [25-27]. The latter two approaches [(ii) and
32 2 1/8) of the quark-gluon plasma (QGP) . These flow mea- s (iii)] utilize the empirical observation that the strength of
33 a1 surements are routinely quantified as a function of colli- s the dissipative effects which influence the magnitude of
34 » sion centrality (cent) and particle transverse momentum ss v, (cent), grow exponentially as n? and 1/R [25, 26, 28];
35 2 pr by the Fourier coefficients v,

36 v, (cent) n2 4 n 5

37 vn(pr, cent) = (cos[n( — Ty))). (1) = (cont) X P (ﬂ i > sy @
38

39 2 Here ¢ is the azimuthal angle of an emitted particle and s where £, is the n-th order eccentricity moment, T' is
40 » U, is the estimated azimuth of the n-th order event ss the temperature and R is the initial-state transverse
41 2 plane [15, 16]; brackets denote averaging over parti- s size of the collision zone. Thus, characteristic linear
42 2 cles and events. The current measurements for charged s dependencies of In(v,/e,) on n? and 1/R [cf. Eq. 2],
43 2 hadrons [17, 18] indicate significant odd and even v,, co- s are suggested with slopes 8’ ~ 8/R oc (1/s)qep and
44 2 efficients up to about the sixth harmonic. s0 B ~n?B (n/s)qap-

45 »  The estimates of (7/s)qap from these v, measure- o These scaling patterns have indeed been validated and
46 s ments have indicated a small value (i.e. 1-3 times the & shown to point to important constraints for the ex-
47 » lower conjectured bound of 1/47 [19]). Substantial theo- e traction of (1/s)qgp from data taken at both RHIC
48 x retical uncertainties have been assigned primarily to in- e (/555 = 0.2 TeV) and LHC (/5 = 2.76 TeV) [25, 26].
49 s complete knowledge of the initial-state geometry and its e Here, we explore new constraints for initial-state shape
50 s associated event-by-event fluctuations. Indeed, an un- e fluctuations, via scaling studies of v,, measurements ob-
51 s certainty of @(100%) in the value of (1/s)qap extracted e tained for shape-engineered events, i.e. different event
52 w from vy measurements at RHIC (/s = 0.2 TeV) [5, 6], e shapes at a fixed centrality [29, 30].

53 s has been attributed to a ~ 20% uncertainty in the the- «  Such constraints are derived from the expectation that
o4 s oretical estimates [20, 21] for the event-averaged initial 7 the event-by-event fluctuations in anisotropic flow, result
55 w0 eccentricity o of the collision zone. Here, it is important = primarily from fluctuations in the size and shape (eccen-
56 a1 to note that a robust method of extraction should not de- » tricity) of the initial-state density distribution. Thus,
57 22 pend on the initial geometrical conditions since (n/s)qgp 7 various cuts on the full distribution of initial shapes [at
gg a3 is only a property of the medium itself. 7 a given centrality], should result in changes in the mag-
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FIG. 1. (Color online) Calculated values for (a) the g2 distribution for 20-25% central events; (b) e2 vs. g2 for 20-25% central
events; (c) €2,3 vs. gof for 0-5% central events; (d) €2,3 vs. gof for 20-25% central events. The calculations were made for Pb+Pb

collisions at /sy = 2.76 TeV with the MC-Glauber model.

nitudes of (g,), (R,) and (v,). Note however, that ac-
ceptable models for the initial-state fluctuations should
give (g,) and (R,) values each of which lead to acoustic
scaling of (v,) with little, if any, change in the slope pa-
rameter 3 (8”) for different event shape selections, i.e.,
B (") < (n/s)qap is a property of the medium, not the
initial state geometry.

The ¢, flow vector has been proposed [29] as a tool
to select different initial shapes from the distribution of

initial-state geometries at a fixed centrality;

M M
Qn,x = Z COS(TL(%); Qn,y = Z Sin(n¢i); (3)
qn = Qn/ma (4)

