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Abstract
Results of studies of the static and dynamic dielectric properties in rod-like
4-n-octyloxy-4′-cyanobiphenyl (8OCB) with isotropic (I)–nematic (N)–smectic A (SmA)–crystal (Cr)
mesomorphism, combined with measurements of the low-frequency nonlinear dielectric effect and heat
capacity are presented. The analysis is supported by the derivative-based and distortion-sensitive
transformation of experimental data. Evidence for the I–N and N–SmA pretransitional anomalies,
indicating the influence of tricritical behavior, is shown. It has also been found that neither the N phase
nor the SmA phase are uniform and hallmarks of fluid–fluid crossovers can be detected. The dynamics,
tested via the evolution of the primary relaxation time, is clearly non-Arrhenius and described via
τ(T) = τc(T − TC)

−φ . In the immediate vicinity of the I–N transition a novel anomaly has been found:
1τ ∝ 1/(T − T∗), where T∗ is the temperature of the virtual continuous transition and 1τ is the excess
over the ‘background behavior’. Experimental results are confronted with the comprehensive Landau–de
Gennes theory based modeling.

S Online supplementary data available from stacks.iop.org/JPhysCM/25/245105/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Soft matter systems are recognized as one of the key
challenges of twenty-first century condensed matter physics,

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

biophysics, material engineering, and food science [1–4]. Soft
matter systems are associated with several common features:
(i) the basic importance of mesoscale structures and processes,
(ii) complex dynamics, (iii) high sensitivity to external
perturbations and (iv) the richness of phase transitions.
Liquid crystals (LC) fulfil these conditions in a model way.
The most ‘classical’ topic in this field is the physics of
thermotropic rod-like liquid crystals. However, even for this
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mature area basic features are surprisingly puzzling. This
applies in particular to the characteristics of phase transitions,
parameterizations of dynamic features or the fragmentation
into static, thermodynamic and dynamic insights [5–17].
Notable also are emerging links with apparently distinct
soft matter systems, such as supercooled glass-forming
liquids [14–18].

Recent studies of soft matter systems showed that
the implementation of the derivative-based and distortion-
sensitive preliminary transformation of experimental data can
reveal novel features poorly manifested in the direct fit of
experimental data. Such an analysis also enables a reliable
estimation of the optimal values of key parameters and the
domain of validity of a given type of description [13–18].
In this paper such a methodology has been employed
for the analysis of the evolution of the static dielectric
permittivity, low-frequency nonlinear dielectric effect (LF
NDE), heat capacity and primary dielectric relaxation
time in a rod-like liquid crystalline (LC) material with
isotropic–nematic–smectic A (SmA) mesomorphism.

In the subsequent sections, firstly significant experimen-
tal characteristics are recalled. Next, the derivative-based
analysis of experimental data is presented. Subsequently, the
comprehensive Landau–de Gennes modeling of both I–N and
N–SmA transitions is shown. Finally, all these techniques are
employed and confronted with the results of experimental
studies in n-octyloxycyanobiphenyl (8OCB), one of the most
‘classical’ rod-like compounds.

Critical summary of existing experimental evidence.
There are several theoretical concepts used in describing

phase transitions in rod-like LC materials, however, the
most important is probably the Landau–de Gennes (LdG)
model [5–10]. Its first great success was the parameterization
of strong pretransitional anomalies of the Kerr effect (KE), the
Cotton–Mouton effect (CME) and the intensity of scattered
light (IL) in the isotropic phase [19–29]:

IL,KE,CME ∝
Amethod

(T − T∗)γ
,

for T > TC
= T∗ +1T∗ (1)

where the exponent γ = 1 is related to the pretransitional
anomaly of compressibility (susceptibility), T∗ denotes
the extrapolated temperature of a hypothetical (virtual)
continuous phase transition and1T∗ = TIN−T∗ is a measure
of the discontinuity of the I–N transition: usually 1T∗ =
1–2 K. TC

= TIN stands for the I–N orientational melting
temperature (clearing temperature). The coefficient Amethod
depends on the amplitude of the pretransitional anomaly of
compressibility and molecular anisotropies linked to the KE,
CME or IL.

This equation appears to be valid also for the low-
frequency nonlinear dielectric effect (LF NDE), where small
changes of dielectric permittivity 1εE induced by the
strong electric field are detected by a weak radio-frequency
electric field whose frequency fulfils the condition τsampling =

1/fsampling � τfluct.(TIN) [30, 31]. The latter denotes the
relaxation time of prenematic fluctuations in the isotropic

phase [8]:

τfluct. ∝
1

(T−T∗)zν
T > TC and ν = 1/2, z = 2 (2)

where z is the dynamical exponent and for typical LC rod-like
material, τfluct.(TIN) ∼ 1 µs.

In the case of KE, CME and IL, the detection is associated
with the frequency of light: 1/fsampling � τfluct.(TIN). It is
noteworthy that for these methods careful studies always
reveal significant deviations from equation (1) in the
immediate vicinity of the clearing temperature. Beyond the
simplest case of the I–N transition they are so strong that
there are still no reliable proposals for parameterizations in
this case. The unique feature of LF NDE is the validity
of equation (1) without any deviations near the clearing
temperature for the I–N, I–SmA, I–Chiral Nematic (N∗)
and I–Smectic E (I–SmE) transitions [30, 31]. This may be
associated with the mentioned qualitative difference between
time scales for KE, CME, IL and LF NDE.

LF NDE may be considered as the ‘static nonlinear
dielectric permittivity’, coupled directly to multimolecular
pretransitional fluctuations. The ‘static linear, dielectric
permittivity’ (dielectric constant, ε′) also exhibits a pretransi-
tional anomaly, but it is linked to an averaged single molecule.
For rod-like compounds with a permanent dipole moment
approximately parallel to the long axis of an LC molecule this
anomaly can be described by [32–34]:

ε′(T) = ε′∗ + aIso1T̃ + AIso(1T̃)1−α (3)

where 1T̃ = (T − T∗)/T∗ is the normalized temperature
distance from the virtual continuous phase transition. The
locus of this transition is given by (ε∗,T∗).

