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Abstract
We show analytically that in the cumulative particles production off nuclei
multiple interactions leads to a glory-like backward-focusing effect.
Employing the small phase space method, we arrived at a characteristic
angular dependence of the production cross section σ π θ∼ −d 1 near the
strictly backward direction. This effect takes place for any number ⩾n 3 of
interactions of rescattered particles, either elastic or inelastic (with resonance
excitations in intermediate states), when the final particle is produced near the
corresponding kinematical boundary. In the final angles interval, including the
value θ π= , the angular dependence of the cumulative production cross
section can have a crater-like (or funnel-like) form. Such a behaviour of the
cross section near the backward direction is in qualitative agreement with
some of the available data. Explanation of this effect and the angular depen-
dence of the cross section near θ π∼ are presented for the first time

Keywords: nuclear glory phenomenon, azimuthal focusing, cumulative
particles

1. Introduction

Intensive studies of the particles production processes in high-energy interactions of different
projectiles with nuclei, in regions forbidden by kinematics for the interaction with a single
free nucleon, began back in the 1970s mostly at JINR (Dubna) and ITEP (Moscow). Rela-
tively simple experiments could provide information about such objects as fluctuations of the
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nucleus density [1] or, discussed much later, few nucleon (or multiquark) clusters probably
existing in nuclei. At JINR, such processes have been called ‘cumulative production’ [2, 3],
whereas at ITEP the variety of properties of such reactions has been called ‘nuclear scaling’
[4–6] because certain universalities of these properties have been noted and confirmed
somewhat later at much higher energy, with 400 GeV incident protons [7, 8] and 40 GeV c
incident pions, kaons and antiprotons [9, 10]. A new wave of interest in this exciting topic has
recently appeared. New experiments have been performed in ITEP [11], aimed at defining the
weight of multiquark configurations in the carbon nucleus4.

The interpretation of these phenomena as being a manifestation of the internal structure
of nuclei assumes that the secondary interactions, or, more generally, multiple interaction
processes (MIP) do not play a crucial role in such production [12–18]. Generally, the role of
secondary interactions in the particles production off nuclei is at least two-fold: they decrease
the amount of produced particles in the regions, where it was large (it is, in particular, the
screening phenomenon), and increase the production probability in regions where it was
small; so, they smash out the whole production picture.

The development of the Glauber approach [19, 20] to the description of particles scat-
tering off nuclei has been considered many years ago as remarkable progress in understanding
the particles–nuclei interactions. Within the Glauber model, the amplitude of the particle–
nucleus scattering is presented in terms of elementary particle–nucleons amplitudes and the
nucleus wave function describing the nucleon distribution inside the nucleus. The Glauber
screening correction for the total cross section of particle scattering off deuteron allows
widely accepted, remarkably simple and transparent interpretation.

Gribov [21] explained nontrivial peculiarities of the space–time picture of such scattering
processes and concluded that inelastic shadowing corrections play an important role at high
enough energy and should be included into consideration5.

In the case of large angle particle production, the background processes that mask the
possible manifestations of nontrivial details of nuclear structure are subsequent multiple
interactions with nucleons inside the nucleus leading to the particles emission in the ‘kine-
matically forbidden’ region. Leonid Kondratyuk was the first to note that rescattering of

Figure 1. The simplest pion rescattering diagram which leads to the partial fill-up of the
‘kinematically forbidden’ region for the case of the cumulative pion production by
protons on the deuteron [24].

4 We do not pretend here to give a comprehensive review of numerous experiments on cumulative particles
production.
5 The pion double-charge exchange scattering is an interesting example of the reaction where the inelastic
intermediate states give the dominant contribution at high enough energy [22, 23].
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intermediate particles could lead to the final particles emission in ‘kinematically forbidden’
regions (KFR). The rigorous investigation of the double interaction process in the case of pion
production off deuteron (see figure 1) has been made first by L Kondratyuk and V Kope-
liovich in [24]. Later, the multiple interaction processes leading to nucleons production in
KFR were investigated in [25] and in more detail in [26], where the magnitude of the
cumulative protons production cross sections was estimated, as well.

M A Braun and V V Vechernin et al have made many interesting and important
observations and have investigated processes leading to the particles emission in KFR [27–
35], including the processes with resonances in the intermediate state [27, 28]. They found
also that processes with pions in the intermediate state lead to the nucleons emission in KFR
due to subsequent processes, such as π π→N N [31, 32]. Basic theoretical aspects of MIP
leading to the cumulative particles emission and some review of the situation in this field up
to 1985 have been presented in [36].

Several authors attempted the cascade calculations of cumulative particles production
cross sections relying upon the available computing codes created previously [38–43]. The
particles production cross section was found to be in reasonable agreement with the data.
Different kinds of subprocesses play a role in these calculations, and certain work should be
performed for detailed comparison. In calculations by the NOMAD Collaboration, the par-
ticles formation time has been considered as a parameter, and results near to the experimental
observations have been obtained for this time equal to ∼2 Fm [42, 43]; see the discussion
below.

While many authors have admitted the important role of the final state interactions (FSI),
most of them did not discuss the active role of such interactions, i.e. their contribution to
particles production in KFR; see e.g [44]. It has been stated in a number of papers that
multiple interactions cannot describe the spectra of backwards-emitted particles. Such a
statement, in fact, has no firm grounds because there were, so far, no reliable calculations of
the MIP contributions to the cross sections and other observables in the cumulative particles
production reactions. Moreover, such calculations are hardly possible because, as we argue in
the current paper, necessary information about elementary interactions amplitudes is still
lacking.

Several specific features of the MIP mechanism have previously been noted experi-
mentally and discussed theoretically [26, 36, 37], among them the presence of the recoil
nucleons, whose amount grows with the increasing energy of the cumulative particle; the
possible large value of the cumulative baryons polarization; and some others; see [36]. The
enhancement of the production cross section near the strictly backward direction has been
detected in a number of experiments, first at JINR (Dubna) [45, 46] and somewhat later at
ITEP (Moscow) [47, 48]. This glory-like effect, which can also be called the ‘Buddhaʼs light’
of cumulative particles, has been shortly discussed previously in [26, 36]. More experimental
evidence of this effect has appeared since that time [49, 50]. Here, we show analytically that
the presence of the backward-focusing effect is an intrinsic property of the multiple inter-
action mechanism leading to the cumulative particles production. The detailed treatment of
this effect is presented, including the angular dependence of the particles production cross
section near the strictly backward direction. To our knowledge, the proof of the existence of
the nuclear glory phenomenon was absent so far in the literature.

In the next section, the peculiarities of the kinematics of the processes in KFR will be
recalled, while in section 3, the small phase space method of the MIP contributions calcu-
lation to the particles production cross section in KFR is described. In section 4 the focusing
effect, similar to what is known in optics as glory phenomenon, is described in detail. The
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final section contains a discussion of problems and conclusions. Some mathematical aspects
of the nuclear glory phenomenon are presented in the appendix.

