CORRIGENDUM

On the correlation between fragility and stretching in glass-forming liquids

To cite this article: Kristine Niss et al 2012 J. Phys.: Condens. Matter 24 059501

View the article online for updates and enhancements.

Related content

- Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized x-rays
 Y Tanaka, S P Collins, S W Lovesey et al.

- Does the modulated magnetic structure of BiFeO₃ change at low temperatures?
 R Przenioslo, A Palewicz, M Regulski et al.

- The synthesis, crystal and magnetic structure of the iron selenide BaFe₂Se₄ with possible superconductivity at $T_c = 11$ K
 A Krzton-Maziopa, E Pomjakushina, V Pomjakushin et al.
Corrigendum: On the correlation between fragility and stretching in glass-forming liquids

2007 J. Phys.: Condens. Matter 19 076102

Kristine Niss⁴, Cécile Dalle-Ferrier⁴, Gilles Tarjus² and Christiane Alba-Simionesco⁴

¹ Laboratoire de Chimie Physique, CNRS-UMR 8000, Bâtiment 349, Université Paris-Sud, 91405 Orsay, France
² LPTMC, CNRS-UMR 7600, Université Pierre & Marie Curie, 4, Place Jussieu, 75252 Paris Cedex 05, France

Received 26 October 2011
Published 18 January 2012
Online at stacks.iop.org/JPhysCM/24/059501

Figure 6(a) was misplaced with a repetition of figure 4 in the original version of the paper. Here we give the correct figure 6.

Figure 6. (a) The alpha-relaxation times shown in figure 4 (of the original article) plotted as a function of $X = e(\rho)/T$, with increasing $d \log e(\rho)/d \log \rho$ as ρ increases. (b) Density-dependent activation energy $e(\rho)$ (dashed line) used in the scaling variable $X = e(\rho)/T$ for collapsing data in (a) (the associated $n(\rho) = d \log e(\rho)/d \log \rho$ increases from 1.5 to 3.5 in the density range under study). We also display the power law giving the best scaling, $\rho^{-2.5}$, at low density (full line).