On cooling towards the clearing temperature the number
of molecules within the prenematic fluctuations increases.
The characteristic for the nematic phase equivalence of
n and −n directors causes the cancellation of permanent
dipole moments ordered in an antiparallel way within
the fluctuations. Consequently the static permittivity within
the fluctuations is much smaller than for the fluid-like
surroundings. This causes a crossover from the domain
characterized by dε′/dT < 0 to dε′/dT > 0 on approaching
the clearing temperature.

A similar equation governs the pretransitional anomaly of
density, although it is qualitatively weaker than for ε′(T) [8,
35, 36]:

ρ(T) = ρ∗ + r11T̃ + R(1T̃)1−α. (4)

For the heat capacity in the isotropic phase of nematogens [7,
8, 37–40]:

C+P (T) = b+ a+1T̃ + A+(1T̃)−α. (5)

Relations similar to equations (4) and (5) are valid also in
the nematic phase, below the I–N transition. In this case,
1T̃ = (T∗∗ − T)/T∗∗, where T∗∗ stands for the ‘mirror’ of
the hypothetical continuous phase transition in the isotropic
phase [7, 8, 37–40].

The fundamental characteristic of a continuous phase
transition is the order parameter S(T), describing the degree
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of appearance/disappearance of an element of symmetry [7].
In the nematic phase it can be estimated from the
anisotropy of the refractive index (n‖ − n⊥) or the static
dielectric permittivity (ε′‖ − ε′⊥), where indices ‖ and ⊥

indicate the parallel and perpendicular orientation of rod-like
molecules [5–10]. To describe its temperature dependence, the
empirical Haller formula is often used [6, 8, 41–46]:

S(T) = S0|T − T+|β
′

(6)

where T+ is linked to the clearing temperature (TC) or its
vicinity, and the empirical power exponent β ′ = 0.1–0.2.

However, this relation cannot describe the immediate
vicinity of the I–N transition and has a limited physical
meaning. More justified is the relation which can be derived
from the LdG model, namely [5–8]:

S(T) = S∗∗ + S0|T
∗∗
− T|β . (7)

Fittings of experimental data gave β = 0.25–0.5, i.e.
values ranging between the basic LdG model value (β =
1/2, d = 4, where d is the space dimensionality), and the
tricritical point (TCP) extension (β = 1/4, d = 3). S∗∗ and
T∗∗ are the values of the order parameter and temperature for
the terminus of the superheated nematic phase.

On cooling, the nematic phase may be followed by
the additionally 1D translationally ordered, layered, SmA
mesophase. So far, one of the key pieces of experimental
evidence for this domain is associated with the heat capacity
scan, namely [5–12, 38–40, 47, 48]:

C±P (T) = C + a1T̃ + A±NA(1T̃)−α(1+ D±(1T̃)0.5) (8)

where ‘±’ stands for the nematic and the smectic mesophase,
respectively, and the term in brackets is a correction-to-scaling
term significant for non-mean-field behavior when moving
away from the ‘critical’ point.

De Gennes noted the similarity of the N–SmA transition
to the metal–superconductor transition [5]. Consequently, this
transition should belong to the 3D XY universality class
with an exponent α ≈ −0.07 [5–8]. In practice, the value
of α ranges between 3D XY (−0.07) and tricritical (1/2)
values in various LC systems [8, 10, 12, 38–40, 47, 48].
This unusual situation still lacks a definitive explanation. Also
puzzling is the question of the ‘general’ pattern of the order
of this transition (continuous or discontinuous). The evidence
related to the manifestation of the pretransitional behavior of
dielectric properties for the N–SmA transition is still very
limited ([40] and references therein).

Surprisingly, despite decades of extensive studies there
is still inconclusive evidence of the evolution of basic
dynamic properties in LC materials. Generally, one can expect
analogous behavior of the viscosity, diffusion coefficient or
primary relaxation time. The latter is particularly convenient
for high-resolution tests due to enormous possibilities of
modern broad band dielectric spectroscopy (BDS) [49].
The vast majority of reports indicate a simple Arrhenius
behavior τ(T) = τ0 exp(Ea/kT), where Ea = const stands
for the activation energy [6, 8, 10–12, 42, 43]. However,
even three decades ago Diogo and Martins suggested an

‘apparent’ form of the activation energy, depending on the
order parameter [50]:

τ(T) = τ0
kT

h
exp

(
εS

kT

)
exp

(
2S2

T − T0

)
(9)

where k, h,2 and T0 are empirical adjustable parameters.
According to Diogo and Martins this can be reduced to

Arrhenius behavior if the first exponential term dominates.
Otherwise it takes the Vogel–Fulcher–Tammann (VFT) form,
namely [50, 51]:

τ(T) = τ0 exp
(

B

T − T0

)
= τ0 exp

(
2S2

T − T0

)
(10)

where the right hand of this relation is the basic VFT equation.
Recalling the VFT notation developed for supercooled

glass-forming liquids, B = DTT0, where DT is the fragility
strength coefficient, a value that indicates the discrepancy
from the simple Arrhenius pattern, and T0 is the estimation
of the ideal glass transition, located well below the
hypothetical glass temperature (T0 � Tg) [49]. To the
best of the given authors knowledge in implementations
of equation (10) the temperature dependence of S(T) has
hardly been used, but there are studies for supercooled
n-alkylcyanobiphenyls (nCBs) showing the parameterization
via the VFT equation [16, 52, 53]. However, in the past
decade, experiments in nCBs clearly proved a limited
adequacy of the VFT equation and the superior features of
the critical-like description [15–17]:

τ(T) = τC

(
T − TX

TX

)−φ
(11)

where TX < Tg (τ (Tg) = 100 s).
Such a description in the isotropic phase of nCBs gave

TX ≈ TC
− 30 K, τ (TX) ≈ 10−7 s and φ = 1.5–2.5 [14–17].