where M is the particle multiplicity and ¢; are the az-
imuthal angles of the particles in the sub-event used to
determine ¢,. We use this technique for model-based
evaluations of £5(g2, cent) and R(gs, cent) to perform val-
idation tests for acoustic scaling of recent vs(ge,cent)
measurements, as well as to determine if 3" is indepen-
dent of event shape. Subsequently, we use the experi-
mental acoustic scaling patterns in conjunction with the
results of ¢,-averaged viscous hydrodynamical calcula-
tions [31], to calibrate 8’ and 8” and make estimates
of (n/s)qep for the plasma produced in Au+Au and
Pb+PDb collisions at RHIC and the LHC respectively.
The data employed in this work are taken from mea-
surements by the ALICE and CMS collaborations for
Pb+Pb collisions at \/syy = 2.76 TeV [30, 32], as well
as measurements by the STAR collaboration for Au+Au
collisions at /syy = 200 GeV [7, 33]. The ALICE
measurements [30] exploit a three subevents technique
to evaluate va(go, cent), where the first subevent SE; is
used to determine ¢, and the particles in the second
subevent SEs are used to evaluate vz (g, cent) relative to
the U5 event plane determined from the particles in the
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third subevent SE3. To suppress non-flow correlations,
the detector subsystems used to select SE; 2 3 were cho-
sen so as to give a sizable pseudo-rapidity gap (An,)
between the particles in different subevents. For each
centrality, va(g2) measurements were made for the full g9
distribution [v2(g2(avg.))], as well as for events with the
10% lowest [v2(g2(Lo))] and 5% highest [v2(ga(mi))] values
of the ¢, distribution.

The CMS [31] and STAR [33] v, (cent) measurements
for n = 2 -6 (CMS) and n = 2 (STAR) were selected
to ensure compatibility with the viscous hydrodynamical
calculations discussed below. An explicit selection on
qn was not used for these measurements; instead, they
were averaged over the respective g, distributions to give
Un(Gn(Avg.), cent) = vn(cent). The systematic errors for
the ALICE, CMS and STAR measurements are reported
in Refs. [30], [32] and [33] respectively.

Monte Carlo versions were used for (a) the Glauber
(MC-Glauber) [34] and (b) Kharzeev-Levin-Nardi [21,
35, 36] (MC-KLN) models for fluctuating initial condi-
tions. Each was used to compute the number of par-
ticipants Npare(cent), g¢,(cent), e,(cent) [with weight
w(ry) = r,"] and R, (cent) from the two-dimensional
profile of the density of sources in the transverse plane

ps(ri) [23], where 1/Ry = /(1/02+1/02), with o,

and o, the respective root-mean-square widths of the
density distributions. Computations for these initial-
state geometric quantities were also made for 5% and
10% increments in gy, from the lowest (g, (r0)) to the
highest (g, mi)) values of the g, distribution. The com-
putations were performed for both Au+Au (y/syn = 0.2
TeV) and Pb+Pb (/syn = 2.76 TeV) collisions. From
variations of the MC-Glauber and MC-KLN model pa-
rameters, a systematic uncertainty of 2-3% was obtained
for R and ¢ (respectively) .

Figure 1(a) shows a representative g2 distribution for
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FIG. 2. (a) (Color online) Centrality dependence of v2(ga(Lo)), v2(g2(ave.)) and v2(goemi)) [30] for 0 < cent < 70% for Pb+Pb
collisions at /sy = 2.76 TeV. (b) Centrality dependence of the ratios v2(ga(Lo))/v2(q2(ave.)) and v2(ga(mi))/v2(g2(ave.))- ()
Centrality dependence of €2(ga(ro0)), €2(g2(ave.)) and e2(gocmi)), evaluated with the MC-Glauber model. (d) In[va(gz2)/e2(g2)] vs.
1/R2(g2) for ga(r.0)- (e) same as (d) but for ga(avg.). (f) same as (d) but for g

20-25% central MC-Glauber events for Pb+Pb collisions. 11 v2(ga(ave.); cent) and va(ga(mi), cent) reported in Ref. [30].
The relatively broad distribution reflects the effects of 12 They show that this event-shape selection leads to lower
sizable event-by-event fluctuations convoluted with sta- 173 (higher) values of vo(g2, cent) for go values lower (higher)
tistical fluctuations due to finite particle number. Quali- 17 than ga(avg). They also show that such selections
tatively similar distributions were obtained for other cen- s can lead to a sizable difference (more than a factor of
tralities and for other harmonics. These ¢,, distributions s two) between vz (gg(mi), cent) and va(gz(Lo), cent), as il-
were partitioned into the 5% and 10% increments ¢,¢ 17 lustrated in Fig. 2(b). Strikingly similar differences
[from the lowest to the highest values] and used for fur- s can be observed in Fig. 2(c) for the MC-Glauber re-
ther detailed selections on the event shape. 7o sults shown for EQ(qQ(LO), cent), &9 (q2(Avg_),cent) and

The effectiveness of such selections is illustrated in 1 £2(ga(mi), cent). They suggest that differences in the mea-
Fig. 1(b), which shows a strong correlation between g5 181 sured magnitudes for U2(Q2(Lo);Cth), UZ(q2(Avg.)7cent)
and ¢, for 20-25% central Pb+Pb events. Similar trends 122 and vz(goemi, cent), are driven by the corresponding dif-
were obtained for other centrality cuts and for other har- 13 ferences in the calculated magnitudes for €2(ga(1.0), cent),
monics. Figs. 1(c) and (d) show the dependence of £5 and 124 €2 (@2(Avg.), cent) and €2 (ga(mi), cent).

