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Abstract. We present the results of a study of thermal and quantum nucleation in an overlap
Josephson junction with a finite length. There is a critical lengtithat marks the boundary
between nucleation with a uniform phase across the junction and nucleation that is concentrated
at one of the ends of the junction. In the thermal activation regime, it is showno ber A ;,

while at absolute zero, in the quantum tunnelling regime, it is give.by= 27 A s /+/5. Here,

Ay is the effective Josephson penetration depth. The rates for nucleation at the ends of the
junction are given for junctions in the thermal activation regime for all lengths, and for junctions
undergoing quantum nucleation at absolute zero temperature for lengths less than or equal to
the critical length.

1. Introduction

Several years ago, we considered the quantum and thermal nucleation of the phase of an
overlap Josephson junction (JJ) when the size of the junction is much larger than the effective
Josephson penetration depth [1]. (See the next section.) The nucleation rates were given
for zero and high temperatures in terms of experimentally determined parameters. The very
large size of the junction that was considered was, strictly speaking, infinite, and nucleation
takes place at any point along the homogeneous junction. The results, therefore, gave us the
upper limit of the nucleation rate. On the other hand, we realize that, experimentally, the
larger the junction the more difficult it is to make the junction homogeneous. Therefore, it
would be interesting to study nucleation of the phase of a junction of finite size, especially
a junction of size about equal to the Josephson penetration depth.

For a finite junction, as was stated in reference [1], nucleation takes place predominantly
at the boundaries of the junction. The purpose of the present paper is to give results for
thermal and quantum nucleation at various lengths. An interesting feature is the existence
of a critical length at which there is singular behaviour: in particular, bdlpwhe phase at
nucleation is constant over the length of the JJ and the energy barrier for thermal nucleation
is strictly proportional to the length of the junction. Just abovk,, the phase at nucleation
is not uniform but is concentrated over a distanceat one of the boundaries. In the thermal
activation regime, the critical length, is given by A; [2]. In the quantum nucleation
regime at absolute zero, the critical length is given by = 27w A;/+/5. For lengths
very much larger tharl,. (describable by nucleation within an infinite JJ [1]), nucleation
at various positions along the interior of the JJ (‘interior nucleation’) can compete with
nucleation at the boundaries (‘boundary nucleation’). The lerdgtiabove which interior
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nucleation is more probable than boundary nucleation can be estimated as follows. In the
Arrhenius factor, the energy barrier for interior nucleati®yy is exactly twice as large as
the energy barrier for boundary nucleatiélzz. Hence, the Arrhenius factor for interior
nucleation is exponentially smaller than that for boundary nucleation. However, the phase
space is much larger for interior nucleation than for boundary nucleation by a factor of
aboutL/A ;. Hence the ratio of nucleation rates is

r L
TTI; A, exp(—Egpp/kT). (1)
SettingI'; equal toT'p gives usLy equal toA; exp(Egp/kT). If Egp/kT = 23 and
Ay = 1072 cm, we obtainLy equal to 100 km! Therefore, in a typical perfect sample,
boundary nucleation will predominate. However, in real, imperfect JJs, nucleation will
usually take place around a sample inhomogeneity within the interior.

We will present the results for low temperatures as well as high temperatures above
the crossover temperaturg between quantum and thermal nucleation. All of the
basic parameters are experimentally determinable in the well understood classical thermal
activation regime, so the predictions in the quantum tunnelling regime can be checked.
Our work extends the macroscopic quantum phenomena [3, 4] in the Josephson junction
systems.

2. Basic theory

We consider amverlapJosephson junction with a finite length but small widthW « A,
wherea; is the Josephson penetration depth. The junction is current biased with a uniform
current density/ and has a critical current density [5]. The self-field effect causes the
phase of the junction to be space dependent [1, 5]. The imaginary-time action for the phase
@ of the junction at a finite temperatuf is given by [1]

L/2 BR/2 C/TN\2 g 2 )\12 R, 90 2
et =w [ o] o [2(2) (5r) =2 (5) (&) +ve
on L2 Bh/2 BR/2
+ 7/ dxf dl’/ dt’ a(r — 1)
L)t Jogrz Jopp2
x sir [{p(x, 1) — ¢ (x, T} /4] @)

where the potential energy is given as

hzjc (cosp + pg) ®)
e
andu = J/J.. B =1/kgT andkg is the Boltzmann’s constang. is the absolute value of
the charge of an electron ands Planck’s constant divided byz2 C is the capacitance of
the junctionper unit area The kernelx(t) represents dissipation and is related to th&
characteristic of the junction, so it can be written in terms of experimentally determined
parameters [1, 6].