2. Details of kinematics

When the particle with four-momentum = ⃗p E p( , )0 0 0 interacts with the nucleus with the

mass ≃m Amt N , and the final particle of interest has the four-momentum ω= ⃗k k( , )f f f the
basic kinematical relation is

+ − ⩾( )p p k M , (2.1)t f f0
2 2

where Mf is the sum of the final particles masses, except the detected particle of interest. At
large enough incident energy, ≫E Mf0 , we obtain easily

ω − ⩽zk m , (2.2)f f t

which is the basic restriction for such processes. θ= <z cos 0 for particles produced in a
backward hemisphere. The quantity ω − zk m( )f f N is called the cumulative number (more
precisely, the integer part of this ratio plus one).

Let us recall some peculiarities of the multistep processes kinematics established first in
[25, 26] and described in detail in [36]. It is very selective kinematics, essentially different
from the kinematics of the forward scattering off nuclei when random walking of the particle
is allowed in the plane perpendicular to the projectile momentum. Schematically, the mul-
tistep process is shown on figure 2.

Rescatterings. For light particles (photon, also π-meson), iteration of the Compton
formula

Figure 2. Schematical picture of the multiple interaction process within the nucleus A
leading to the emission of the final particle with the momentum k at the angle θ relative
to the projectile proton momentum. The binary reactions are assumed to take place in
secondary interactions.
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⎡⎣ ⎤⎦ω ω
θ− ≃ −

−
( )

m

1 1 1
1 cos (2.3)

n n
n

1

allows to get the final energy in the form (here m =mN is the nucleon mass)

⎡⎣ ⎤⎦∑
ω ω

θ− = −
=

( )
m

1 1 1
1 cos (2.4)

N n

N

n
0 1

The maximal energy of the final particle is reached for the co-planar process when all
scattering processes take place in the same plane and each angle equals to θ θ= Nk . As a
result, we obtain

ω ω
θ− = −

m
N N

1 1 1
[1 cos ( )] (2.5)

N
max

0

Already at >N 2 and for θ π⩽ the N1 expansion can be made (it is, in fact, the N1 2

expansion):

θ θ θ− ≃ −( )N N N1 cos ( ) 2 1 12 (2.6)2 2 2 2

and for large enough incident energy ω0 we obtain

ω
θ

≃ +N
m m

N

2

6
. (2.7)N

max
2

This expression works quite well beginning with N = 2. This means that the kinematically
forbidden for interaction with single nucleon region is partly filled up due to elastic
rescatterings. Remarkably, this rather simple property of rescattering processes has not been
even mentioned in the pioneer papers [2–6]6.

In the case of the nucleon–nucleon scattering (scattering of particles with equal nonzero
masses in the general case) it is convenient to introduce the factor

ζ ζ=
+

− =
+

p

E m

m

E m
, 1

2
, (2.8)2

where p and E are spatial momentum and total energy of the particle, respectively, with the
mass m. When scattering takes place on the particle which is at rest in the laboratory frame,
the ζ factor of scattered particle is multiplied by θcos , where θ is the scattering angle in the
laboratory frame. So, after N rescatterings we obtain the ζ factor

ζ ζ θ θ θ= cos cos ... cos . (2.9)N N0 1 2

As in the case of the small mass of rescattered particle, the maximal value of final ζN is
obtained when all scattering angles are equal

θ θ θ θ= = = = N... , (2.10)N1 2

and the co-planar process takes place. So, we have

ζ ζ θ= N[cos ( )] . (2.11)N
Nmax

0

6 This property was well known, however, to V M Lobashev, who observed experimentally that the energy of the
photon after two-fold interaction can be substantially greater than the energy of the photon emitted at the same angle
in a one-fold interaction.
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The final momentum is from (2.11)

ζ

ζ
=

− ( )
k m2

1
(2.12)max

max

max 2

Again, at large enough N and large incident energy (ζ → 10 ), the N1 2 expansion can be made
at ≫k m, and we obtain the first terms of this expansion

θ
≃ −k N

m m

N

2

3
, (2.13)N

max
2

which coincides at large N with previous result for the rescattering of light particles, but
preasymptotic corrections are negative in this case and are twice greater7.

The normal Fermi motion of nucleons inside the nucleus makes these boundaries wider
[36]:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥θ

θ
θ

≃ + +k N
m p

m

2
1

2

1
, (2.14)N

Fmax
2

max

where it is supposed that the final angle θ is large, θ π∼ . For numerical estimates we took the
step function for the distribution in the Fermi momenta of nucleons inside of nuclei, with

≃p m 0.27F
max , see [36] and references there. At large enough N normal Fermi motion

makes the kinematical boundaries for MIP wider by about 40%.
There is a characteristic decrease (down-fall) in the cumulative particle production cross

section due to simple rescatterings near the strictly backward direction. However, inelastic
processes with excitations of intermediate particles, i.e. with intermediate resonances, are able
to fill up the region at θ π∼ .

Resonance excitations in intermediate states. The elastic rescatterings themselves are
only the ‘top of the iceberg’. Excitations of the rescattered particles, i.e. production of
resonances in intermediate states which go over again into detected particles in subsequent
interactions, provide the dominant contribution to the production cross section. The simplest
examples of such processes may be → →NN NN NN* , π ρ π→ →N N N , etc. The important
role of resonance excitations in intermediate states for cumulative particles production has
been noted first by M Braun and V Vechernin [27] and somewhat later in [26]; see figures 3
and 4. At incident energy about few GeV, the dominant contribution into cumulative protons

Figure 3. The diagram of the two-fold interaction process on the deuteron with the
nucleon resonances (or Δ isobars) excitations in intermediate states.

7 The preasymptotic corrections given by equations (2.7) and (2.13) are presented here for the first time.
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emission provide the processes with Δ(1232) excitation and reabsorption; see [36] and [40].
Experimentally the role of dynamical excitations in cumulative nucleon production at inter-
mediate energies has been established in [51] and, at higher energy, in [52].

When the particles in intermediate states are slightly excited above their ground states,
approximate estimates can be made. Such resonances could be Δ(1232) isobar, or

N N*(1470), *(1520) etc. for nucleons, two-pion state or ρ (770), etc. for incident pions,

K*(880) for kaons. This case has been investigated previously with the result for the relative
change (increase) of the final momentum kf (equation (8) of [26])

∑
Δ Δ

≃
=

−k

k N

M

k

1
, (2.15)

f

f l

N
l

l1

1 2

2

or

∑Δ Δ≃
=

−

k
N

l M
2

, (2.16)f
l

N

l
2

3
1

1
2 2

with Δ μ= −M Ml l
2 2 2, kl is the value of three-momentum in the lth intermediate state. This

effect can be explained easily: the additional energy stored in the mass of the intermediate
particle is transferred to the kinetic energy of the final (cumulative) particle.

