Theory of materials for solar energy conversion

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 J. Phys.: Condens. Matter 28 070301
(http://iopscience.iop.org/0953-8984/28/7/070301)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 54.191.40.80
This content was downloaded on 16/08/2017 at 07:58

Please note that terms and conditions apply.

You may also be interested in:

Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials
Marco Fronzi, Anna Iwaszuk, Aoife Lucid et al.

Synthesis of the graphene-ZnTiO3 nanocomposite for solar light assisted photodegradation of methylene blue
Shunmugia Gayathri, Palanisamy Jayabal, Muniasamy Kottaismay et al.

Modelling materials for solar fuel synthesis by artificial photosynthesis; predicting the optical, electronic and redox properties of photocatalysts
Pierre Guiglion, Enrico Berardo, Cristina Butchosa et al.

Direct photocatalysis of supported metal nanostructures for organic synthesis
Xiayan Wu, Esa Jaatinen, Sarina Sarina et al.

The effect of silver nanoparticles/graphene-coupled TiO2 beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production
Chun-Ren Ke, Jyun-Sheng Guo, Yen-Hsun Su et al.

Optically modulated charge transfer in TiO2-Au nano-complexes
Zhufeng Shao, Zhaoshuo Tian, Junqi Pang et al.

L-cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime
Chengzhang Zhu, Zhifeng Jiang, Linlin Chen et al.

Photocatalytic composites based on titania nanoparticles and carbon nanomaterials
Bich Ha Nguyen, Van Hieu Nguyen and Dinh Lam Vu
The ability to generate energy in a renewable and sustainable way is rapidly becoming one of the key priorities both for science, technology and society. Solar energy is one such renewable resource, and nature harnesses it through the process of photosynthesis. Inspired by natural photosynthesis, photovoltaics and photocatalysis are using sunlight to produce electricity or to drive chemical reactions.

The principles behind photocatalytic and photovoltaic processes are similar: both systems rely on absorption of light by the photoactive material, which can be either solid or a molecule, to create a bound electron–hole pair (exciton) [1–4]. The next essential step is the dissociation of the exciton to create a free electron and hole, while the recombination of the electron and hole—the loss process—should be avoided. The electron and the hole will then diffuse through the (heterogeneous) photocatalyst to reach the adsorbed reactant species [1, 2], or diffuse through electron-transporting and hole-transporting media in solar cells to enter the electric circuit [3, 4].

In heterogeneous photocatalysis, the photocatalytic material, typically, has both the function of absorbing light to create the electron–hole pair, and provides catalytic sites for oxidation and reduction reactions (although both processes can be assisted, e.g. by using adsorbed light-harvesting sensitizers [5] and by using co-catalysts for oxidation or reduction: molecular co-catalysts [5, 6] or noble metals, such as Pt [6]). Similarly, in silicon solar cells the light-absorbing material (silicon) is also the electron- and hole-transporting medium [7]. In contrast, in third-generation solar cells (dye-sensitised [3], organic [4] and, most recently, perovskite-sensitised solar cells [8]), separate materials take the roles of light absorbers, electron- and hole-transporters. This removes the need to look for a single material with a combination of exceptional properties, but processes taking place at the interface between the different components (e.g. interfacial charge separation and charge recombination) need to be taken into account [3, 9].

Many of the properties that control the efficiency of materials for solar energy conversion firmly belong to the realm of condensed matter physics: structures of crystalline and amorphous solids; their surfaces and interfaces; light absorption; charge transport in bulk materials; electron and hole trapping; charge transfer and reactions at interfaces. Fundamental studies of these processes are essential for understanding materials’ properties and designing new materials with better efficiencies.

Theoretical modelling plays an important role in materials research: on the fundamental level, it provides atomic-scale information which is often inaccessible to experiments, and helps identify key factors that control materials’ behaviour. Computational design of materials can suggest new materials and thus new avenues for exploration. Increasingly, computational screening is a very useful tool for identifying promising materials, before time and effort are spent on synthesis [10, 11].

This special section brings together several computational studies which address some of the key challenges faced by the photocatalysis and photovoltaics community, such as the search for materials with good light absorption, separation and localization of photogenerated charges, and mechanisms of photocatalysed reactions.