The functiona () can be written as a Fourier series [1, 6]:

1 & 2mnt
a(t) = ﬁ—E”;ooan exp<| = ) (4)

Ulp) =—




Nucleation of the phase of a finite Josephson junction 2077

In the following, we will be interested in the case of an unshunted junction, for which the
a, are effectively given in terms of experimentally determined parameters as [1, 6]

1%
2y w (eV/h)2 T+ @rn) pi2 e

wherel,.(V) is the dc/-V curve of the junction. For low’, we will use the approximate
form [6]

o, = —

V) ®)

2A
forO<V < —
e

\%4
Rq
6
\% 2A ©)

— forvV > —

RN e

where R, = R,(T) is the temperature-dependent quasi-particle resistanceRgnis the
normal resistance of the junction. A2is the energy gap of the superconductors of the
junction, which are considered identical, for simplicity. With this approximation, we

have [6]
2nkgT [ 1 kgT 1 kgT
ay = — B = o (BT ) = gt TEED ) (7)
e2 | R, A Ry A

For convenience, we define the dimensionless variables Qt, y = x/A,;, and
¢ = L/A;. Q is the frequency of small oscillations about a minimum in the potential
energy and is given by

2eJ.\?
(%) a-w ®
The effective Josephson penetration depsthis given by [1]
;=0 —pH V. 9)
We define the reduced phageas
= * o _sin?

We will be interested in the case of a current denditglose to the critical current density

J., in which case in equation (2) we approximatesiny x and the potential term by its
guadratic plus cubic terms (after removing a constant). With this approximation throughout
the paper, we replace equation (2) by

0/2 ﬁhQ/Z 9 1/9 2
S[e(y, )] —50/ dyf ( ¢> +< ¢) + u(9)
/2 ﬁhQ/Z ot 2\ dy

02 ﬂhQ/Z BRQ/2 )
+ So/ dy/ / di’ n(t — 1) [p(y. 1) —p(y.1)] (11)

L/2 Bh/2 BhQ/2
where

So = 12)

91— M)WA,E(ZFJCC)M
63

4442
and

1
u(p) = é¢>2(1 — ). (13)
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n(t) is given by

1 o .
10 = gro n;m N €XPiv, 1) (14)
wherev, = 27n/BhQ2 and [1]
2nkyT 1 kgT 1 kT
Ny = __73 _ Cot_l 7”173 4+ — tan‘l nnke . (15)
AWLCQ? | R, A Ry A

3. Thermal nucleation

We start by considering thermal nucleation in a junction with finite length at temperatures
very much above the crossover temperatliydsee below) between quantum and thermal
nucleation. In this case, the phagéy, r) is r-independent and the usual method of path
integration with the action of equation (11) gives the thermal nucleation rale at Ty

as [1]

_ tkgTo | A, A9, "
SERRINShE

=1;a=0 a=1 )\Oot
QS, (42 do.(y)\? v .
x [’32”0 [ ‘”d;y)” exp[~ (SIg. /7] (16)
where
_ vz l1/d 2
S[pe()] =ﬂhQSo/ dy [2<d¢c(y)> +u(¢5)] (17)
—0)2 y

Note thatS[¢.(y)]/h is simply E,/ kT, whereE, is the energy of a nucleation taking place
at the top of the energy barrier in the function space of the phase
The equation of motion fop.(y) is given byéS[¢.(y)] = 0, where it follows that

d? 3
—dy2¢c(y)+¢c(y)<1— 2¢c()’)> =0 (18)
with the boundary conditions
dpe)|  _ doe| _ 19)
dy —0)2 dy 02
The eigenvalueﬁg’a andA, . in equation (16) are respectively
A =2 —2n, + kD Ana = Vp2 — 21n + ke n=0,+1,... (20)
wherek? andk, satisfy
d2
[‘dyz + 1] 00 (y) =k302(y) (21)
d2
[_dyZ +1- 3¢c(y)} Qo (y) = ka Qua(y). (22)