The number of different processes for the N-fold MIP is + −N( 1)R
N 1, where NR is the

number of resonances making important contributions to the process of interest. The greatest
kinematical advantage has the process with resonance production at the −N( 1)-th step of the
whole process, with its subsequent de-excitation at the last step8. To calculate contributions of
all these processes, one needs not only to know the cross sections and spin structure of the
amplitudes →NN NN1

*
2
* at the energies up to several GeV , but also must consider correctly

Figure 4. Schematical picture of the multiple interaction process with the resonance
excitations in intermediate states. The resonances may either be different or the same in
different intermediate states.

8 In some cascade calculations, the important contribution to the cumulative nucleons production gives the process
with production of pions of not high-energy with its subsequent absorption by a two-nucleon pair. This process can
be, at least partly, part of the processes with resonance formation and reabsorption, because pions of moderate
energies are produced mostly via resonance formation and decay to the nucleon and pion.
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the possible interference between amplitudes of different processes. Such information is
absent and will likely be unavailable in the near future.

To produce the final particle at the absolute boundary available for the nucleus as a
whole, one needs to have the masses of intermediate resonances (or some particles system) of
the order of incident energy, ∼s E mA0 .

In this extreme case

⎜ ⎟⎛
⎝

⎞
⎠≃ −M s

l

A

l

A
(max) 1 (2.17)l A

2

where ≃s AE m2A 0 ([26], appendix). Interaction with all A nucleons should take place, and
the intermediate mass is maximal at ∼l A 2. For the deuteron the intermediate mass at the
absolute boundary should be

∼ ≃M s E m(max) 4 2. (2.18)D
D1 0

This case is of academic interest, only. Our aim is to show that the whole region of final
particles momenta allowed for interaction with the nucleus as a compact object can be
covered due to MIP, but the price for this are the extremely large masses of intermediate
states.

What is most important is the following: at arbitrary high incident energy, the kinematics
of all subsequent processes are defined by the momentum and the angle of the outgoing
particle. In other words, for the nucleus fragmentation with particles emitted backwards with
probably large, but limited to a few GeV, energies, the fragmentation of nucleon takes place
in the first interaction act of the MIP, according to kinematics analyzed above. The slight
dependence of the whole MIP on the incident projectile, hadron or lepton, follows from this
observation, as it was noted long ago by Leksin et al [4–6].

The theory of elementary particles based on the S-matrix approach operates with so
called >|in and <out| states as initial and final states of the process under consideration. It is
assumed that there is enough time for the formation of the outgoing particles and the fields
surrounding them. Usually, it is in complete correspondence with the experimental condi-
tions, when the elementary interaction amplitude is studied by means of cross sections,
polarization observables, etc. measurements.

The situation may be, however, quite different when the interaction of the projectile with
nucleons inside the nucleus takes place. The role of the formation time in the interaction of
the particle within some medium has been discussed long ago. One of the pioneer papers is
the one by Landau and Pomeranchuk [53] where the electromagnetic processes of photon
emission and pair production by electrons have been considered. Similar to the case of
electromagnetic interactions, the hadron formation time is on the order of

τ ω∼ −( )k1 (2.20)z
form

if the incident energy is large enough, where ω and kz are the energy and the longitudinal
momentum of the produced particle, respectively, and the axis z is defined by the momentum
of the incident particle. When the particle is produced in the forward direction with large
enough energy (momentum), the formation time becomes

τ ω
μ

∼ 2
, (2.21)form

2

where μ is the mass of the produced particle. So, formation time, or coherence length in
forward direction, become very large for the energetic particle produced in the direction of the
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projectile momentum (see, e.g [54]. for review of the history of this problem and references.
The nuclei fragmentation region has not been discussed in [54]).

As noted above, for the production of a particle on a target with the mass mt at high
enough incident energy, the inequality takes place:

ω − ⩽k m , (2.22)z t

at the kinematical boundary, the equality takes place. As we have shown in this section,
to produce a final particle beyond the kinematical boundary due to multiple interaction
process, in the first interaction, the particle should be produced near the kinematical boundary,
i.e.

ω θ− ∼k mcos , (2.23)N1 1 1

therefore, the formation time of the first produced particle

τ ω θ∼ − ∼( )k m1 cos 1 (2.24)1
form

1 1 1

is necessarily small, and the whole production picture is of quasiclassical character.
The interesting phenomena observed in the high-energy particles–nuclei interaction reactions
and widely discussed in the literature [54], connected with the large formation time of the
particles produced in a forward direction, do not take place in the cumulative production
processes.

3. The small phase space method for the MIP probability calculations

This method, most adequate for analytical and semi-analytical calculations of the MIP
probabilities, has been proposed in [26] and developed later in [36]. It is based on the fact
that, according to what was established in [25, 26] and presented in the previous section on
kinematical relations, there is a preferable plane of the whole MIP leading to the production of
energetic particles at large angle θ, but not strictly backwards. Also, the angles of subsequent
rescatterings are close to θ N . Such kinematics have been called optimal, or basic kinematics.
The deviations of real angles from the optimal values are small, and are defined mostly by the
difference −k kN

max , where θk ( )N
max is the maximal possible momentum reachable for

definite MIP, and k is the final momentum of the detected particle. θk ( )N
max should be

calculated taking into account normal Fermi motion of nucleons inside the nucleus, and also
resonances excitation–de-excitation in the intermediate state. Some high power of the dif-
ference −k k k( )N N

max max enters the resulting probability.
Within the quasiclassical treatment adequate for our case, the probability product

approximation is valid, and the starting expression for the inclusive cross section of the
particle production at large angles contains the product of the elementary subprocess matrix
elements squared; see, e.g.; equation (4.11) of [36].

