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Abstract. We propose a novel formalism for simultaneously describing both the hard and soft
parton dynamics in ultrarelativistic collisions of nuclei. The emission of gluons from the initially
coherent parton configurations of the colliding nuclei and low-pt colour coherence effects are
treated in the framework of a Yang–Mills transport equation on a coupled lattice-particle system.
A collision term is added to the transport equation to account for the remaining intermediate and
high-pt interactions in an infrared finite manner.

Experiments with heavy ion collisions at energies above 100 GeV/u, in preparation at the
Relativistic Heavy Ion Collider (RHIC) in Brookhaven and the Large Hadron Collider (LHC)
at CERN, will try to establish the existence of a new phase of nuclear matter, the quark–gluon
plasma (QGP) [1]. Most of the current theoretical approaches for the description of ultra-
relativistic heavy ion collisions, however, are based on the formation and fragmentation of
strings [2]—they do not explicitly contain the deconfined quanta of a QGP and their interaction
on the basis of colour degrees of freedom. One of the theoretical challenges in this context
is therefore to develop a description, on the basis of quantum chromodynamics (QCD), of the
processes that may lead to the formation of deconfined superdense matter in these nuclear
reactions.

In recent years, most theoretical attempts at developing such a description have been
based on the idea that, at very high energy and for heavy nuclei, the dominant mechanism
of energy deposition in the central kinematical region is the perturbative scattering of partons
[3–6]. Because the interactions among gluons are stronger than those involving quarks, this
mechanism predicts an abundance of gluons during the early equilibration phase [7]. This
concept can be generalized into a theoretical framework, called the parton cascade model [8],
which formulates thermalization as a transport process involving perturbative QCD excitations,
i.e. quarks and gluons [9]. The predictions of this formalism have been extensively studied by
means of numerical simulations [10,11].

One of the problems inherent in this formulation concerns the description of the initial state.
The transport equations start with the assumption of a probabilistic phase space distribution
of partons, whereas in reality the states of the colliding nuclei are described by coherent
parton wavefunctions. The incoherent parton description fails, especially at small transverse
momenta, because the QCD coupling constant diverges in naive perturbation theory. Some
time ago it was proposed that the proper solution to these difficulties would be the perturbative
expansion, not around the ‘empty’ QCD vacuum, but around a mean colour field describing the
static colour field accompanying the fast-moving valence quarks of the colliding nuclei [12].

Because the mean colour field of a heavy nucleus locally receives contributions from
the quarks contained in many different nucleons, its source can be represented as a Gaussian
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ensemble of colour charges moving along the light cone [13]. We will, therefore, refer to this
model here as the random light-cone source model (RLSM). Within this framework, the energy
deposition by gluonic interactions is described as classical gluon radiation at small transverse
momenta [14, 15], and as gluon–gluon scattering at high transverse momenta [16]. Quantum
corrections to this picture [17] predict an enhancement of the glue field of the colliding nuclei
at small values of the Bjorken variablex. The full solution of the nonlinear classical RLSM
equations for the colour field of two colliding nuclei requires a lattice formulation in 2 + 1
dimensions [18].

The possibility of a description of inelastic gluon processes by means of the nonlinear
interactions of classical colour fields has also been explored numerically in studies of collision
of two Yang–Mills field wavepackets on a one-dimensional gauge lattice [19]. These
calculations gave evidence that the interaction between localized classical gauge fields can
lead to the excitation of long-wavelength modes in the collision, which is reminiscent of the
production of an equilibrated gluon plasma.

Here we address the question how this new insight can be incorporated into the conceptual
framework of the parton cascade model. First of all, it is necessary to include a coherent colour
fieldAµ, in addition to the incoherent quark and gluon distributions,qf (r, p) andg(r, p). The
subscript ‘f’ here denotes the various quark flavours. We will also insist on a full (3 + 1)-
dimensional representation, which will permit the study of deviations from boost invariance.

Because even the classical Yang–Mills equations do not, in general, allow for global
analytic solutions [20, 21], we propose to solve the RLSM equations numerically on a gauge
lattice. Lattice calculations in Euclidean space-time have been shown to provide a reliable
approach for the calculation of static and quasi-static properties of strongly coupled quantum
field theory, in particular, QCD. For dynamical systems far off equilibrium, however, one
needs to study the system in real continuous time. The lattice discretization then should only
be applied to the Euclidean sub-spaceR3. In this case it is appropriate to choose a Hamiltonian
formulation rather than a Lagrangian one. We have to emphasize that this concept is neither
explicitly invariant under general gauge transformations nor Lorentz invariant. However, we
believe that for the type of problems described above this method is indeed useful.