It agrees well with the mode coupling theory predictions. In
the ultraviscous domain for τ > τ(TX) ≈ 10−7 s one obtains
TX ≈ TC = Tg − 10 K and φ ≈ 9. Such behavior supports
the possible link between the dynamics of isotropic LC and
glass-forming liquids, suggested theoretically [49, 14–17]. In
this paper, issues related to the distribution of relaxation time
and the decoupling between translational and orientational
degrees of freedom are not studied. Recent advances related
to these topics are presented in [17, 54, 55].

Derivative-based and distortion-sensitive analysis.
In [14] the linearized, derivative-based analysis for

testing the appearance of the Arrhenius or the non-Arrhenius
temperature behavior of the primary relaxation time or
viscosity in soft matter systems was analyzed. Generally, the
non-Arrhenius temperature behavior is described by:

τ(T) = τ0 exp
(

Ea(T)

RT

)
(12)

where Ea(T) is the apparent (temperature-dependent) activa-
tion energy: for the basic Arrhenius behavior Ea(T) = Ea =

const. and R stands for the gas constant.

3
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Linking the above equation with the VFT relation one
obtains [14]:[

d ln τ
d(1/T)

]−1/2

=
Ha(1/T)

R
= [H′a(1/T)]

−1/2

= [(DTTo)
−1/2
] −
[T0(DTT0)

−1/2
]

T

= B−
A

T
(13)

where H′a(T) stands for the normalized apparent enthalpy.
For the critical-like equation (11) one can derive [14, 15]:

T2

H′a(T)
=

T − TC

φ
= AT − B. (14)

For plots exploring equations (13) or (14), regions where τ(T)
evolution is associated with the simple Arrhenius equation
are indicated by the horizontal linear behavior. Regions in
which the VFT (equations (10) and (13)) or the critical-like
(equations (11) and (14)) parameterization can be applied are
indicated by sloped linear domains. The subsequent linear
regression analysis can yield optimal values for the basic
parameters. Consequently, the final fitting via equation (10) or
(11) can be reduced solely to τ0 or τC prefactors in the clearly
pre-identified temperature domains.

Derivative-based analysis may be also employed for static
physical properties. In this case it allows one to reduce the
number of fitted parameters and ultimately indicate the region
where the given type of description can be applied. In [13, 30]
it was employed in supporting analysis of the static dielectric
permittivity (equation (3)), yielding:

dε′

dT
= aIsoT + (1− α)AIso(1T̃)−α. (15)

In [16, 17, 30] the analysis of dε′/dT versus T in the
isotropic phase yielded amplitudes and exponents, which
when substituted into equation (3) led to superior ε′(T)
parameterization.

In this paper such a supporting procedure is used both for
the I–N and N–SmA transitions.

The analysis of experimental data via a dε′/dT versus
T plot makes it also possible to detect subtle changes in
preferences of parallel/antiparallel ordering of permanent
dipole moments, hardly visible for the basic ε′(T) plot.
Derivative-based analysis seems to be particularly important
for optimal parameterization of the order parameters.
Although equation (7) seems to be simple, its implementation
is difficult since the most characteristic part of S(T) behavior
is not available due to the discontinuous character of the
I–N transition. However, one can consider the following
transformation of experimental data [13]:

dS

dT
= βS0(T

∗∗
− T)β−1. (16)

Consequently, for the plot log10(dS/dT) versus log(T∗∗ − T)
one obtains linear behavior for the optimal selection of T∗∗.
The subsequent linear regression analysis can yield optimal
values of S0 and β. In this way a precise estimation of

1T∗∗ = T∗∗−TIN is also possible, which is always a puzzling
experimental problem. One should stress that the application
of derivative-based analysis for the supplementary analysis is
effective only for high-resolution experimental data.

2. Landau–de Gennes modeling

2.1. Nematic–smectic—A phase transition

Both de Gennes [56] and McMillan [57] have developed
Landau theories of the N–SmA transition. Their original
theories suggested that the N–SmA transition could be first
or second order. Halperin et al [58] argued that the N–SmA
transition can never be truly second order. However, later
detailed work by Dasgupta and Halperin [59] predicted that
in the regime of type-II superconductivity, the first-order
N–SmA transition changes to a second-order N–SmA
transition. The tricritical behavior of the N–SmA transition
has been observed by changing the alkyl end chains [60],
varying the concentration in binary mixtures [60–66],
increasing the pressure [67] and increasing the electric
field [68]. Other theoretical studies [69–72] also predicted the
tricritical behavior of the N–SmA transition. In what follows
we shall summarize the de Gennes model and its implications
for dielectric permittivity. The layering in the SmA phase
is characterized [5, 8] by the order parameter 9(r) =
90 exp(−i9), which is a complex scalar quantity whose
modulus 90 is defined as the amplitude of a one-dimensional
density wave characterized by the phase 9. 8OCB material
is very polar due to the same cyano group being located at
the terminal position. So one can conclude that the permanent
dipole moment is parallel to the long rod-like axis. So
we consider the SmA liquid crystals to be composed of
strongly polar molecules. The external electric field induces
a macroscopic polarization P in the SmA phase. Then the free
energy of the nematic phase close to the SmA phase in the
presence of an applied electric field E will be the sum of the
elastic energy of the nematic phase FN, the fluctuating SmA
energy FA and electrostatic terms involving the polarization
and the electric field FE. Then the free energy can be written
as:

F =
1
V

∫
V
(FN + FA + FE)dV (17)

where

FN =
1
2 K1(∇ ·n)2 + 1

2 K2(n · (∇ × n))2

+
1
2 K3(n× (∇ × n))2,

FA =
1
2α1|ψ |

2
+

1
2 C‖|∇‖ψ |

2
+

1
2 C⊥|(∇⊥ − iqsδn⊥)ψ |2

FE =
1
2
γ1|ψ |

2P2
+

P2
⊥

2ε0χ⊥
+

P2
‖

2ε0χ‖
− P ·E.