The crossover temperatuffg is given by the equation;? — 25, — 1 = 0 (see reference
[6] and also below), so we obtain

ZJTkBTo 2 4k3To 1 1 JTkBTo 1 1 JTkBTo
1= — = — cot —tan | ——— ). 23
( hQ ) + AW LC? Rq A + Ry A ( )
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ForkpTy < 2A (i.e., Ty < T, whereT, is the critical temperature of the superconductors),
we can neglect th&,-term and also approximate tahx by x. In this approximation, we

have
I1A9) 13 -2
kpTo~ — |14+ ——M— . 24

i 27t[ +nWLCRNA} (24)

We now need to find the solutiop.(y) for the exponent of the rate. There are two
solutions of¢.(y) in equation (18) and they represent the two possible nucleations at the
two respective boundaries of the junction located at +¢/2. These solutions are given
respectively by

1 V4
b (y) = 1 — (¢1 — ¢2)er(2 (y — 2) (¢1— ¢3)1/2) (25)
and
1 V4 12
Ge(y) = 1 — (1 — asz)er(Z (y - 2)(¢1 — ¢3) ) (26)

where sitx) is the Jacobi sine-amplitude function [7] and the constantgith ¢1 > ¢ > ¢3
are the roots ofp? — ¢° = E(¢) with E(¢) the constant of motion of equation (18). The
roots also satisfy the condition

2
W K(k)=¢ (27)
Vo1 — ¢3
where K (k) is the complete elliptic integral of the first kind [7], atkds given by
_ 1/2
k= ((bl ¢2> . (28)
$1— 3

We have found the solutiog..(y) for a junction with finite length. On the other hand,
when the junction is small.(y) is y-independent. Therefore, there exists a critical length
that separates a small and a large junction. This critical length is given when the solution
¢.(y) is uniform, in which casep.(y) = ¢1 = ¢o = 2/3. The reduced critical length. is
determined from equation (27) as

L. =m. (29)

The actual critical length of the junction is given By = w A ;. Our goal now is to find
the rates of nucleation for various finite junction lengths.

Let us now consider the exponesiip.(y)]. First, for a small junction with 6< ¢ < £,
the solutiong.(y) = ¢1 = ¢ = 2/3 gives the exponerst [d)c(y)] in equation (17) as
(L= pd®4 (2R).C l/ZWLEZQ _ (20)%2 12,

6,LL2 kBT a 3 ekBT
wheree =1 — u « 1. Thus, we have reproduced the result of reference [6].

Now, with the solution in equation (25) (or, equation (26)), we find the exponent
S[o.(y)] in equation (17) for a junction with length > L.. We obtain

_ E(C 13
S [pe(y)] = BRQSo [;)z + %(m — $2)% (1 — p)*? F(— ~.3 kzﬂ (31)

WL (30)

2 _
S [t ()] = o PRS0l = 3

22

where F(a, b, ¢, z) is the hypergeometric function [7]. This result reduces to equation
(30) whenL = L.. With the results in equations (30) and (31) we have plotted
the reduced exponeni[¢.(y)]/BhRSy as a function of¢ in figure 1. As{ — oo,
Slgc(»)]/BhS2So — 4/15.
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Figure 1. The reduced exponesi.(y)]/Bh2So as a function of the reduced length

For the integral in the prefactor in equation (16), we obtain

¢/2 2
f dy (dd’(;(y )) =" —¢z>2<¢1—¢3)1/2F(—1, s k2>_ (32)
—2)2 y 8 2 2
We have not been able to solve for the product of eigenvalues in equation (16) for general
L. However, we can deal with the case of thermal nucleation in a junction with length
about equal to the critical length (i.el, ~ L.) at high temperatures. In this case
Oc(¥) ~ dmax = 2/3 wheregmax is the position of the maximum of the potentialp).