One has to select a rest frame in the spaceR ⊗ R3 which in our case probably is best
chosen as the centre of velocity. Further, one has to adopt a gauge. The temporal gauge in
the continuum (A0 = 0) seems most appropriate here [22]. A set of equations describing the
evolution of the phase space distribution of quarks and gluons in the presence of a mean colour
field, but in the absence of collisions, was proposed more than a decade ago by Heinz [23,24].
This non-Abelian generalization of the Vlasov equation can be considered as the continuum
version of the dynamics of an ensemble of classical point particles endowed with colour
charge and interacting with a mean colour field. The equations for this dynamical system were
originally derived by Wong [25].

In the following we develop a formulation of the RLSM including the ideas of Heinz and
Wong. We represent the valence quarks of the two colliding nuclei as point particles moving in
the space-time continuum, and interacting with a classical gauge field defined on a spatial lattice
but with quasi-continuous time†. In principle, this idea follows the proposal of Hu and Müller
[28] for the simulation of the effects of hard thermal loops by means of coloured point particles.

At this stage we are still general enough to assume that the soft modes of the gluon fields are
described through gauge fields withSU(N) symmetry. In the associated Lie-algebraLSU(N)

† The numerical implementation also requires a discretization of the time variable, but the temporal step size can be
taken arbitrarily small.
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we express the Hamiltonian of the above-outlined system in the continuum as

H =
N1∑
i=1

√
| Epi |2 +m2

0 +
N2∑

i=N1+1

√
| Epi |2 +m2

0 − 2g
∫

d3x Tr[JµAµ] − 1
2

∫
d3x Tr[FµνFµν ]

(1)

whereFµν,Aµ,J µ,Qi ∈ LSU(N). The curly quantities denote those in the adjoint
representation, which are defined as, e.g.,Aµ = A

µ
c · T c with group generatorsT c. g is

the gauge coupling constant, andFµν denotes the field strength tensor of the mean colour field
Aµ. The moving particles generate a colour current

J ν(x) =
∑
i

Qi (t)
pνi√
| Epi |2 +m2

0

δ(Ex − Exi(t)) (2)

where t denotes the global time in the chosen reference frame. Denoting the space-time
positions, momenta, and colour charges of the particles byx

µ

i , pµi andQai , respectively, the
following equations of motion are derived from the above Hamiltonian (1):

p0
i

dxµi
dt
= pµi (3)

p0
i

dpµi
dt
= 2g Tr(QiFµν)pi,ν (4)

p0
i

dQi
dt
= ig[Qi ,Aµ]−pµ,i . (5)

The factorsp0
i on the l.h.s. are needed to convert the derivatives with respect to proper time

into coordinate time derivatives. Furthermore, the inhomogeneous Yang–Mills equations

DµFµν(x) = gJ ν(x) (6)

describe the dynamics of the classical mean colour fields. The current density (2) forms
the source term on the r.h.s. of (6). The coupled system of the Wong equations (3)–(5)
and the Yang–Mills equation (6) is highly nonlinear and can only be solved numerically or
perturbatively.

These equations have been used to simulate the effects of hard thermal loops [27] on the
dynamics of soft modes of a non-AbelianSU(2) gauge field at finite temperature [28,29]. In
this case, the coloured particles describe the gauge field modes with thermal momenta, and
the mean field describes the coherent motion of those gauge field modes which have a wave
numberk much smaller than the temperatureT and are highly occupied. The separation of the
two regimes was achieved by discretizing the mean gauge field on a lattice with elementary
spacinga � T −1. Requiring particles to have momentap > π/a then avoids double counting
degrees of freedom.

Here we propose to use equations (2)–(6) to describe the interactions among the glue field
components of two colliding heavy nuclei. In this case, the lattice cut-offa can be used to
separate the regime in transverse momentum where the dynamics of gluons is perturbative
(largekT) from that where naive perturbation theory fails (smallkT). The gluon propagators
used for the calculation of the collision terms will be regulated in the infrared by the lattice
cut-off kc = π/a. The interaction with the mean colour field allows for an exchange of an
arbitrary number of gluons, and the screening of the soft components of the gauge field by
perturbative partons [30, 31] is taken into account naturally by the nonlinear nature of the
coupled equations (2)–(6).