After some evaluation, introducing differential cross sections of binary reactions
σ t s td d ( , )l l l l instead of the matrix elements of binary reactions M s t( , )l l l

2 , we came to the
formula for the production cross section due to the N-fold MIP [26, 36]
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⎛
⎝⎜

⎞
⎠⎟

∫

∏

∏

π θ
Ω

σ ω

σ μ μ

π σ

Ω
ω ω

δ ω ω ω

⃗ ⃗ =
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×
− − −

×
+ −

+ − − ′
′ω

= −

=

−

− −
−

( ) ( )( )

( )

( )

( ) ( )

f p k R G R
f p k k x x

s t

t

s m m

m k

k

k m z k
m

, ,
, d d

d ( , )

d

4

4

d
. (3.1)

N A N A

l

N
l l l

l

l l l

l l

l

N
l l

l l l l l
N N N

0
2 1 0 1 1

0 3
1
2

1 1

1
leav

1

2

2 2 2 2 2

leav
1

2

1 2

1 1

1
1

N

Here, θ=z cosl l, σl
leav is the cross section defining the removal (or leaving) of the rescattered

object at the corresponding section of the trajectory, it is smaller than the corresponding total
cross section. θG R( , )N A is the geometrical factor that enters the probability of the N-fold
multiple interaction with the definite trajectory of the interacting particles (resonances) inside
the nucleus. This trajectory is defined mostly by the final values of ⃗k θk( , ), according to the
kinematical relations of the previous section. Inclusive cross section of the rescattered particle
production in the first interaction is ω σ = ⃗ ⃗k f p kd d ( , )1

3
1

3
1 1 0 1 and =k k x xd ( ) d3

1 1
0 3

1
2

1, ω ω=N

—the energy of the observed particle.
To estimate the value of the cross section (3.1), one can extract the product of the cross

sections out of the integral (3.1) near the optimal kinematics and multiply by the small phase
space available for the whole MIP under consideration [25, 36]. Further details depend on the
particular process. For the case of the light particle rescattering, π-meson for example,
μ ≪m 1l

2 2 , we have

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥∑

ω
δ ω ω ω δ

′
+ − − ′ = − − − + −−

− =
( ) ( )m

kk

m

k
z

x

m

p
z

1 1
1

1
1 . (3.2)

N
N N N

N l

N

l1
1 2 1 0

1

To get this relation, one should use the equality ω ′ = + + − −− −m k k kk z2N N N N
2 2

1
2

1 for
the recoil nucleon energy and the well-known rules for manipulations with the δ-function.
When the final angle θ is considerably different from π, there is a preferable plane near which
the whole multiple interaction process takes place, and only processes near this plane
contribute to the final output. At the angle θ π= , strictly backwards, there is azimuthal
symmetry and the processes from the whole interval of azimuthal angle ϕ π< <0 2
contribute to the final output (azimuthal focusing; see next section). A necessary step is to
introduce azimuthal deviations from these optimal kinematics, φk, = −k N1, ..., 1; φ = 0N

by definition of the plane of the process, ⃗ ⃗p k( , )0 . Polar deviations from the basic values, θ N ,

are denoted as ϑk, obviously, ϑ∑ == 0k
N

k1 . The direction of the momentum ⃗kl after lth
interaction, ⃗nl, is defined by the azimuthal angle φl and the polar angle
θ θ ϑ ϑ= + + +l N( ) ...l l1 , θ θ=N .

Then, we obtain results by making the expansion in φl, ϑl up to quadratic terms in these
variables:

θ ϑ θ ϑ

θ θ φ φ

= ⃗ ⃗ ≃ − −

+ − −

−

−

( )( )z n n N N

k N k N

cos ( ) 1 2 sin ( )

sin ( ) sin [( 1) ]( ) 2. (3.3)

k k k k k

k k

1
2

1
2
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In the case of the rescattering of light particles, the sum enters the phase space of the process

⎡⎣
⎤
⎦⎥

∑ ∑

∑

ϑ θ θ φ θ

φ φ
θ

θ θ θ ϑ

− = − + − +

+ − −

= =

−

=

( ) N N N k N

N
k N k N

N

1 cos [1 cos ( )] cos ( ) sin ( )

cos ( )
sin ( ) sin (( 1) )

cos ( )

2
(3.4)

k

N

k

k

N

k

k k

k

N

k

1 1

2 2

1

1

2

To derive this equality, we used that φ φ= = 0N 0 —by definition of the plane of the MIP,

and the mentioned relation ϑ∑ == 0k
N

k1 . We used also the identity, valid for φ φ= = 0N 0 :

∑ ∑φ φ θ θ θ φ θ+ − =
=

−
=

( ) k N k N N k N
1

2
sin ( ) sin [( 1) ] cos ( ) sin ( ). (3.5)

k

N

k k
k

N

k
1

2
1

2

1

2 2

It is possible to present the quadratic form in angular variables which enters (3.4) in the
canonical form and to perform integration easily; see appendix B and equation (4.23) of [36],
and also the appendix in this paper. As a result, we have the integral over angular variables of
the following form:

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥∫ ∑ ∏Δ δ Δ φ φ φ ϑ φ ϑ

Δ π

= − − +

=
−

θ θ

θ θ

=
−

=

−

− −

−( ) ( )
( )

( )

( )

I z z

J z N N z

2 d d

2

( 2) !
, (3.6)

N N N N
k

N

k k k N k
l

N

l l

N
N N

N N N
N

ext ext

1

2
1

2

1

1

ext 2 1

1

θ=θz Ncos ( )N . Since the element of a solid angle Ω θ ϑ φ= l Nd sin ( )d dl l l, we made here

the substitution θ φ φ→l Nsin ( )d dl l and Ω ϑ φ→d d dl l l, θ=θz Ncos ( )N . The whole phase
space is defined by the quantity

Δ ≃ − − − − −θ( ) ( )m

k

m

p
N z x

m

p
1 1 (3.7)N N

ext

0
1

0

which depends on the effective distance of the final momentum (energy) from the kinematical
boundary for the N-fold process. The Jacobian of the azimuthal variables transformation
squared is

=J z a( ) Det , (3.8)N N
2

where the matrix a|| ||N defines the quadratic form φQ z( , )N k , which enters the argument of
the δ-function in equation (3.6):

∑φ φ φ φ
φ φ

= = −
=

−Q z a
z

( , ) . (3.9)N k kl k l
k

N

k
k k

1

2 1

For example,

φ φ φ φ φ φ φ φ φ

φ φ φ φ

= + − = + +

− +( )
Q z z Q z

z a

( , ) ; ( , )

; (3.9 )

k k3 1
2

2
2

1 2 4 1
2

2
2

3
2

1 2 2 3

see the next section and the appendix.
The phase space of the process in 3.1, which depends strongly on ΔN

ext, after integration
over angular variables can be presented in the form
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∏Φ
ω

δ ω ω ω Ω
Δ

π Δ

=
′

+ − − ′ =

=
− θ θ

−
= −

− −

−
−( )( )

( )

( )

( )

( )m
I

kk

kk N N J z z

1
d

2

( 2) !
(3.10)

N
N

N N N
l

N

l
N N

N

N
N

N

N N N N
N

pions
1

1

ext

1

1 ext 2

1
1

The normal Fermi motion of target nucleons inside of the nucleus increases the phase
space considerably [26, 36]:

Δ Δ= + ⃗ ⃗= p r m2 , (3.11)N N p l
F

l
ext ext

0F

where ⃗ = ⃗ − ⃗ − −r m k k k k2 ( )l l l l l1 1. A reasonable approximation is to take vectors ⃗rl according
to the optimal kinematics for the whole process, and the Fermi momenta distribution of
nucleons inside of the nucleus in the form of the step function. Integration over the Fermi
motion leads to increase of the power of ΔN

ext and change of numerical coefficients in the
expression for the phase space. Details can be found in [26, 36], but they are not important for
our mostly qualitative treatment here.