The elastic energy, as usual, contains three elastic constants
K1 (splay), K2 (twist) and K3 (bend), C‖ and C⊥ are
components of a ‘mass tensor’ along and perpendicular to
the unperturbed director n, which lies along z direction.
The coefficient iqsδn⊥ takes into account so-called gauge
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invariance. The polarization P is representative of the number
of molecular dipoles aligned by the applied field. ε0 is
the vacuum permittivity. Parameters ε0χ‖ and ε0χ⊥ are the
absolute dielectric susceptibilities. The parameter γ1 is the
anisotropy of the polarizability in the SmA phase. As usual
α1 = α0(T − T0

NA), where T0
NA is the virtual transition

temperature. All other coefficients, as well as α0, are assumed
to be temperature independent. Now if the applied field is
assumed to be in the x-direction parallel to the nematic axis,
the nontrivial polarization PX normal to the local director
n and of a modulation of 9 in the y direction will be
energetically favored. Then the nontrivial polarization must
be derived by integrating out the thermal fluctuations of 9 in
the presence of the applied field Ex. In addition, the bend and
twist are expelled at the N–SmA transition. In this case the
free energy in Fourier space can be expressed as:

F =
1

2V

∑
q
[α1 + C⊥q2

⊥
+ γ1P2

x]9q9−q

+
P2

x

2ε0χ⊥
− PxEx (18)

where ψq is the Fourier transform of ψ(r) = 1/V1/2∑
qψ(q)

exp(iq · r) and
∑

q → (V/(2π)3)
∫

d3q.
Now we define the effective free energy, which can be

obtained by integrating out 9q fluctuations in equation (18).
Under the Gaussian approximation, the effective free energy
f is just the ψq-independent part plus the free energy for the
ψq-dependent part, which can be written as

eVf /kBT
=

∫
e−VF/kBTdψq. (19a)

After integration equation (19a) we get

f =
P2

x

2ε0χ⊥
− PxEx +

1
2

kBT
∫

d3q
2π3 ln G−1(q,Px)

(19b)

where G−1(q,Px) = α1 + C⊥q2
⊥
+ γ1P2

x .
Minimizing the free energy (19b) with respect to the

polarization Px leads to the equation of state for the
polarization:

Px

ε0χ⊥
− Ex + kBT

∫
d3q
2π3

γ1Px

(α1 + C⊥q2
⊥
+ γ1P2

x)
= 0.

(20)

In the linear approximation (i.e. low field), the effective
susceptibility in the nematic phase can be calculated from the
last equation as:

χN = χ⊥ + AT + BT(T − T0
NA)

1/2 (21)

where A = −(π2/2)γ1kBχ
2
⊥
ε0q⊥,B = [((π2/2)γ1χ

2
⊥
ε0

α
1/2
0 kB)/C

3/2
⊥
]tan−1(q⊥/ξ⊥) and ξ⊥ = (α1/C⊥)1/2.

Hence the evolution of the dielectric constant in the
nematic phase above the N–SmA phase transition can be
written as:

ε′N(T) = εN/ε0 = 1+ χ⊥ + AT + BT(T − T0
NA)

1/2. (22)

2.2. Isotropic–nematic transition

Owing to the inherent first-order nature of the I–N transition,
experimental accessibility of the critical region and, therefore,
the determination of the critical behavior has at best been
difficult. Poggi et al [22], for example, obtained a critical
exponent β = 1/2 (classical) for the I–N transition. Keyes [73,
74], however, has shown that β = 1/4 (tricritical) can
also fit the data quite well. Keyes [73, 74] suggested
that the critical exponents for quantities diverging towards
temperature T∗, before being cut off by a first-order transition
at TI−N, should be the characteristic of a tricritical point.
Concerning the specific heat, Anisimov et al [7] made a
strong plea for the tricritical hypothesis, by fitting very precise
specific heat measurements of MBBA and other compounds.
Other theoretical studies [75–79] also predicted the tricritical
behavior of the I–N transition. We intend to focus on the I–N
transition in the vicinity of the tricritical point. Taking into
account the relatively small value of the induced polarization,
the Landau–de Gennes free energy in powers of Qij and P can
be expressed as:

F = F0 +
1
3 aQijQij −

4
9 bQijQjkQki

+
1
9 c(QijQij)

2
+

4
81 e(QijQij)

3

+
1
2 L1∇iQjk∇iQjk +

1
2 L2∇iQik∇jQjk

+
1

2χ0
P2
+

1
2
ηQijPiPj +

1
3

G1PkPnQklQnl

+
1
3 G2PmPmQijQij − PiEi (23)

where F0 is the free energy of the isotropic phase; χ0 is the
susceptibility; L1 and L2 are elastic constants; a = a0(T −
T∗I−N); and T∗I−N is the virtual transition temperature.

Further, the last equation can be simplified if one assumes
that the polarization is aligned along the nematic director
En, i.e. P = (0, 0,P). We choose also E = (0, 0,E). The
substitution of Qij and P into the above equation leads to the
free energy:

F = F0 +
1
2 aS2
−

1
3 bS3
+

1
4 cS4
+

1
6 eS6

+
1
2

(
L1 +

L2

2

)
(∇S)2

+
1

2χ0
P2
−

1
2
ηP2S+

1
2

GS2P2
− PE (24)

where G = G1 + G2.
For E = 0,L1 = 0 and L2 = 0, the above model

dependence is adequate in reproducing a first order I–N
transition with b 6= 0, c > 0 and e = 0. The latter condition
assures a finite value of the order parameter and b = 0 and c >
0 indicates a critical point. If one presumes a weak first-order
I–N transition near a critical point, the critical exponent β is
found to have the classical value of 1/2. As discussed above,
the experimental situation (measured value of β) has led to the
question whether the I–N transition is close to the tricritical
point. In general, when two coefficients of the same symmetry
vanish simultaneously we get a tricritical point. Coefficients
c = a = 0 are for the tricritical point. As we have to consider
a situation with c = 0, a stabilizing sixth-order term is added
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with e > 0. Then the equation to determine the equilibrium
value of S is [80]:

(S− S∗∗)4 + 4S∗∗(S− S∗∗)3 + 6(S∗∗)2(S− S∗∗)2

− (9a0/4e)(T − T∗∗) = 0. (25)

From which one get:

S− S∗∗ ∼ (T∗∗ − T)β (26)

with β = 1/4. S∗∗(=(b/4e)1/3) is the value of the metastable
order parameter of the nematic phase and T∗∗ is the metastable
temperature of the nematic phase. Within the framework of
the Landau theory one finds [28] that for T < T∗∗(b = 0, c =
0): G ∼ (T∗∗ − T)−1, where 1 = 5/4 is the gap exponent.
Now for E 6= 0, minimizing the free energy with respect to
the polarization P and substituting, we obtain the free energy
density as a function of S as:

F = F∗0 +
1
2 aS2
−

1
3 b∗S3

+
1
4 c∗S4

+
1
6 eS6

+
1
2

(
L1 +

L2

2

)
(∇S)2 −

1
2
ηχ2

0 E2S

+
1
2η

2χ3
0 E2S2

+
1
2 Gχ2

0 E2S2 (27)

where the renormalized coefficients are F∗0 = F0 −

E2χ0/2, b∗ = b + (3/2)η3χ4
0 E2
− 3ηGχ3

0 E2 and c∗ = c −
(3/2)G2χ3

0 E2
+ 4Gη2χ4

0 E2.
Analysis of equation (27) shows that the influence of

the external electric field on the polar smectic liquid crystals
results in two main effects. First, the electric field produces a
shift of the transition temperature T∗IN which is proportional
to the square of the electric field. Second, the external electric
field induces weak orientational ordering (S(E) = ηχ2

0 E2/2a)
in the isotropic phase. This nonzero value of the order
parameter S(E) is obtained to a first approximation (by taking
∂F/∂S = 0).

The NDE denotes the change in the dielectric permittivity
of a material that originates from the application of a strong
static electric field E. Applying the same method as adopted
by Mukherjee et al [80, 71], the NDE in the isotropic phase
above the I–N transition to a first approximation (b∗ = 0, c∗ =
0, e = 0,L1 = L2 = 0) can be calculated as:

εNDE =
ε(E)− ε(0)

E2 =
U

T − T∗I−N
(28)

where U = 2ηχ2
0 (1εf )/3a0.

Similar to the procedure of section 2.1, the dielectric
constant in the isotropic case is given by:

ε′I(T) = εI/ε0 = 1+ χ0 + A′T + B′T(T − T∗IN)
1/2 (29)

where

A′ = −(π2/2)Gχ3
0 q,

B′ = ((π2/2)χ2
0 a1/2

0 kB/(L1 + L2/2)3/2)tan−1(q/ξ0),

ξ0 = (a/(L1 + L2/2))1/2.

The above analysis clearly indicates the tricritical behavior of
the I–N and N–SmA transitions within the Landau–de Gennes
theory based modeling.

3. Experimental details

This paper presents results of experimental studies in
the rod-like liquid crystalline (LC) octyloxycyanobiphenyl
(8OCB) with the Crystalline solid (Cr)–(310 K)–Smectic
A–(340 K)–Nematic–(353.1 K)–Isotropic liquid phase se-
quence [8]. For the SmA–Cr transition TSmA−Cr ≈ 322 K is
usually reported, hence the tested sample could be slightly
supercooled. The 8OCB molecule is linked to a relatively
large permanent dipole moment (∼5D), nearly parallel to
the long axis of the molecule [8]. The tested compound
was obtained thanks to the courtesy of Krzysztof Czupryński
from Technical Military University (Warsaw, Poland). It
was carefully purified to reach the lowest possible level
of electric conductivity. Samples were always thoroughly
degassed immediately prior to measurements.

The static dielectric permittivity and primary relaxation
time evolution in rod-like thermotropic LC compounds
has been tested over decades [5–12]. However, the
successful implementation of distortion-sensitive analysis
require features of experimental data that are hardly available
so far. Among these are: (i) the essential minimization of
parasitic artifacts which can scatter or bias experimental
data, (ii) high resolution data, and (iii) a high ‘density’
of measurements, particularly in the vicinity of phase
transitions.

The static dielectric permittivity (ε′(T), f = 10 kHz)
was measured via a Novocontrol Alpha analyzer with a
permanent six-digit resolution. LC samples were located in
two capacitors, with a macroscopic gap d = 0.5 mm, which is
the basic scheme given in [81]. They were made from copper
and completely gold coated, so samples were in contact only
with gold, quartz and Teflon. The macroscopic gap made it
possible to reduce/avoid surface effects and the influence of
gas bubbles. Simultaneous measurements in two capacitors,
with perpendicular (⊥) and parallel (‖) orientations of the
molecules by the magnetic field (B = 1.2 T), were carried
out at each temperature. The temperature was stabilized to
±0.01 K. Consequently, a reliable estimation of the order
parameter (1ε′ = ε′

‖
− ε′
⊥
) and the ‘diameter’ (ε′mean =

(2/3)ε′
⊥
+ (1/3)ε′

‖
) directly from experimental data was

possible. The analysis of the evolution of the static dielectric
permittivity is particularly important for the results obtained,
so the full set of ε′(T) data is given in table A of the
supplementary material (available at stacks.iop.org/JPhysCM/
25/245105/mmedia). The rest of the experimental data is
available on request (e-mail: sylwester.rzoska@gmail.com).