Following the idea of Kogut [22], we approximate the gluonic part of the Hamiltonian
(1) by a discretized form on a gauge lattice. In contrast to [22], however, we represent the
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fermions through point-like particles. This leads to a Hamiltonian which is represented as a
sum of the following terms:

H = Hpart +H
(lattice)
YM (7)

whereHpart contains the first two terms on the r.h.s. of (1) andH
(lattice)
YM is defined as

H
(lattice)
YM = −a3

∑
x,k

Tr

{
Ex,kEx,k −

(
1

4iga2

∑
l,m

εklm(Ux,ml − Ux,lm)
)2

− gJx,kAx,k
}
. (8)

As already mentioned, the dynamical equations (2)–(6) can be solved efficiently by
numerical time integration. A lattice version of the continuum equations is constructed [28,29]
by expressing the gauge fields in terms of link variablesUx,l ∈ SU(N), which represent the
parallel transport of a field amplitude from a sitex to a neighbouring site(x+ l) in the direction
l. As in the Kogut–Susskind model [22] we choose the temporal gaugeA0 = 0 and define the
following variables:

Ux,l = exp(−igaAl(x)) = U†
x+l,−l (9)

Ux,kl = Ux,kUx+k,lUx+k+l,−kUx+l,−l . (10)

Consequently, we have

Ex,j = 1

iga
U̇x,jU†

x,j (11)

Bx,j = 1

4iga2
εjkl(U†

x,kl − Ux,kl) (12)

for the electric and magnetic fields (Ex,j ,Bx,j ∈ LSU(N)), respectively. There are advantages
in choosingUx,i andEx,i as the basic dynamic field variables. This choice transforms the
discretized Yang–Mills equations into the following equations of motion:

U̇x,k(t) = igaEx,k(t)Ux,k(t) (13)

Ėx,k(t) = 1

2iga3

3∑
l=1

{U†
x,kl(t)− Ux,kl(t)− U†

x−l,l(t)U
†
x−l,kl(t)Ux−l,l(t)

+U†
x−l,l(t)Ux−l,kl(t)Ux−l,l(t)}. (14)

In the spirit of the statistical nature of the transport theory, we split each quark into a numbernq
of test particles, each of which carries the fractionq0 = Q0/nq of the quark colour chargeQ0.
In a first step, we adopt the gauge groupSU(2) here for simplicity. Consequently, each nucleon
is represented by two quarks (instead of three), initially carrying opposite colour charge.

Perturbative short-range interactions at high momenta can be described in the form of a
stochastic collision term, well known from Boltzmann-type transport equations [32, 33]. For
a consistent description of both long-range and short-range interactions on an equal footing,
the equations of motion (3)–(5) for the long-range interactions have to be cast into the form
of a single transport equation and combined with the collision term. The Vlasov part of the
transport equation, from which the equations of motion (3)–(5) can be recovered, was first
derived in [23,24]. We extend the formulation by adding a stochastic collision term similar to
the one used in [8]. The full transport equation then follows as:

p0
i

dfk(x
µ

i , p
µ

i ,Qi )
dt

≡ pµi {∂µ − 2g Tr(QiFµν)∂νp + 2ig Tr([Qi ,Aµ]−∂Q)}fk(xµi , pµi ,Qi )
=

∑
processes

C(p
µ

i , x
µ

i ,Qi , t). (15)
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Here fk denotes the one-particle distribution functions of the valence quarks and of the ‘hard’
gluons (k = q, g). This set of nonlinear integro-differential equations is coupled to the Yang–
Mills equation in which the colour current is now given by a moment of the one-particle
distribution functions:

DµFµν(x) = g
∑
k

∫
dQi

d3pi

p0
i

Qipνi fk(pνi , xνi ,Qi ). (16)

The collision integrals have the form:

C(p
µ

i , x
µ

i ,Qi , τ ) =
1

2Si
·
∫
θ(|pi | − |kc|)

∏
j

d0j |M(c)|2

×(2π)4δ4(Pin − Pout)D(fk(p
µ

i , x
µ

i ,Qi )) (17)

with

D(fk(p
ν
i , x

ν
i ,Qi )) =

∏
in

fk(p
ν
i , x

ν
i ,Qi )−

∏
out

fk(p
ν
i , x

ν
i ,Qi ) (18)

and ∏
j

d0j =
∏
j 6=i

in,out

d3pj

(2π3)(2p0
j )
θ(|pj | − |kc|). (19)

Si is a statistical factor defined as

Si =
∏
j 6=i
K in
a !Kout

a ! (20)

with K in,out
a identical partons of speciesa in the initial or final state of the process, excluding

theith parton.
The step functionsθ(|pi | − |kc|) ensure that only hard particles are allowed to propagate

in the system. The superscript(c) on the matrix elementM indicates that only the hard, i.e.
short-range, part of the interaction is treated in the collision term. This cut-off will be discussed
in more detail below.