For the action in equation (11), the method of path integration will give us the thermal
nucleation rate fol’ > To andL ~ L, as

172
kgTo = )"Sa Aga
= = exp[—280$2¢/27kpT] [ | | . } [l |

n=10=0 "% a=2 Aow

A% )1/2 ( SO)»81> Y2 g
x | — = ——expz)K 33
<|A00| " Nz K(z)K1/4(2) (33)

where K, (z) is the modified Bessel function [7]. Here, we also hafe and 1, as in
equation (20) but now witl.(y) = ¢max = 2/3, i.e.,

2
=0,41,...
)\nazan_znn+(7) 1 {Z:%l.,. (34
2
=0,41,...
20, =2 =2, + (”;‘) +1 { " g’ - (35)
In equation (33), we have and g respectively as
_ orSoPQL SRt (4x®— 2\ (P 2 (36)
© T 36(1/Ihool — 1/200p) 18T \ 872 —3¢2 )\ ¢2
and
__ GoepRQOY? 2 (RQUNYE(x®  \VP(An? -2\ 37)
7 312000l — /402~ 3\kyT) \ 22 gr2_322)

Thus, equation (33) becomes

1/2
ksTo T P s
r=" exp[—2SOQ€/27kBT]|: 1‘[ A} [1—[ M0ar

n=10=0 "% a=2 Aow

1/2

So \Y?| [7\? g
x <27T]’_l) |:(Z> +1:| TzeXmZ)Kl/4(Z). (38)
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Since 1op1 — 0 when¢ — £., we can simplify equation (38) so that the thermal
nucleation rate fofl’ > Tp and L ~ L. becomes

1/2
~ kBTO = )‘Sa )\80(
I~ 220 expl-250Q2 /27 T] [ [] } [| [ S0

n=1,0=0 )""0‘ a=2 AO"‘
1/2

7\2 165,Q¢ [ 472 — 2 \1Y* r(1/4)
X ) +1 ( )
[/ % T \ 82— 3¢2 227

Sl [ Am? — ¢? 7\? 2
x eXp|:18kBT(87t2—3Z2)<(E> - )} (39)

whereTI (x) is the Gamma function [7].

It remains for us to find the product of eigenvalues in equation (39). With the eigenvalues
in equations (34) and (35) it is difficult to calculate the product for general dissipation.
However, for low dissipation, which is usually the case, we again negleckfHerm in
n, and approximate tart x with x so that the product over gives us

TEahE " D sinh/D) sin(e/ D)y /07 + 1)
; Mna | | gz How 7 sin(m/D) [(m/0)2 + 1

5 1“_[ sinh((r/ D)/ (ra/€)2 + 1) (40)
sinh(/D)y/(ma/0)2 = 1) |

=1;a0=0

a=2
Here we have

3 Y2 i onksT
D=(1 7 41
< +nWLCRNA) ( nQ ) (41)

and we have introduced a cut-off. on the product. The need for this cut-off is to
avoid the infrared divergence as a result of the breakdown of the model Lagrangian at
small wavelength [1]. This short wavelength is given by the coherence lengththe
superconductors of the junction, so the cut-off is given by

¢ 1 1 Ay
= —=. 42
%= 7 o)1 & (2e)V/4 & (42)
The remaining product in equation (40) can now be computed numerically for a given set
of junction parameters.

4. Quantum nucleation

We now move on to the case of quantum nucleation in a junction with lehgth L.
(see below) at low temperatures. It is difficult to solve the nucleation rate for arbitrary
dissipation and temperature. However, for low dissipation, which is usually the case, the
effect of dissipation is to renormalize the capacitance [1] to the undamped case, so we can
setn(t) = 0 but replace’ by C* as [1]
. h

C _C+nRNAWL' (43)

The method of path integration [8] will lead us to the quantum nucleation rate as

* 8/2 242
r= @exp(—S[q)c(r)]/E) [z f dt [d‘m([)} }

27h ) dr
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1/2
8
X eZK1/4(Z)|: / |)"tla|i| (44)
\/z n=0,a=0 n 10_01[ 0
(n, Ot)#(l 0),(0, 1)

where 8/ = BrQ* with Q* given by equation (8) but witlf replaced byC*, and the
parameterg andz are given below. The actiofi¢.()] now becomes

B'/2 1/ dg, 2
S[pe(1)] = So / dr [2( "’) +u<¢>c>] (45)