€3 on ¢of for two centrality selections as indicated. For .  The shape-selected measurements in Fig. 2(a) for

cenjcral collisif)ns (0-5%),’52@%) and e€3(qo¢) both show V3 (Ga(Loy, Cent), V2 (ga(avg.)> cent) and v (g, cent) all
an increase with gaf, albeit with a much stronger depen- . show an increase from central to mid-central colli-
dence for 3(ga¢). This increase is expected to lead to a sions, as would be expected from an increase in
corresponding increase of va(gar) and vs(gor) With gar. 5 ¢, (@2(Lo), cent), €2(ga(ave.)> cent) and ea(gami), cent) over

Fig. 1(d) indicates a similar increase of £2(gaf) With ga¢ 10 the same centrality range [cf. Fig. 2(c)]. For cent 2
for 20-25% central collisions. However, e3(qor) indicates 1o, 45% however, the decreasing trends for V2 (qa(1.0), cENL),
a decrease with gof, suggesting that a characteristic in- g, V2(q2(Avg.)> cent) and v2(ga(mi), cent) contrasts with the
version of the dependence of ’U3(Q2) is to be expected as a 13 increasing trends for eo (q2(L0)7 Cent)’ ) (QZ(Avg.)7 Cent)
signature in future vs(g2) measurements for central and 4 and 52(Q2(Hi)a cent), suggesting that the viscous effects
mid-central collisions. s due to the smaller systems produced in peripheral colli-

Figure 2(a) shows the centrality dependence for one set 19 sions, serve to suppress v2(ga(ro), cent), va(ga(avg.), cent)
of the shape-engineered measurements of UQ(QQ(LO)7C€1’11]), w7 and v2(qa(mi), cent). This is confirmed by the symbols
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FIG. 3. (Color online) In[vz/e2] vs. 1/Rs> for viscous hydro-
dynamical calculations [31] for Au+Au collisions at /sy =
0.2 TeV with (a) MC-Glauber initial-state geometries and
(b) MC-KLN initial-state geometries; the dashed-dot and the
dotted-dashed curves represent linear fits. Results are shown
for several values of 47n)/s as indicated. (c) Calibration curve
for 8" vs. 4mn/s; the 8" values are obtained from the slopes
of the curves shown in (a) and (b). The indicated data points
are obtained from a linear fit to In[vs/e2] vs. 1/R for the
STAR Au+Au data at /5y = 0.2 TeV [7, 33]

and dashed curves in Figs. 2(d) - (f) which validates
the expected linear dependence of Infva(g2)/e2(g2)] on
1/Ra(g2) (cf. Eq. 2) for the data shown in Fig. 2(a).
The dashed curves, which indicate a similar slope value
(8" ~ 1.3 £0.07) for each of the scaling curves in
Figs. 2(d) - (f), provide an invaluable model constraint
for the event-by-event fluctuations in the initial-state
density distribution, as well as for robust estimates of
n/s.

The acoustic scaling patterns summarized in Eq. 2 are
also exhibited in the results of ¢,-averaged viscous hydro-
dynamical calculations [31] as demonstrated in Figs. 3(a)
and (b) and Fig. 4(a). The scaled results, which are
shown for several values of 47n/s in each case, exhibit
the expected linear dependence of In(v,/e,) on 1/R for
both MC-Glauber (Figs. 3(a)) and MC-KLN (Figs. 3(b))
initial conditions, as well as the expected linear depen-
dence of In(v,/e,) on n? (Fig. 4(a)). They also give a
clear indication that the slopes of these curves are sensi-
tive to the magnitude of 47n/s. Therefore, we use them
to calibrate 8”7 and ' to obtain estimates for (47n/s)qap
for the plasma produced in RHIC and LHC collisions.