The nonlinear dielectric effect is defined as 1εE/E2
=

(ε′(E) − ε′(E → 0))/E2. The sample was placed in an
analogous capacitor to that described above, but made from
Invar. The total capacitance of the sample was C ∼ 100 pF
and the strong electric field induced changes 1CE

∼ 5 fF.
The changes were detected with three-digit resolution. For
LF NDE measurements a dual-field design [82, 83] with
a weak electric probe field of fsampling ≈ 20 kHz and
Vpeak−peak = 1 V was implemented. Regarding the time
scales: τsampling = 1/fsampling ≈ 50 µs, whereas the longest
life time of prenematic fluctuations in the isotropic phase was

6

http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
http://stacks.iop.org/JPhysCM/25/245105/mmedia
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com
mailto:sylwester.rzoska@gmail.com


J. Phys.: Condens. Matter 25 (2013) 245105 S J Rzoska et al

Figure 1. Results of LF NDE measurements in the isotropic phase
of 8OCB. The inset shows the reciprocal of experimental data,
proving the validity of the simple LdG equations (1) and (30), with
ANDE = 108 (10−16 m2 V−2 K), taken from the slope of the line.
The value of the discontinuity was determined as 1T∗ = TIN − T∗

≈ 1.2 K, assuming E2/1εE
= 0 for T = T∗,TC

= TIN.

τfluct.(TIN) ≈ 1 µs [8, 26]. The strong electric field was used
in the form of 10 ms duration DC pulses, whose voltage was
changed from V = 200 to 800 V (for d = 0.5 mm) to control
the validity of the 1εE

∝ E2 condition.
The primary relaxation time was determined from the

dielectric loss curve (ε′′(f )) via the τ = 1/2π fpeak condition.
The primary relaxation time estimated in this way is
proportional to the one obtained via Havriliak–Negami (HN)
function fitting of the dielectric loss curve. However, due
to the applied procedure, one avoids a significant error
associated with the multiparameter HN fitting. The loss curves
were taken from the spectrum obtained using a BDS 80
Novocontrol spectrometer for a non-oriented sample placed
in a gold-coated capacitor with a d = 0.1 mm gap and Vp−p =

0.2 V measuring field.
Supplementary heat capacity measurements were ob-

tained using the differential scanning calorimeter DSC-Q2000
from TA-Instruments working in a modulated mode (MDSC).
In our work, the experimental conditions (temperature
amplitude and oscillation period) were adjusted to obtain only
the real part (the static part) of the complex heat capacity.
A more detailed description of the MDSC technique can be
found elsewhere [39, 84]. Experiments were performed on
cooling from the isotropic phase down to the SmA mesophase
and on heating up to the isotropic phase, all runs made
at 0.01 K min−1. The modulation parameters (temperature
amplitude and oscillation period) were ±0.035 K and 25 s.

4. Results and discussion

Figure 1 shows results of the low-frequency ‘nonlinear
static dielectric permittivity’ ( LF NDE) measurements in
the isotropic phase of 8OCB. On approaching the clearing
temperature (I–N transition), a strong increase of LF NDE

Figure 2. The temperature evolution of the static dielectric
permittivity in 8OCB. Solid curves are given by equations (3) and
(31), with the parameters given in table 1.

occurs. It can be described by a dependence in fair agreement
with equations (1) and (28):

(LFNDE)−1
= E2/1εE

= −A−1
NDET∗ + A−1

NDET,

for T > TC. (30)

The plot based on equation (30) enables a simple validation of
the exponent γ = 1 and the precise estimation of the virtual
critical temperature T∗ via the condition E2/1εE(T∗) = 0. It
is noteworthy that transient grating optical Kerr effect studies
in the isotropic phase of 5CB led to the conclusion that, at
Tend ≈ TC

+ 40 K, prenematic fluctuations reduce to two
to three molecules and are subsequently not detectable by
methods directly coupled to fluctuations [85, 86]. This can be
recognized as the reason for the distortion from equation (30)
for T > Tend ≈ TC

+ 48 K (figure 1).
The evolution of the pretransitional anomaly of the

‘linear’ static dielectric permittivity ε′(T) is qualitatively
different from LF NDE, as shown in figure 2 and in
more detail in figure 3. The pretransitional behavior is well
represented via equations (3) and (31), as shown by the
solid curves in figures 2 and 3. In LC mesophases the static
dielectric permittivity splits into the perpendicular (ε′

⊥
) and

the parallel (ε′
‖
) components due to the rod-like geometry of

the molecule (figure 2).
To compare the behavior in the isotropic phase and

LC mesophases, the mean permittivity, ε′mean = (2/3)ε⊥ +
(1/3)ε‖, has been tested for T < TC

= TIN. Its evolution can
be given by [13]:

εmean(T) = ε
∗∗
+ amean

(
T∗∗ − T

T∗∗

)
+ Amean

(
T∗∗ − T

T∗∗

)1−α

for T < TIN. (31)

To reduce the uncertainty in the multiparameter fitting of
ε′(T) = ε′Iso(T) and ε′mean(T), the initial value of 1T∗ was
taken from LF NDE measurements, and estimations of the
remaining parameters were supported by the derivative-based
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Table 1. Results of fitting experimental dependences for the dielectric permittivity in the isotropic liquid and for the mean permittivity
using equations (3), (31)–(37).

Phase transition ε∗, ε∗∗ 1T (K) a (K−1) A (K−1) Exponent α

I–N (isotropic) 10.20 1.25 −13.36 4.9 0.51
N–I (nematic) 10.35 0.55 11.88 −6.89 0.48
N–SmA (nematic) 9.27 1T < 0.1 8.43 2.96 0.2
SmA–N (smectic) 9.21 1T < 0.1 7.94 −10.26 0.2

Figure 3. The temperature evolution of the mean static dielectric
permittivity in subsequent phases of 8OCB. Green arrows indicate
‘fluid–fluid crossovers’ manifesting in figure 4.

analysis:

dε′mean

dT
= amean + (1− α)Amean

(
T∗∗ − T

T∗∗

)−α
(32)

dε′Iso

dT
= aIso + (1− α)AIso

(
T − T∗

T∗

)−α
. (33)