The matrix elements|M(c)|2 account for the following processes:

A q + q ′ → q + q ′

B q + q → q + q

C q + q̄ → g + g

D g + g→ g + g

(21)

together with those obtained from crossing relations (q andq ′ denote different quark flavours).
The amplitudes for these processes—not taking the infrared lattice cut-offkc into account—
have been calculated in [34–36] for massless quarks and in [37, 38] for massive quarks. The
corresponding scattering cross sections are expressed in terms of spin- and colour-averaged
amplitudes|M(c)(ŝ, t̂ , û)|2:

dσ̂ (A,B,C,D)(ŝ, t̂ , û)

dt̂
= 1

16πŝ2
〈|M(c)(ŝ, t̂ , û)|2〉 (22)

with ŝ, t̂ , û being the well known Mandelstam variables. For the transport calculation we also
need the total cross section as a function ofŝ which can be obtained from (22):

σ̂ab(ŝ) =
∑
c,d

∫ t̂max

t̂min

(
dσ̂ (ŝ, t̂ ′, û)

dt̂ ′

)
ab→cd

dt̂ ′. (23)
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The integration boundaries are fixed through kinematical constraints. Note that the treatment
of the cross section (21)–(23) with the matrix elements supplied in [34–38] does not take
the infrared lattice cut-offkc into account. The rigorous way to evaluate the matrix elements
|M(c)|2 and to eliminate the small momenta from the gluon propagators would be to subtract
the lattice propagator from the continuum propagator in the Feynman diagram describing
the scattering process at lowest order. Because the evaluation of the gluon propagator on
the lattice is complicated, we propose here to use, for exploratory studies, the usual matrix
elements [34–38] but with a cut-off on the allowed momentum transfer, corresponding to the
lattice cut-offkc = π/a. We can cast this into the Lorentz-invariant form that the scale of the
interaction,Q2(ŝ, t̂ , û), must satisfy the constraint

Q2(ŝ, t̂ , û) > k2
c . (24)

The functional form ofQ2 is generally process dependent and not unambiguous, although at
leading order all choices forQ that increase with the parton–parton centre-of-mass energy are
equivalent. One can now solve equation (24) fort̂ in order to obtain an additional constraint
for the integration boundaries of equation (23). Thus, only momentum transfers larger than
kc contribute to the total cross section. It was shown in [16] that the spectrum of the classical
Yang–Mills radiation matches smoothly onto the conventional minijet distribution near the
intrinsic transverse momentum scale of the partons in a heavy nucleus at high energy. The
resulting expectation that the precise choice of the momentum cut-offkc is not important must,
of course, be verified by future numerical calculations.

In summary, we have developed a novel formalism, which allows for the first time the
treatment of both the hard and the soft parton dynamics in ultrarelativistic heavy ion collisions
in a consistent transport approach. The emission of gluons from the initially coherent parton
configurations of the colliding nuclei as well as low-pt colour coherence effects in parton–
parton scatterings are treated in the framework of a Yang–Mills transport equation on a coupled
lattice–particle system. Intermediate and high-pT interactions are described in a collision term
similar to that of the parton cascade model. This formalism thus avoids problems connected
to the infrared cut-offs in the parton cascade model and offers a unified treatment of coherence
effects within that approach.
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manuscript. SAB acknowledges support from a Feodor Lynen Fellowship of the Alexander
v Humboldt Foundation. This work was supported, in part, by a grant from the US Department
of Energy, DE-FG02-96ER40495.
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[30] Biró T S, Müller B and Wang X N 1992Phys. Lett.B 283171
[31] Eskola K J, M̈uller B and Wang X N 1996Phys. Lett.B 37420
[32] Bertsch G, Das Gupta S and Kruse H 1984Phys. Rev.C 29673
[33] Kruse H, Jacak B V and Sẗocker H 1985Phys. Rev.C 311770
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