For the case of the nucleons rescattering, there are some important differences from the
light particle case, but the quadratic form that enters the angular phase space of the process is
essentially the same, with an additional coefficient:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

∫ ∑ ∏Φ
ω

δ Δ φ ϑ Ω

π
ζ

Δ ζ ζ

ζ

=
+

− −

=
−

− −

θ

θ

− = =

−

− −
−

θ −

( )

( )
( )( )( )

( )
k m

z Q

z N N J z m

1

( )
( ) d

2

( 2) !

1 1

4
(3.12)

N
N

N N
N

N k

z

l

N

l
l

N

l

N

N
N

N

N N

N N

N

nucleons

1
,nucl

ext
2

1

2

1

0
1

1
,nucl

ext 2 2
1

2

2

N
N 2

where

Δ ζ ζ
ζ
ζ ω

= − −
−
+

−
+

( )x
k

m
1

1

1
, (3.13)N N N,nucl

ext
1

1
2

1
2

with ζ ζ ζ ζ= =θ θ( )z z,N N
N

N0 1 0 . As in the case of the light particle rescattering, the normal
Fermi motion of nucleons inside the nucleus can be taken into account.

4. The backward-focusing effect (Buddhaʼs light of cumulative particles)

This is the sharp enhancement of the production cross section near the strictly backward
direction, θ π= . This effect was first noted experimentally in Dubna (incident protons, final
particles pions, protons and deuterons) [45, 46] and somewhat later by Leksinʼs group at
ITEP (incident protons of 7.5 GeV/c, emitted protons of 0.5 GeV/c) [47]. This striking effect
was not well studied previously, both experimentally and theoretically. In the papers [26, 36]
where the small phase space method has been developed, it was noted that this effect can
appear due to multiple interaction processes (see p 122 of [36]). However, the consideration
of this effect was not detailed enough; the explicit angular dependence of the cross section

J. Phys. G: Nucl. Part. Phys. 41 (2014) 125107 V B Kopeliovich et al

12



near the backward direction, θ π= , has not been established, and estimates and comparisons
with data have not been made9.

The backward focusing effect has been observed and confirmed later in a number of
papers for different projectiles and incident energies [48–50]. It seems to be difficult to
explain the backward focusing effect as coming from interaction with dense few nucleon
clusters existing inside the nucleus.

Mathematically, the focusing effect comes from the consideration of the small phase
space of the whole multiple interaction process by the method described in the previous
section and in [26, 36]. It takes place for any MIP, regardless the particular kind of particles or
resonances in the intermediate states. As it was explained in section 2, when the angle of
cumulative particle emission is large, but different from θ π= , there is a preferred plane for
the whole process. When the final angle θ π= , then integration over one of azimuthal angles
takes place for the whole interval π[0, 2 ], which leads to a rapid increase of the resulting cross
section when the final angle θ approaches π.

We show first that the azimuthal focusing takes place for any values of the polar scat-
tering angles θk

opt. For arbitrary angles θk the cosine of the angle between directions ⃗nk and
⃗ −nk 1 is

θ θ ϑ θ θ ϑ

θ θ φ φ

= ⃗ ⃗ ≃ − − − −

+ −

− − −

− −

( )( ) ( ) ( )
( )

z n n cos 1 2 sin

sin sin ( ) 2. (4.1)

k k k k k k k k k

k k k k

1 1
2

1

1 1
2

After substitution θ φ φ→sin k k k we obtain

θ θ ϑ θ θ ϑ

φ φ φ φ

= ⃗ ⃗ ≃ − − − −

+ + −

− − −

−

−
− −

( )( ) ( ) ( )z n n

s

s

s

s

cos 1 2 sin

2 2
, (4.2)

k k k k k k k k k

k

k
k

k

k
k k k

1 1
2

1

1 2

1
1

2
1

where we introduced shorter notations θ=s sink k.
It follows from equation (4.2) that in the general case of arbitrary polar angles θk, the

quadratic form depending on the small azimuthal deviations φk which enters the sum
∑ − z(1 )k k for the N-fold process is

φ φ φ φ φ φ

φ φ φ φ φ φ θ θ φ φ

= +
+

+
+

+ +
+

− − − − =

−

−
−

− − −( )

Q
s

s

s s

s

s s

s

s s

s

a

( , ) ....

2 2 ... 2 ,..., , (4.3)

N k l
N N

N
N

N N N kl k l

gen 2

1
1
2 1 3

2
2
2 2 4

3
3
2 2

1
1

2

1 2 2 3 2 1
gen

1 1

9 One of the authors (VBK) discussed the cumulative (backward) particles production off nuclei with professor Ya A
Smorodinsky who noted its analogy with known optical phenomenon—glory, or ‘Buddhaʼs light’. The glory effect
has been mentioned by Leksin and collaborators [49]; however, it was not clear to the authors of [49], can it be
related to cumulative production, or not. In the case of the optical (atmospheric) glory phenomenon, the light
scatterings take place within droplets of water or another liquid. A variant of the atmospheric glory theory can be
found in [55]. However, the optical glory is still not fully understood; the existing explanation is still incomplete; see,
e.g. www.atoptics.co.uk/droplets/glofeat.htm. In nuclear physics, the glory-like phenomenon due to Coulomb
interaction has been studied in [57] for the case of low energy antiprotons (energy up to a few KeV) interacting with
heavy nuclei.
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with θ=s sinN . For example, for N = 5 we have the matrix

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
θ θ θ θ =

−
− + −

− + −
− + θ

= ( )a

s s

s s s

s s s

s s s

, , ,

1 0 0
1 ( ) 1 0

0 1 ( ) 1

0 0 1 ( )

, (4.4)N 5
gen

1 2 3 4

2 1

1 3 2

2 4 3

3 4

=θs s5, and generalization to arbitrary N is straightforward.
The determinant of this matrix can be easily calculated. It can be shown by induction that

at arbitrary N

= =θ
θ( )a

s

s
s sDet , . (4.5)N N

gen

1

It follows from the generalized expression (4.4) for the matrix a|| || that

θ θ θ=
+

−θ
+

−
− −( )( ) ( )( )a

s s

s
a aDet ( ) Det Det , (4.6)N

N

N
N N N N1

gen 1 gen
1

gen
1

where θ θ=+N 1 . Since θ =( )a s sDet || || ( )N N N
gen

1 and θ =− −( )a s sDet || || ( )N N N
gen

1 1 1, we easily
obtain

⎛
⎝⎜

⎞
⎠⎟θ =

+
− =θ θ

+
− −a

s s

s

s

s

s

s

s

s
Det ( ) . (4.7)N

N

N

N N
1

gen 1

1

1

1 1

After integration with the delta-function containing the quadratic form over the small
azimuthal deviations, we obtain

δ Δ θ θ φ φ φ φ Δ π

Δ π

− =
−

=
−θ

− −

−
−

−

−
−

−

( )( )a
a N

c

s

s N
c

,..., d ... d
Det ( 3) !!