Values of the fitted parameters are collected in table 1.
To represent the pretransitional anomaly for the N–SmA
transition on cooling, the relation parallel to equation (3) with
an arbitrary power exponent φ = 1− α was used, namely:

ε′N = ε
∗

N + aN(T − T∗N)+ AN(T − T∗N)
1−α

for T > TN−SmA (34)

ε′SmA = ε
∗

SmA + aSmA(T
∗

SmA − T)

+ AN(T
∗

SmA − T)1−α for T < TN−SmA (35)

and

dε′N
dT
= aN + (1− α′)AN(T − T∗N)

−α

for T > TN−SmA (36)
dε′SmA

dT
= aSmA + (1− α′)ASmA(T

∗

SmA − T)−α

for T < TN−SmA. (37)

Results of fitting data via equations (31)–(37) are shown in
figures 2–4 and table 1. It is noteworthy that for the N–SmA
transition the application of equations (22) and (34) yields
approximately the same values of relevant parameters, due

Figure 4. Results of the derivative-based, distortion-sensitive
analysis of the mean dielectric permittivity in 8OCB, based on data
from figure 3. Dashed arrows show a subsequent phase transition,
while solid, small (green) arrows indicate ‘crossover transitions’.
Blue curves (equations (36) and (37)) are for the N–SmA transition
and red curves for I–N transition, with parameters collected in
table 1.

to the small range of temperature, so within the experimental
error BT ≈ AN = const. The application of derivative-based
analysis reduces the number of fitted parameters, anomalies
are more pronounced and domains of validity of the given
critical-like behavior are clearly indicated prior to the final
fitting. Such analysis can also bring to light even subtle
features, due to its distortion-sensitive nature. These features
are clearly visible in figure 4, which reveals that neither
nematic nor SmA mesophases are uniform and ‘weak
fluid–fluid crossovers’ associated with the approach of the
subsequent mesophase appear. Surprisingly, this takes place
also on approaching the crystallization. The obtained values
of the specific heat exponent α from ε′(T) and dε′(T)/dT
evolutions are in fair agreement with ones obtained from heat
capacity measurements [7–9, 37–39]. However, hallmarks for
the mentioned crossovers are absent in the heat capacity
scan, as shown in figure 5, despite the fact that one can
assume CP ∝ dε′/T (see the above LdG model analysis
and [87]).

This may be associated with the fact that ‘crossovers’
are associated solely with structural changes related to
different dipole–dipole arrangements. Nevertheless, the
results presented in figure 4 can significantly facilitate
fitting of CP(T) anomalies, since they indicate domains
of dominance for the given pretransitional anomaly. These
estimations have been employed for the results presented in
figure 5. It is notable that the correction-to-scaling term could

8
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Figure 5. Heat capacity behavior in 8OCB. To describe
pretransitional anomalies for the I–N (in red) and N–SmA (in blue)
transitions equation (8) was employed. The influence of the
correction-to-scaling term was neglected and domains of dominance
for pretransitional effects from figure 4 were taken into account.

be neglected since its influence is important solely for the
clearly non-classical case and when the domain is far away
from the critical point [7].

One of the most fundamental properties characterizing a
continuous phase transition is the order parameter. Probably
the most popular experimental metric of the order parameter
can be associated with the static dielectric permittivity:

S(T) ∝ ε‖ − ε⊥ = 1ε
∗∗
+ B(T∗∗ − T)β (38)

where T∗∗ is the extrapolated terminal temperature of the
supercooled nematic phase,1ε∗∗ is a constant and T < TNI =

T∗∗ −1T∗∗.
The supporting, derivative-based analysis, was also

employed:

d(1ε)
dT

= Bβ(T∗∗ − T)β−1. (39)

Results of such analysis are shown in figure 6. It shows
clear evidence for β = 0.25 ± 0.03, with distortions in the
immediate vicinity of phase transitions. The transition from
the nematic to the SmA mesophase seems to lead solely to the
shift of the amplitude B.

The question arises if pretransitional anomalies as well
as hallmarks of the mentioned ‘weak crossover fluid–fluid
transitions’ within the mesophases can be detected also for
dynamic properties. This issue was tested via the analysis of
the temperature evolution of the primary relaxation time.

It is noteworthy that the distribution of relaxation times,
which can be detected from the shape of the loss curve
related to the primary relaxation time, is clearly non-Debye,
as shown in recent in-depth analysis. The broadening of
loss curves is asymmetric and particularly strong near
the I–N transition [17, 54]. Consequently, the optimal
representation is via the Havriliak–Negami (HN) function
or the Jonsher approach [88]. The parameterization via the
Cole–Cole (CC) or Cole–Davidson (CD) function, often
used in the past, is clearly inadequate. The CC function is

Figure 6. Results of the derivative-based analysis of data from
figure 1, in the isotropic and in LC mesophases of 8OCB on a scale
showing the critical-like behavior in equation (38). The value of the
exponent is β ≈ 14.

Figure 7. Dielectric loss curves in the isotropic liquid and
mesophases of 8OCB.

associated with the symmetric broadening of the loss curve
and the CD function assumes Debye-type behavior for the
high-frequency wing of the loss curve. In this paper the
dielectric relaxation time was estimated via τ = 1/2π fpeak,
which is proportional to the relaxation time estimated from
HN function fitting [88]. However, determining the relaxation
time from the coordinates of the peak of the loss curve
is not influenced by any noticeable error related to the
multiparameter fitting [88]. The up-to-date discussion of the
distribution of relaxation time in rod-like LC compounds can
be found in [17, 54]. The obtained temperature evolution of
primary relaxation times is shown in figure 8.

For technical reasons it was not possible to carry out
high-frequency BDS measurements under a strong magnetic
field, so in the LC mesophase tests were carried out
in a non-oriented sample. The obtained behavior of the
primary relaxation time, shown in figure 8, seems to follow

9
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Figure 8. The Arrhenius plot of the evolution of dielectric
relaxation times in isotropic and liquid crystalline 8OCB. Solid
curves plot the ‘critical-like’ equation (11) with parameters taken
from figure 7 (power exponent φ = 8.5 and TC = 171 K).