Figure 3(c) shows the calibration curves for 8" vs.
4mn/s, obtained from the viscous hydrodynamical cal-
culations shown in Figs. 3(a) and (b). The filled cir-
cles and the associated dot-dashed curve, represent the
slope parameters (") obtained from linear fits to the
viscous hydrodynamical results for MC-Glauber initial
conditions shown in Fig. 3(a). The open squares and the
associated dot-dot-dashed curve, represent the slope pa-

4
1 0.150
[ TPb+Pb @ 2.76 TeV|. 1
r(a) 4nn/is  1(b) 1)
N, 0 % k¢ paa | ¢ D
L > * 4
1[0 \\\ " 25 1 a ;j j/ i 0.125
e JN\N . i
= '\
5 2 - AN T t 4 1
° AN s 1 ! 10100 &
S NS T R
£ AR LS /
% T ]
4 NNt I ¥ 1
[ N T x4 - 0.075
r Y e 1 h
5L \ 1
r Visc. Hydro. T
m = MC-Glauber T T 1
'G MHH\HHMHMHH\HMHHMH\H\H\wm\um\uu\um\u0.050

0 10 20 30 40 0 10203040 O 1 2 3
n? 4nn/s

FIG. 4. (Color online) (a) In(vs/en) vs. n? from viscous
hydrodynamical calculations [31] for three values of specific
shear viscosity as indicated. (b) In(v,/en) vs. n? for Pb4+Pb
data. The pr-integrated vy, results in (a) and (b) are for 0.2%
central Pb+Pb collisions at \/syn = 2.76 TeV [31]; the curves
are linear fits. (c) Calibration curve for 8’ vs. 4mn/s; the 3’
values are obtained from the slopes of the curves shown in
(a). The indicated data point is obtained from a linear fit to
the scaled data shown in (b).

29 rameters obtained from linear fits to the viscous hydrody-
23 namical results for MC-KLN initial conditions shown in
1 Fig. 3(b). The STAR wz(cent) data for Au+Au collisions,
22 also show the expected linear dependence of In(ve/e2)
233 on 1 /Rg for e and R, values obtained from the MC-
2u Glauber and MC-KLN models respectively. The filled
235 diamond and the open triangle in Fig. 3(c), represent
236 the slopes extracted from the respective scaling plots that
237 used MC-Glauber and MC-KLN initial conditions respec-
238 tively. A comparison to the respective calibration curves
2 in Fig. 3(c), gives the estimate (47n/s)qap ~ 1.3 £ 0.2
20 for the plasma created in RHIC collisions. Here, it is
2 noteworthy that our extraction procedure leads to an es-
22 timate which is essentially insensitive to the choice of the
23 MC-Glauber or MC-KLN initial-state geometry.

25 The solid squares and the associated dashed-dot curve
26 in Fig. 4(c), represent the calibration curve for 3’ vs.
a7 47n/s, obtained from the linear fits (dashed curves)
xus to the viscous hydrodynamical calculations shown in
29 Fig. 4(a). Fig. 4(b) shows the expected linear depen-
20 dence of In(v,, /€,,) on n? for CMS Pb+Pb data [31] scaled
1 with same ¢, values employed in Fig. 4(a). The slope
22 extracted from Fig. 4(b) is indicated by the solid blue
253 diamond shown in Fig. 4(c); a comparison with the the
24 calibration curve gives the the estimate (47n/s)qap ~
5 2.2 £ 0.2 for the plasma created in LHC collisions. Note
6 that a similar estimate is obtained from the scaling coef-
a7 ficient (8" ~ 1.3 £0.07) extracted from Fig. 2(e).

s The (4mn/s)qap estimates for the plasma produced in
0 RHIC and LHC collisions are in reasonable agreement
20 with recent (n/s) estimates [11, 26, 36-39]. Further cal-
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1
2 21 culations will undoubtedly be required to reduce possi-
3 22 ble model-driven calibration uncertainties [39]. However,
4 263 our method benefits from tests via implicit constraints
5 x4 on event-by-event fluctuations in the initial-state density
6 s distribution, as well as its lack of sensitivity to the initial-
7 26 state models employed in our analysis.
8 7 In summary, we have presented a detailed phenomeno-
9 s logical exploration of a new constraint for initial-state
10 x0 fluctuations, via scaling studies of vy measurements ob-
11 a0 tained for shape-engineered events. We find acoustic scal-
12 o ing patterns for shape-selected events (via q2(Lo)» 942(Avg.)
13 a2 and gaqmyy). They provide robust tests for the event-
14 a3 by-event fluctuations in the initial-state density distri-
15 o bution. Our empirical methodology gives two consistent
16 zs paths for estimating (n/s)qap of the QGP produced in
17 a6 Au+Au and Pb+Pb collisions at RHIC and the LHC.
18 an A calibration of the method with g¢o-averaged viscous
19 as hydrodynamical model calculations, gives estimates for
20 zo (4mn/s)qep of 1.3 £0.2 and 2.2 £ 0.2, for the plasma
g; 280 produced in AutAu (\/syy = 0.2 TeV) and Pb+Pb
23 w1 (/SN = 2.76 TeV) collisions (respectively). These val-
2 Ues are insensitive to the initial-state geometry models
gg 253 employed.
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