(2 )

( 3) !!
(2 ) , (4.8)

N N kl k l N

N

N

N
N

N
N

N

gen
1 1 1 1

( 3) 2

gen
( 3) 2

3

1
( 3) 2

( 3) 2
3

π=cn for odd n, and π=c 2n for even n, and − ⩾N 3 0, see the appendix.
We obtain from the above expressions the characteristic angular dependence of the

cumulative particles production cross section near θ π= :

σ
π θ

∼ ≃
−θ

s

s

s
d , (4.9)1 1

since θ π θ≃ −sin for π θ− ≪ 1.
This formula does not work at θ π= , because integration over the azimuthal angle that

defines the plane of the whole MIP takes place in the interval π(0, 2 ). The result for the cross
section is final, of course, as we show in detail for the case of optimal kinematics.

For the optimal kinematics with equal polar scattering angles θ θ= k Nk (see section 2),
and the general quadratic form goes over into the quadratic form obtained in [36] with some
coefficients:

φ φ θ→ =θ θ θ( )Q z Q z z N2 , , , cos ( ), (4.10)N N k l N
gen

and

= θ −( )( ) ( )a z a aDet 2 Det . (4.10 )N N
N

N
gen 1
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It is convenient to present the quadratic form which enters the δ - function in (3.6) as

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

φ φ φ φ

φ φ

= − + − + …

… + − +

θ φ φ

φ
− −

−

−

− −

− −

( )( )Q z J, ,

. (4.11)

N N k l zJ

J

J

J

zJ

J

J N
J

zJ

J

J N

2
2

1 2

2

2 2

2

2 2

2

1
2N

N

N N

N

N

N

2

2
2

3
2

2
2

2
2

3

3
2

1
2

2
2

2
2

1

1
2

2

1
2

For the sake of brevity, we omitted here the dependence of all Jk
2 on their common argument

θzN . The recurrent relation

= −− −J z J z
z

J z( ) ( )
1

4
( ) (4.12)N N N

2
1

2
2 2

2

can be obtained from (4.11), since, as it follows from (3.6) and (3.9)

φ φ φ φ φ φ φ= + −+ −Q z Q z z( , , ) ( , , ) (4.13)N k l N k l N N N l1
2

(recall that for the +N 1-fold process φ =+ 0N 1 by definition of the whole plane of the
process). The proof of relation (4.12) is given in the appendix.

The following formula for θJ z( )N N
2 has been obtained from [36]:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

∑

∑

= = + −

= + −

∏
θ

θ

=

< − −

=

<

− −

θ

=( )

( )

( )
a J z

z
C

Det 1

1
1

4
. (4.14)

kl N N
m

m N

z

m N m k

m

m

m N

N

m

N m
m

2

1

2
1

4

( )

!

1

2

2 1

N

k

m

2
1

Recurrent relations for Jacobians with subsequent values of N and with the same argu-
ment as z:

⎛
⎝⎜

⎞
⎠⎟= − = − −+ − − −J z J z

z
J z J z

z z
J z( ) ( )

1

4
( ) ( ) 1

1

4

1

4
( ) (4.15)N N N N N1

2 2
2 1

2
1

2
2 2 2

2

can be continued easily to lower values of N and also used for calculations of JN
2 at any N

starting from two known values, =J z( ) 12
2 and = −J z z( ) 1 1 (4 )3

2 2 (see the appendix). The
equation (4.14) can be confirmed in this way.

The condition π =J N( ) 0N leads to the equation for πzN , the solution for which (one of
all possible roots) provides the value of π Ncos ( ) in terms of radicals. The following
expressions for these Jacobians take place [26, 36]

= = − = −J z J z
z

J z
z

( ) 1; ( ) 1
1

4
; ( ) 1

1

2
, (4.16)2

2
3
2

2 4
2

2

π = = =J J z( 3) ( 1 2) 03 3 , π = = =J J z( 4) ( 1 2 ) 04 4 . Let us give here less trivial
examples. For N = 5

= − + ′ = −( )J
z z

J
z z

1
3

4

1

16
,

3

2

1

4
(4.17)z5

2
2 4 5

2
3 5

and one obtains π = +cos ( 5) (3 5 ) 82 , π =J ( 5) 05 .
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At N = 6

⎛
⎝⎜

⎞
⎠⎟= − + = − ′ = −( )J

z z
J

z
J

z z
1

1 3

16
1

3

4
,

2 3

4
. (4.18)z6

2
2 4 3

2
2 6

2
3 5

see also equation (A.9). For N = 7

= − + − ′ = − +( )J
z z z

J
z z z

1
5

4

3

8

1

64
,

5

2

3

2

3

32
. (4.19)z7

2
2 4 6 7

2
3 5 7

π =J ( 7) 07 .

⎛
⎝⎜

⎞
⎠⎟= − + − = − +

′ = − +( )

J
z z z

J
z z

J
z z z

1
3

2

5

8

1

16
1

1 1

8
,

3 5

2

3

8
; (4.20)z

8
2

2 4 6 4
2

2 4

8
2

3 5 7

see equation (A.9); π =J ( 8) 08 . For arbitrary N, JN
2 is a polynomial in z1 4 2 of the power

−N|( 1) 2| (integer part of −N( 1) 2); see equation (4.14). These equations can be obtained
using the elementary mathematics methods as well; see in the appendix equations (A.14)–
(A.16). The case N = 2 is a special one, because =J z( ) 12 is a constant. In this case the two-
fold process at θ π= (strictly backwards) has no advantage in comparison with the direct one
(see equation (2.5)), if we consider the elastic rescatterings.

For particles emitted strictly backwards, the phase space has a different form, instead of
θJ N( )N enters θ−J N( )N 1 , which is different from zero at θ π= , and we have instead of

equation (3.6)

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∫ ∑ ∏φ ϑ δ Δ φ φ φ ϑ φ ϑ π ϑ

Δ π

= − − +

=
−

π π

π π

=
−

=

−

−

− −

−
−

( )( )
( ) ( )

I z z

J z N N z

( , ) 2 d d 2 d

2 2

(2 5) !!
, (4.21)

N N N
k

N

k k k N k
l

N

l l N

N
N N

N N N
N

ext

1

2
1

2

1

2

1

ext 5 2 1

1
3 2

This follows from equation (4.11) where at θ π= , the last term disappears, since
π =J N( ) 0N and integration over φ −d N 1 takes place over the whole π2 interval.
To illustrate the azimuthal focusing that takes place near θ π= , the ratio of the phase

spaces near the backward direction and strictly at θ π= is useful. The ratio of the observed
cross sections in the interval of several degrees slightly depends on the elementary cross
sections and is defined mainly by this ratio of phase spaces. It is

θ Φ
Φ θ π

Δ
π

=
=

= −
−π

π

θ−
−

( )
( )

R
z

z

n

N

J z

N J z
( )

( )

( )

(2 5) !!