Figure 9. The linearized, derivative-based transformation of
dielectric relaxation data, focused on the validity of the critical-like
relation (11) in the description of dynamics in 8OCB. All
parameters given in the figure were determined from the linear
regression analysis via equation (35).

the Arrhenius behavior τ(T) = τ0 exp(Ea/RT),Ea = const.
However, the distortion-sensitive analysis, whose results are
presented in figure 9, shows that the evolution is clearly
non-Arrhenius and can be parameterized by equation (11).
In figure 9, linear domains indicate the regions of validity
of equation (11). The subsequent linear regression can yield
optimal values of the fundamental parameters TX and φ.
The obtained value of the exponent φ ≈ 8.5 coincides fairly
well with the universal behavior of uniaxial glass forming
systems at the glass transition [14–16], but here it occurs also
in the high-temperature domain. It was possible to estimate
the hypothetical glass transition temperature for Tg ≈ 185 K,
calculated as τ(Tg) = 100 s [88]. Similarly to figure 4, there
is a notable appearance of ‘fluid–fluid’ crossover transitions’
within the mesophases in figure 9.

Figure 10. The plot showing the form of the temperature evolution
of the excess relaxation time in the isotropic phase, in the immediate
vicinity of the I–N transition; 1τ = τ − τbckg and 1τ ∝ 1/
(T − T∗), where τbckg describes the extrapolated evolution of τ(T)
remote from the clearing point, given by equation (11) with
parameters estimated from figure 9.

Figures 9 and 10 show that in the isotropic phase, in the
immediate vicinity of TIN, an extra slowing down occurs. As
shown in figure 10 it can be well described via the relation:

1τ(T) = τbckg(T)− τ(T) ∝
1

T − T∗
. (40)

It is worth stressing that the values of 1T∗ obtained from
figure 9 are in fair agreement with that determined from LF
NDE studies.

5. Conclusions

This paper gives the results of studies on the static dielectric
properties in the I, N and SmA phases of 8OCB, one of
the most ‘classical’ rod-like LC compounds, combined with
measurements of low-frequency nonlinear dielectric effects
and the heat capacity. Due to the implementation of the
distortion-sensitive and derivative-based analysis the so-far
lacking evidence for pretransitional anomalies of the static
dielectric permittivity for both I–N and I–SmA transitions has
been obtained. For the I–N transition, the obtained behavior
agrees with the tricritical hypothesis: a value of the order
parameter exponent β ≈ 1/4, a specific heat exponent α ≈
1/2 and a ratio of discontinuities 1T∗∗/1T∗ ≈ 1/2 [86]
(see tables 1 and 2). Noteworthy is the validation of the
approximate scaling relation A+/A− ≈ 1− 4α [89–92].

Regarding the N–SmA transition, the obtained value
of the exponent α ≈ 0.2 from the analysis of ε′mean(T)
and dε′mean(T)/dT evolutions agrees well with estimations
from heat capacity measurements (CP(T)). The value of the
exponent is neither tricritical (α = 1/2) nor the ‘non-classical’
3D XY Ising universality class (α ≈ −0.07). However, the
exponent β ≈ 1/4, except in the immediate vicinity of the
transition. Generally, the tricritical point is linked to the
connection of the three curves of the critical point [93]. In
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Table 2. Results of fitting experimental dependences of the heat capacity in the isotropic liquid and in the nematic and SmA phases
respectively.

Phase transition bIN, bNI, bNA, bAN 1T∗,1T∗∗ (K) aIN, aNI, aNA, aAN AIN,ANI,ANA,AAN Exponent α

I–N (isotropic) 1.92 0.50 7.5 0.024 0.50
N–I (nematic) 1.46 0.25 24.5 0.057 0.50
N–SmA (nematic) 1.99 >0.04 4.67 0.154 0.15
SmA–N (smectic) 2.02 >0.04 3.72 0.088 0.16

the case of the symmetrical tricriticality, to which LC systems
belong, it manifests via the transition from the curve linked
to discontinuous phase transitions to continuous ones [93,
7]. The obtained value of the exponent may suggest that,
depending on molecular features, different LC compounds
are located at different loci along the mentioned curves. As
the confirmation, studies of the heat capacity/specific heat in
LC mixtures or in homologous series of LC compounds may
serve [8–12]. Important may appear lacking so far studies
under various hydrostatic pressures, hypothetically yielding
different values of exponents α.

We must also conclude from the experiments for many
8OCB compounds that either the Gaussian approximation is
insufficient to describe the NA transition or the LdG model
has to be modified. The LdG model can be improved upon
by using a perturbation calculation beyond Gaussian. Thus
this disagreement can be explained by taking these effects
into account. However, such calculations are beyond the scope
of this paper. Worth stressing is the evidence of ‘crossover
transitions’ within the LC mesophase. For instance, the
nematic phase splits into parts dominated by pretransitional
fluctuations associated with the I–N and N–SmA transitions.
This fact may be important in the analysis of experimental
data, since fitting in improperly selected temperature domains
can lead to overestimated and effective values of exponents.

Regarding the dynamics, the evolution of the primary
relaxation time is non-Arrhenius and critical-like. Also
worth stressing is the novel pretransitional anomaly of the
primary relaxation time in the isotropic phase, linked to the
hypothetical continuous phase transition at T∗. We would
also like to indicate an unsolved problem appearing when
comparing values of discontinuities 1T∗ and 1T∗∗ linked to
the I–N transition determined from ε′(T), LF NDE, CME, KE
and CP(T) studies. For the latter these values are about 50%
smaller: (see tables 1 and 2 and compare results in [8–12,
38–40]).

In conclusion, the results presented show the strong
dominance of the pretransitional effects in the isotropic
liquid and mesophases of 8OCB, a model LC rod-like
compound. They also show the fundamental importance of the
supplementary distortion-sensitive analysis in giving reliable
insights.
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