_ﬁ//z dt

and ¢.(r) is periodic (with period8’) and satisfies the equation of motiéS[¢.(¢)] = O,
which is like equation (18) but with the variablereplaced byr.
The eigenvalues?, andx,, are given by [8]

ra\? ra\? n=0,1
0 _ O it — il —_ 5 5 e
)‘na:yn—i_(g) )‘na—yn_‘_(E) {O[:O,l,... (46)
wherey? andy, and their corresponding periodic eigenfuncti@fyr) andQ,,(¢) satisfy the
eigenvalue equations like those in equations (21) and (22) but with the vayiablg@aced

by z. In equation (44), we have used the notatigg and A, for the negative and zero
eigenvalues, respectively. We now have

)»012S0£

= AP ool — 1/2000) 47
and
(ho1l)Y?
8T 1P(B)(1/20h00] — 1/4000) 2 (48)
where
B'/2
)= [ awganesor 49)

The solution of¢.(r) for finite T is known [9]. AtT = 0, ¢.(r) = sect(z/2). For
T <« hQ2*/kIn64 ~ Ty, the correction to the solution &t = 0 is exponentially small. We
will therefore use thé” = 0 solution for such smalf’, obtaining for the exponent at low
temperatures

SI9c)] = LoSotl1L — 60647 (50)

It is difficult to find the eigenvalues for arbitrary temperatures. However, with the
exponentially small correction to the exponent, we may now approximate the prefactor of the
rate with its value at zero temperature. In this case, the uggof= secl(z/2) givesioo =
—5/4 and Qo(r) = (15/32)%2sech(t/2), so we obtainP (co) = —(1057/64)(15/32)%2.

We also have

2 3 2 2 2 -1771
S ORI

and

STk e



Nucleation of the phase of a finite Josephson junction 2083

The critical length is obtained by setting; = 0, which leads t&. = 7 /+/|Aoo|l- Thus
the critical length a” = 0 becomes

Ed
V5

The quantum nucleation rate at low temperatures becomes approximately

L.o=""Aj. (53)

Sot \ /2 -
m) 2K 1/a(2) €XP(z) eXp(— ST (0]/)

y [<\/<n/e>2+1 + D@02+ 1 +1>T/2
@/0O2+1 - HE/@/0O2+1 - 1)
x <\/(n/€)2+l + 2) Q2 (54)

r %49*(

2 L St \Y2 [ Sot\ ! _
r~7r(1/4)sz <2ﬂ_l) <}_la> exp(z) exp(—S[¢.(1)]/h)

y [<\/(n/e>2+1 + D@02+ 1 +1>T/2
@/0O2+1 - HE/@/02+1 - 1)
x <\/(n/€)2+ 1+ 2) Y2, (55)

S[o.(2)] is given by equation (50) and the facteris

1 /1057\?/15\° 5¢2
‘= 10< 64 ) <32) (1_ 327r2—10€2> (56)
and the factorQ is

Qzﬁ [(2 (ma/0)2+ 1+ D)2/ (ra/)2+1+2)(2 (na/@)2+1+3):|

@2 (a/02+1—1)2J/(ra/0?+1—2)(2{/(ma/t)2+1—3)

wherec, is again the cut-off in equation (42). Keeping only the highest contribution from
the cut-off, we may approximat@ with

(57)

a=2

6¢
nQ~ —Ina,. (58)
T

A further temperature correction to the quantum nucleation rate at low temperatures
would be to multiply equation (55) (or equation (54)) by

1+ 3087 exp(—BAQ*).

5. Summary

We have calculated the thermal and quantum nucleation rates in a finite Josephson junction
for various lengths relative to the Josephson penetration depth. The results are given for low
and high temperatures relative to the crossover temperauretween quantum and thermal
nucleation. The critical length for thermal nucleatiorlis= 7 A;, andL. = ZnAJ/\/B for
guantum nucleation & = 0. It would be most interesting to study the quantum tunnelling
regime belowTp for £ > ¢.. This problem is made difficult by the need to obtain the
bounce trajectory in both space and time. Finally, it should be recognized that while our
results have been discussed within the framework of nucleation along a Josephson junction,
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our results can be applied to other nucleation processes, such as nucleation of a magnetic
domain wall along a wire, by replacing some of the parameters and the potential.
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