2 ( 2)! sin ( )
(4.22)N

N

N
N

N N

N N

ext

1

1

Near θ π= , we use that

⎡⎣ ⎤⎦π θ π≃ − ′θ π( ) ( )J z
N

J z
N

sin (4.23)N N N N
2

and thus we get

θ
Δ

π θ
=

−
R C( ) (4.24)N N

N
ext

J. Phys. G: Nucl. Part. Phys. 41 (2014) 125107 V B Kopeliovich et al

16



with

⎡⎣ ⎤⎦ π
=

′

−
−

π

π π
−

−( )
( )

( )
C

J z N

J z N

N

z N[sin ( )]

(2 5) !!

( 2) !2
(4.25)N

N N

N N
N

N

1

2 1 2
3 2 1

We also need the values of π−J N[ ]N 1 to estimate the behaviour of the cross section near
θ π= , which are given in table 1. Integration over variable x1 leads to multiplication CN by
factor − −N N(2 3) (2 2), i.e. it makes it smaller, increasing the effect under consideration.

According to equation (4.15), the differential cross section of the cumulative particle
production increases with increasing angle θ. At the critical value

θ π Δ ϵ π θ Δ≃ − = − ≃C C, (4.26)N N N
crit 2 ext crit crit 2 ext

it becomes equal to the cross section at θ π= , which is proportional to equation (4.12), and
may slightly increase further with increasing θ. But near θ π= it should decrease, to become
again σ Ω θ π=d d | at θ π= . So, the differential cross section has a crater-like (or funnel-like)
form near the backward direction. We do not provide here the detailed description of the cross
section in the transition region between θcrit and θ π= : this is technically a rather complicated
problem, and not so important for us now.

Characteristic values of Δext are defined by kinematical boundaries described in section 2,
equations (2.7), (2.13), and we obtain easily

Δ θ π∼ + < +N N N N2 ( 1) 2[ ( 1)], (4.27)typical
ext 2 2

so it is not greater than ∼0.5 for N = 3 and decreases rapidly with increasing N. Therefore, the
values of ϵcrit may be quite small, about several degrees.

Inclusion of resonance excitation in one (or several) intermediate states leads to the
increase of the quantity ΔN

ext according to formulas of section 2, and to the increase of the
phase space of the whole MIP, but the effect of azimuthal focusing persists. Quite similar
results can be obtained for the case of nucleons, only some technical details are different; see
section 3. The inclusion of the normal Fermi motion of nucleons inside the nucleus increases
the values of Δ ,N

ext but the numerical coefficient in CN becomes smaller. The behaviour given
by equation (4.15) is in good agreement with the available data, so the value of the constants
CN is not important for our semiquantiatative treatment. The comparison of the observed
behaviour with predicted behaviour according to the simple law σ π θ∼ + −A Bd is
presented in figures 5, 6 and 7.

We selected several examples where qualitative agreement of data with predicted
behaviour takes place. In figure 5 the inclusive cross section of the production of positive
pions by projectile protons with momentum 8.9 GeV c is presented for pions with momentum
0.5 GeV c (Pb as a target) and for pions with momentum 0.3 GeV c (He as a target) [46]. In
figure 6, angular distributions of secondary protons with kinetic energy between 0.06 and
0.24 GeV emitted from the Pb nucleus are presented in arbitrary units. The momentum of the
projectile protons is 4.5 GeV c [49]. In figure 7 angular distributions of secondary pions with
kinetic energy greater 0.14 GeV emitted from the Pb nucleus, are presented, also in arbitrary
units. The momentum of the projectile protons is 4.5 GeV/c. Data are taken from figure 5 of
paper [49].

There are other data where the glory-like effect is clearly seen. In many other cases, the
flat behaviour of the differential cross section near θ π∼ takes place, but it was probably not
sufficient angular resolution to detect the enhancement of the cross section near θ π= . In
some experiments, the deviation of the final angle from 180° is large; therefore, further
measurements near θ π= are desirable, also for kaons and hyperons as cumulative particles.
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5. Discussion and conclusions

The nature of the cumulative particles is complicated and not well understood so far. There
are different possible sources of their origin, including the color forces [56], one of them are
the multiple collisions inside the nucleus, i.e. elastic or inelastic rescatterings. We have shown
that the enhancement of the particles production cross section off nuclei near the backward
direction, the glory-like backward focusing effect, is a natural property of the multiple
interaction mechanism for cumulative particles production. It takes place for any multiplicity
of the process, ⩾N 3, when the momentum of the emitted particle is close to the corre-
sponding kinematical boundary. The universal dependence of the cross section,
σ π θ∼ −d 1 near the final angle θ π∼ , takes place regardless the multiplicity of the
process. This statement by itself is quite rigorous and presented for the first time in the
literature. The competition of the processes of different multiplicities can make this effect
difficult for observation in some cases. Currently we can speak only about qualitative, and in
some cases semiquantitative, agreement with data. It is not clear yet how the transition to
strictly backward direction proceeds. The angular distribution of emitted particles near θ π=

Table 1. Numerical values of the quantities which enter the particles production cross
section near backward direction, θ π= . Here, π=πz Ncos ( )N .

N ′πJ z( ( ))N N
2 π Nsin ( ) ⎡⎣ ⎤⎦π′πJ z N( ( )) sin ( )N N

2 3 1 2 π
−J z[ ]N N1 CN

3 4 0.866 1.612 1 0.38
4 2.83 0.707 0.999 0.707 0.32
5 2.11 0.588 0.655 0.486 0.29
6 1.540 0.5 0.438 0.333 0.27
7 1.087 0.434 0.298 0.229 0.26

Figure 5. The angular dependence of the inclusive cross section of the production of
positive pions by projectile protons with momentum 8.9 GeV c. (a) pions with
momentum 0.5 GeV c emitted from Pb nucleus. The error bars at some points have not
been clearly indicated in the original paper; (b) pions with momentum 0.3 GeV c
emitted from He nucleus. The data are taken from figure 18 of the paper [46].
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can have a narrow dip, i.e. it may be of a crater (funnel)-like form. Further studies are
necessary for better understanding.

Figure 6. Angular distributions of secondary protons with kinetic energy between 0.06
and 0.24 GeV emitted from the Pb nucleus, in arbitrary units. The momentum of the
projectile protons is 4.5 GeV c. (a) The energy of emitted protons in the interval

−0.11 0.24 GeV; (b) the energy interval −0.08 0.11 GeV; (c) the energy interval
−0.06 0.08 GeV. Data obtained by G A Leksin group at ITEP, taken from figure 3 of

paper [49].