The paper by Guiglion et al [12] sets the scene for this section by providing a tutorial-style review of photocatalysis, with focus on the electronic properties which determine the efficiency of a photocatalyst: optical and fundamental band gaps, electron affinities and ionization potentials, electron–hole separation. Current state-of-the-art approaches for calculating these properties are discussed, from the various flavours of Kohn–Sham density-functional theory (DFT) to time-dependent DFT (TD-DFT) and to the combination of GW and the...
photocatalysis. SnO$_2$, PbO, PbO$_2$, NiO and CuO. The adsorbed nanoclusters modify the positions and the properties of the same systems in vacuo. The work on modification of TiO$_2$ surfaces with metal oxide nanoclusters, such as TiO$_2$, SnO$_2$, PbO, PbO$_2$, NiO and CuO, may be needed to improve its performance. Fronzi et al. give an overview of their recent hole recombination; modification of this material – light absorption and significant electron-hole separation [16] and photocatalytic -electron localization [15], band positions and electron-hole separation [16] and photocatalytic reaction mechanisms [17]. Di Valentin [17] explores the mechanism of water splitting— one of the most important photocatalytic processes—focusing on the first steps of water oxidation on the anatase (1 0 1) surface. This study proposes a mechanism where photo-oxidation is triggered by a hole localised on a surface bridging oxygen: hole transfer from TiO$_2$ to an adsorbed water molecule takes place simultaneously with proton transfer from this water molecule to the surface, to form a reactive OH$^-$ radical species. The resulting OH$^-$ radical is likely to react with another hydroxyl radical to form hydrogen peroxide, H$_2$O$_2$, or react with other water molecules, with the outcome depending on the species’ orientation.

The location and the extent of localization of the photogenerated electrons and holes are very likely to influence the rates of charge transfer processes. Maggio et al. [15] explore the localization of excess electron in TiO$_2$ where a positive counterion is present next to the surface (a charge-transfer exciton). This fundamental system is relevant both for photocatalysis, where the species being reduced is likely to be a cation, and for dye-sensitised solar cells, where the electrolyte solution contains dye cations, as well as other organic and metal cations. The DFT study finds that the excess electron is not fully localized: although a large fraction of the excess electron density is found on one surface or subsurface Ti atom, a noticeable fraction of the excess electron density is spread laterally over a large region. Therefore, a continuum model is introduced to complement DFT and access large areas; this model gives the exciton radius in TiO$_2$ of tens and even up to hundreds of Ångströms.

TiO$_2$ on its own may not be good enough as a photocatalyst, because of its lack of visible light absorption and significant electron–hole recombination; modification of this material may be needed to improve its performance. Fronzi et al. [16] give an overview of their recent work on modification of TiO$_2$ surfaces with metal oxide nanoclusters, such as TiO$_2$, SnO$_2$, PbO, PbO$_2$, NiO and CuO. The adsorbed nanoclusters modify the positions and the composition of the valence and conduction band edges (and therefore light absorption) of the parent TiO$_2$ system and, more importantly, can lead to spatial separation of photogenerated electrons and holes; however, the effect strongly depends on the nature of the nanocluster. Notably, the properties of ‘wet’ (water-adsorbed) TiO$_2$/nanocluster systems are different from the properties of the same systems in vacuo.

Despite the popularity of TiO$_2$, a wide range of other promising materials are being explored [1, 2]. In this section, Poli et al. [18] present a study of imogolite (alumosilicate and alumogermanate) nanotubes and their properties as photocatalysts. Nanotubes have several attractive properties for photocatalysis: they are porous and therefore have a large surface area, and they are intrinsically polarized, offering a different environment to reactant species adsorbed inside and outside the tube. The linear-scaling DFT study [18] finds that the valence and conduction bands of these nanotubes are spatially separated and are localized on the inner and outer nanotube surfaces, respectively, offering the possibility of photoreduction of water on the outside, and photo-oxidation and hole scavenging on the inside of the tube. Interestingly, the energy levels of adsorbed water are affected by tube wall polarization: water adsorbed inside the tube has a higher propensity to be photo-oxidized, and outside the tube — photo-reduced.

Molecular systems are very attractive as a basis of organic photovoltaic devices, particularly because plenty of molecular structures can be devised and their properties can be controllably tuned. Faced with this wealth of candidate materials, a fast screening technique is desirable, to weed out poor entries and to select the few promising materials. Tortorella et al. [19] describe a search for a reliable and cost-efficient method for studying molecules for organic solar cells, focusing on a particular class or organic molecules—benzofulvene derivatives. Computational methods at different levels of complexity are explored, from semiempirical methods to DFT with a range of density functionals for structures and frontier orbital energies, and TD-DFT for excited states. The study identifies the best-performing method (i.e. the one providing the highest accuracy of the calculated optical gap) and shows that semiempirical methods can be efficiently used for fast but qualitatively reliable screening of large sets of molecules.
Acknowledgment

I would like to thank all the authors for their contributions, and I hope that the readers will enjoy this special section.

References