Figure 7. Angular distributions of secondary pions with kinetic energy greater
0.14 GeV emitted from the Pb nucleus, in arbitrary units. The momentum of the
projectile protons is 4.5 GeV/c. Data obtained by G A Leksin group at ITEP, taken
from figure 5 of paper [49].
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This effect, observed in a number of experiments at JINR and ITEP, is a clear mani-
festation of the fact that multiple interactions make important contribution to the cumulative
particles production probability, although it does not exclude the contribution of interaction of
the projectile with few-nucleon, or multiquark clusters possibly existing in nuclei. We have
proved the existence of the azimuthal focusing for arbitrary polar angles (rescattering of the
light particles) and for the case of the optimal (basic) configuration of the MIP, also for
nucleon rescattering. Investigation of other possible variants of the optimal kinematical
configurations, besides those considered in the present paper may be of interest, but
obviously, the azimuthal focusing, discussed e.g. in [55] for the optical glory phenomenon,
takes place for any kind of MIP; only some technical details are different.

It would be important to detect the focusing effect for different types of produced
particles, baryons and mesons. This effect can be considered as a ‘smoking gun’ of the MIP
mechanism. If this nuclear glory-like phenomenon is observed for all kinds of cumulative
particles, its universality would be a strong argument in favor of importance of MIP. Reac-
tions where such an effect is not observed would provide more chances for revealing non-
trivial peculiarities of nuclear structure. The role of the multiple interaction processes leading
to the large-angle particles production off nuclei is certainly still underestimated by many
authors, theoreticians and experimentalists. Further efforts are necessary to settle this extre-
mely difficult and important challenge of disentangling between the nontrivial effects of the
nuclear structure and the MIP contributions.
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Appendix

Here, we present for the readerʼs convenience some formulas and relations that have been
used in sections 3 and 4.

∫Δ δ Δ π π Δ= − − − =
−

−
−( )I x x x x

n
( ) ... d ... d

(2 )

( 2) !!
(A.1)n n n

n
n

1
2 2

1

( 2) 2
( 2) 2

for integer even n.

∫Δ δ Δ π Δ= − − − =
−

−
−( )I x x x x

n
( ) ... d ... d

(2 )

( 2) !!
(A.2)n n n n

n
n

1
2 2

1

( 1) 2
( 2) 2

for integer odd n. Relations

∫ ∫θ θ π θ θ= − = −
−

π π
−m

m

m

m
sin d

(2 1) !!

(2 ) !!
; sin d 2

(2 2) !!

(2 1) !!
, (A.3)m m

0

2

0

2 1

m—integer, allow to check (A.1) and (A.2) easily.
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The equality takes place

∫ δ Δ δ Δ− − − + + + =− −( )x x x x x x x x
n

I... ( ... )d ... d d
1

( ) (A.4)n n n n n1
2 2

1 2 1 1 1

More generally, for any quadratic form in variables =x k n, 1 ,...k after diagonalization we
obtain

∫ ∫δ Δ δ Δ

Δ

− = − ′ − − ′
′ ′

=
∥ ∥

( )( )a x x x x x x
x x

a

a
I

d ... d ...
d ... d

det

1

det
( ). (A.5)

kl k l n n
n

n

1 1
2 2 1

Let t be the transformation matrix that brings our quadratic form to the canonical form:

=t a t˜ , (A.6)

where  is the unit matrix n × n, and =t tk̃l lk. Then the equality takes place for the Jacobian of
this transformation

= = = =− −t J z a t J z a(det ) ( ) det , (det ) ( ) det . (A.7)a a
2 2 1

To obtain the relation (4.12), we write first the recurrent relation for the quadratic form

φ φ φ φ φ φ φ= + −+ −Q z Q z( , , ) ( , ) , (A.8)N k l N k l N N N l1
2

then rewrite it similar to equation (4.11) and write down the equality for the last several terms

⎛
⎝⎜

⎞
⎠⎟φ φ

φ φ
φ

φ
φ+ − = − +

−
−

−

−
−

− +J

J z

J

J

J

J z

J

J2
. (A.9)N

N
N N

N N N

N
N

N

N

N N

N
N

2

1
2 1

2 2 1
2

1
2 1

1
2

2

2
1

2

2
2

From equality of coefficients before φN
2 in the left and right sides we obtain

= +− +J

z J

J

J
1

4
(A.10)N

N

N

N

1
2

2 2
1

2

2

and equation (4.12) follows immediately.
The relation can be obtained from equation (4.12)

= −− + − −J z J z J z
z

J z J z( ) ( ) ( )
1

4
( ) ( ) (A.11)N N k k N k k

2 2
1

2
2 1

2 2

which, at = =N m k m2 , (m is the integer), leads to the remarkable relation

⎛
⎝⎜

⎞
⎠⎟= −+ −J z J z J z

z
J z( ) ( ) ( )

1

4
( ) . (A.12)m m m m2

2 2
1

2
2 1

2

Relation (A.12) can be verified easily for J J,4
2

6
2 and J8

2, see section 4. It follows from (A.10)
that at =N m2 not only π =J N( ) 0N , but also π =J N(2 ) 0N , which has a quite simple
explanation.

For the odd values of N another useful factorization property takes place:

⎜ ⎟⎛
⎝

⎞
⎠

= −

= − +

+ +

+ +( )

( ) ( )J z J z
z

J z

J z
z

J z J z J z

( ) ( )
1

4
( )

( )
1

2
( ) ( ) ( ) , (A.13)

m m m

m m m z m

2 1
2

1
2 2

2
2 2

1
2 2

1
2 1

2
2

which can be easily verified for J7
2 and J5

2 given in section 4.
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The polynomials JN
2 and equations for π=πz Ncos ( )N can be obtained in more con-

ventional way. There is an obvious equality

π π= = −N[exp (i )] exp (i ) 1 (A.14)N

It can be written in the form

π π+ = −N N[cos( ) isin( )] 1, (A.15)N

or separately for the real and imaginary parts

π π π π+ = − + ={ } { }N N N NRe [cos( ) isin( )] 1, Im [cos( ) isin( )] 0. (A.16)N N

The polynomials in π=πz Ncos ( )N which are obtained in the left side of (A.16) coincide
with polynomials obtained in section 4. However, some further efforts are necessary to get
recurrent relations A.9 and A.10.

The following useful relations can be verified:

θ θ=θ θ−( ) ( )z J z
N

2 sin sin . (A.17)N
N

N N
1 2

These relations provide the link between the general case considered at the beginning of
section 4 and the particular case of the optimal kinematics with all scattering angles equal to
θ N .
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